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Abs t rac t .  Beams and circular plates on elastic foundations 
axe considered. In some eases, additional elastic supports are 
present. The stiffness distribution of the foundation is designed 
so that the pressure on the foundation is uniform. Sometimes 
the depth of the beam or plate is also varied, with either a 
piecewise-constant sandwich or solid cross-section, and a global 
measure of the deflection is minimized. The total stiffness of the 
foundation and supports is specified, as well as the volume of the 
structure. In one type of problem, the edges of the structure are 
displaced downwards; in the other examples, a downward load 
is applied. Types of loads include a concentrated central load, 
a uniform load and a parabolic load. The uniform foundation 
pressure for the resulting design is often substantially lower than 
the maximum pressure for a corresponding uniform beam or 
plate on an elastic foundation with uniform stiffness. 

1 I n t r o d u c t i o n  

Optimization of the stiffness distribution of elastic foun- 
dations has been treated in several papers. Szelag and 
Mr6z (1978) considered a beam with specified fundamen- 
tal natural  frequency and minimized the total foundation 
stiffness. Taylor and BendsCe (1984) displaced a beam 
downwards at its ends and minimized the maximum foun- 
dation pressure. In Dems et al. (1987), a measure of the 
deflection of a beam was minimized, while Plaut  (1987) 
minimized the compliance of beams and plates under uni- 
form loading. The buckling load of a column was maxi- 
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mized by Shin, Haftka and Plaut  (1988) and Shin et al. 

(1988). 

In Plaut  (1989), the cross-sectional area of a sandwich 
beam and the stiffness distribution of its elastic foundation 
were optimized simultaneously. The volume of the beam 
and the total stiffness of the foundation were specified, 
and the compliance was minimized for uniform loading. 

In some cases the optimal foundation was concentrated 
into a single elastic spring, while in others there was a 
region of uniform foundation with springs at its internal 
endpoints. 

After an initial example involving a beam on elastic 
supports,  beams and circular plates on elastic foundations 
are considered here. The general objective is the minimiza- 
tion of the maximum pressure t ransmit ted to the founda- 
tion. However, the problems to be treated will allow so- 
lutions having uniform foundation pressure and this will 
be stipulated as a constraint. The distribution of founda- 
tion stiffness which leads to satisfaction of this constraint 
is sought. The structures are supported by the foundation 
and, in most  cases, by elastic springs at their edges. The 
total stiffness of the foundation and springs is specified. 

Uniform beams are considered in Section 2. The first 
example involves three springs designed to take equal forces. 
In the second example, the beam rests on an elastic foun- 
dation and its ends are displaced downwards. Next, a 
parabolic load is applied to the beam. In the final exam- 
ple, a uniform load is applied to a beam which also has 
springs at its ends and the stiffness of the springs is chosen 
such that  the total force in the springs is equal to the total 
force on the foundation. 

In Section 3, the depth of the beam is allowed to vary 
(in a piecewise-constant manner),  as well as the stiffness 
of the foundation. Both sandwich and solid cross-sections 
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are treated, with given volume. A uniform load and a 
concentrated central load are considered and springs with 
specified stiffness act at the ends of the beam. A measure 
of the beam displacement (the integral of the square of the 
deflection) is minimized. 

In Sections 4 and 5, the previous analysis is extended to 
the case of axisymmetric circular plates. Uniform plates 
are analysed in Section 4. The elastic foundation is ax- 
isymmetric and there is an elastic support at the edge of 
the plate. Three examples are treated: downward dis- 
placement of the edge, uniform loading and nonuniform 
loading which varies parabolically with the radius. In 
Section 5, the depth of the plate is a piecewise-constant 
function of the radius, with given volume. As for the 
beams, both sandwich and solid plates are treated, and 
both uniform and concentrated central loads are applied. 
The volume displaced by the plate is minimized, with the 
constraint of uniform foundation pressure. Concluding re: 
marks are presented in Section 6. 

2 U n i f o r m  b e a m s  

The springs have stiffnesses C1, C2 and C3, with sum 
K T and are located at X = - L / 2 ,  L2, L/2, respectively. 
A linearly distributed load is applied, with Q ( - L / 2 )  = "~qo 
and Q(L/2) = qo. Define 

16EIW 2L 2 L3Cj L3KT 
_ _ _  1 2  - e i - K T - 

w qo L4 ' L ' 8 E I '  8EI  ' 

q(x) = [(1 - q)x + 1+~/] /2 .  (3) 

In terms of these nondimensional quantities, the beam is 
depicted in Fig. la  and (2) is applicable with D = 1 and 
k ( ~ )  : 0. 

For given total stiffness K T and load parameter q% the 
values of 12, el, e2, and c 3 which yield equal spring forces 
can be determined. Results for K T : 100 are presented 
in Fig. lb,  where 12 and c j / K  T are plotted as functions 
of ~/. For ~/ : 1, when the load is uniform, 12 : 0.5 and 
el : c3 : 1.70e2. For this case, if all springs had equal 
stiffness cj : KT/3  , the force in the central spring would 
be 50 percent higher than the force in each outer spring. 
This percentage increases as K T increases, as does the 
ratio Cl/e 2 in the optimal solution. 

Consider a beam with length L, Youfig's modulus E, mo- 
ment of inertia I ,  axial coordinate X with - L / 2  < X < 
L/2,  downward deflection W ( X )  under a downward dis- 
tributed load Q(X) and an elastic (Winkler) foundation 
with stiffness (per unit length) K(X) .  The total stiffness 
of the foundation and elastic springs is denoted by KT.  
Let Iu be a reference moment of inertia (which will be 
chosen as I in this section) and let 

P = K ( X ) W ( X ) ,  x = 2 X / L ,  D = I / I u ,  (1) 

where P is the foundation pressure, which is constrained to 
be constant. A nondimensional displacement w(x), foun- 
dation stiffness k(x) and load q(x) are defined separately 
in each example and the governing equilibrium equation 
is 

Dwmt(x) + k(x)w(x) : q(x). (2) 

Since k(x)w(x) is constant, (2) can be solved analytically. 

2.i Beam on elastic springs under linearly distributed load 

As an initial problem, a beam supported by three elastic 
springs is considered. Studies involving the optimal loca- 
tions and/or stiffnesses of flexible supports include Dems 
et al. (1987), /~kesson and Olhoff (1988), PZuga (1988), 
Rozvany (1989), and references 1-5 and 8 of Dems et al. 
(1987). Here the objective is equality of the forces in the 
three springs. 

2.2 Beam on foundation subjected to equal end deflections 

Suppose that the ends of the beam are displaced down- 
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Fig. 1. Beam on elastic springs under linearly distributed load: 
(a) geometry; (b) spring stiffnesses and internal spring location 
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wards an amount  W0 and the foundation pressure is to be 
constant (see Fig. 2a). Define 

3 8 4 E I W  
W - -  - -  k -  

p L  4 , 
L4 K L3-KT 
1 6 E I '  K T - -  8 E I  ' 

wo = w ( - 1 )  = w(1).  (4) 

Then 

1 

f k(x) dx  = K T ,  

-1 

(5) 

and (2) is applicable with D = 1, kw = 24 and q = 0. The 
optimal foundation stiffness has the form 

k(x) = 24(W 0 -- 5 + 6x 2 -- x4) -1  , (6) 

where w0 >_ 5 is required so that  k(x)  > 0 and correspond- 
ingly, from (5), K T must be less than 75.3. 

Results based on (6) are shown in Fig. 2b for K T = 
6, 30, 45 and 60. As the total foundation stiffness in- 
creases, the concentration of stiffness near the centre of 
the beam increases. In this example and all subsequent 
ones, the form of the deflection function w can be inferred 
from the distribution of k, since kw is constant. Here 

the deflection is smallest near the centre of the beam and 
largest near the ends. 

A similar problem was treated by Taylor and Bends0e 
(1984). They included an upper limit kmax on k(x) ,  and 
in their numerical example, k(x)  = kmax in the central 
region of the beam. 

P.3 Beam on foundation under parabolic load 

In this example, let 

Q ( X )  = q l  - X  2 w -  - -  
' qlL6 ' 

L 4 K  L3-KT 
k -  1 6 E I '  K T  - 8 E ~  (7) 

(see Fig. 3a). Then (2) is applicable with D = 1, kw = 
2/3, and q(x) -- 1 - x 2. The optimal solution has the form 

6 - 1  
k(x)  = 2 4 0 ( b -  15x 2 + 5x 4 -  x 

\ / 
(8) 

where b is determined from (5). For k(x)  > O, it is required 
that  K T <_ 130.8. For K T = 30, 90 and 120, k(x)  is 
depicted in Fig. 3b. As K T increases, the available stiffness 
tends to concentrate near the ends of the beam. 
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Fig. 2. Beam on foundation with end deflections: (a) geometry; 
(b) foundation stiffness distribution 
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Fig. 3. Beam on foundation under parabolic load: (a) geome- 
try; (b) foundation stiffness distribution 
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2.4 Beam on foundation and end springs under uniform 

load 

Suppose that  the load is uniform and that  springs with 
stiffness C act at the ends of the beam (Fig. 4a). If C = 
0, the solution would be trivial: g ( x )  and W ( X )  would 

be constant. For nonvanishing C and the constraint of 
uniform foundation pressure, both  K ( X )  and W ( X )  vary 
along the beam. In this example, the value of C is chosen 
so that  the foundation pressure is constant, as always, and 
in addition the total foundation pressure is equal to the 
sum of the forces in the two springs [i.e. K W L  = 2CWo 

where W0 = W ( L / 2 )  = W ( - L / 2 ) ] .  

Let 

1 6 E I W  L 4 K  
Q(X)  = qo, w - - -  k - 

qo L4 ' 1 6 E I '  

L3-KT LaC 
K T -  8 E I  ' c =  8 E I "  (9) 

Then (2) is applicable with D = 1, kw = 1 - c w o ,  and 
q(x) = 1, and 

1 

i k(=:) 
-1 

dx + 2c = K T  , (10) 

where w0 denotes the equal nondimensional end deflec- 
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Fig. 4. Beam on foundation and end springs under uniform 
load: (a) geometry; (b) foundation stiffness distribution 

tions of the beam. The optimal stiffness distribution has 
the form 

k(x) = (24/w0)(1 - cw0)(24 + 5c - 6cx 2 + cx4) -1  , (11) 

where w 0 is determined from (10). Results are presented 
in Fig. 4b for K T = 24, 120 and 240. The corresponding 
values of c are 7.9, 50.9 and 109.2, respectively. 

3 N o n u n i f o r m  b e a m s  

In this section, the beam has a rectangular cross-section 
with variable depth and the volume of the beam is fixed. 
The depth is assumed to be a piecewise-constant function 
of X. As in the last example, springs act at the ends of the 
beam. Here the stiffness C of the springs is specified, along 
with the total stiffness K T. The beam depth variation 

and the foundation distribution are chosen such that  the 
foundation pressure is uniform and a global measure of the 
deflection is minimized. Sandwich and solid cross-sections 
are considered. 

3.1 Beam with sandwich cross-section 

Suppose the beam has a width B,  a core of constant height 
2A and face sheets with equal thickness Tj for Xy_ 1 < 
Z < Xj ,  j = 1 , . . . , n ,  with Xo = 0 and Xn = L/2.  

The beam is symmetric about X = 0 and the face-sheet 
thickness of a uniform beam with the same volume is 
denoted Tu. The stiffness of the core is neglected, and 
I = 2A2BTj  for X j_  1 < X < Xy. For the reference 

beam, Iu = 2A2BTu. 

Define x and D as in (1) and denote 

_ __ 2Xs L 4 K  L 3 K T  
ty Tj  x j  = k - - -  K T " 

-- Tu'  L ' 16EIu '  8EIu ' 

LaC 8 E I u W  
c -  8EIu '  w -  QoL3 , 

w0 = w ( - 1 )  = w(1),  (12) 

when a concentrated load Q0 is applied at X = 0 (Fig. 
5). If the beam is subjected to a uniform load q0, the 
quanti ty Q0 in (12) is replaced by qoL/2. Assume that  
constraint (10) on total stiffness of the foundation and 
springs is satisfied. The volume constraint is given by 

n 
(13) 

j= l  

where x 0 = 0 and Xn = 1. In the equilibrium equation (2), 
D = t i for x j_  1 < x < xj,  q(x) = 6(x) for the concen- 



t rated load (with kw : 0.5 - two), and q(x) = 1 for the 
uniform load (with kw = 1 - ewo). The equation is solved 
analytically in each region with constant depth and conti- 
nuity conditions on deflection, slope, bending moment  and 
shear force are then applied, along with boundary  condi- ti 
tions. 

The objective functional 

1 

c = (14) 

-1  

is minimized with the use of a modified steepest descent 
method. In the numerical results, the beam is divided into 
40 segments of equal length (i.e. xj  = j / n ,  n = 20), c = 
20 and K T : 60. The optimal thickness variations of the 
face sheets are depicted in Fig. 6 and the corresponding 
optimal distributions of foundation stiffness are shown in 
Fig. 7. Solid lines are associated with the central concen- 
t rated load and dashed lines are for the uniform load. The 
thickness tends to zero at the ends and a maximum at the 
centre, where it is larger for the concentrated load, while 
the foundation stiffness is lowest at the centre. 

If the beam were uniform (tj = 1) and the foundation 
stiffness were constant (k = 10), the maximum foundation 
pressure would be 72 percent higher than the pressure for 
the optimal solution in the case of a concentrated load 
and 30 percent higher for the uniform load case. If the 
beam were uniform and the foundation were designed for 
uniform pressure, as in Section 2, the value of G in (14) 
would be  77 percent higher than the value for the optimal 
nonuniform beam for the concentrated load and 28 percent 
higher for the uniform load. 

The optimal thickness variations in Fig. 6 can be ap- 
proximated by simple analytical functions t(x).  For the " 
concentrated load, if one considers a symmetric beam with 

t ( x ) = 2 ( 1 - x )  for O < x < l ,  (15) 
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Fig. 5. Geometry of nonuniform beam on foundation and end 
springs 
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Fig. 6. Optimal face-sheet thickness variation for sandwich 
beam with c = 20 and K T = 60 under concentrated load 
( ) and uniform load ( . . . .  ) 

then the symmetric stiffness distribution providing uni- 
form foundation pressure is given by 

k(x)  = (0.263 - 0.338x 2 q- 0.0834x 3 ) -1 ,  (16) 

and the corresponding value of G is 8.8 percent higher 
than that  for the design in Fig. 6. For the uniform load, 
the thickness variation 

t(x) = 1.5(1 - x 2) (17) 

leads to 

k(x)  = (0.179 - 0.156x 2)-1 ( i s )  

I 

k L  

,i 

/ ' // 
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Fig. 7. Optimal foundation stiffness distribution for sandwich 
beam with c = 20 and K T = 60 under concentrated load 
( ) and uniform load ( . . . .  ) 
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for uniform pressure and a value of G that  is 3.5 percent 
higher than that  for the optimal piecewise-constant design 
shown in Fig. 6. 

3.2 Beam with solid cross-section 

Suppose the beam is homogeneous with a rectangular cross- 
section having width B, depth//3" and moment of inertia 

I = BH3./12 for Xj_  1 < X < Xj  , j = 1 , . . . , n  with 
Hj  = //Ju and I = Iu for the reference uniform beam. 
Using the nondimensional quantities in (1) and (12) and 
defining hj = Hj/Hu,  the constraint of constant volume 
is given by (13) with tj  replaced by hj and the foundation 
stiffness constraint is still given by (10). The equilibrium 
equation is given by (2) with D = h ff for X j _ l <  x < xj 

and the same quantities q(x) and kw as for the sandwich 
cross-section. 

Again, the functional G in (14) is minimized for the 
case of 40 equal-length segments, c = 20 and K T = 60. 
The optimal depth variations for a concentrated load (solid 
lines) and a uniform load (dashed lines) are depicted in 
Fig. 8. The corresponding foundation stiffness distribu- 
tions are very similar to those in Fig. 7. If the beam were 
uniform (hi = 1) and the foundation stiffness were con- 
stant (k = 10), the maximum foundation pressure would 
be 91 percent higher than the pressure for the optimal so- 
lution in the case of a concentrated load and 41 percent 
higher for the uniform load case. If the beam were uniform 
and the foundation were designed for uniform pressure, as 
in Section 2, the value of G in (14) would be 128 percent 
higher in the case of a concentrated load and 49 percent 
higher in the case of a uniform load. These improvements 
for the solid beam are greater than those for the sandwich 
beam. 
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x 

Fig. 8. Optimal depth variation for solid beam with c = 20 
and K T = 60 under concentrated load ( ) and uniform load 
(----) 

4 U n i f o r m  c i r cu l a r  p la tes  

Consider a circular plate with radius R, Young's modulus 
E,  Poisson's ratio v, flexural rigidity D, radial coordinate 
?, downward deflection W(~) under a downward axisym- 
metric load Q (~), an axisymmetric elastic foundation with 
stiffness (per unit area) g(~)  and an elastic support at the 
edge ~ = R with stiffness (per unit length) C. The total 
stiffness of the foundation and elastic support is denoted 
K T and Du is the flexural rigidity of a reference plate 
(which will equal D in this section). 

Let 

D 
P=-K(?)W(~) ,  r R '  D Du'  

DuW k = R4 K  K T - R2-KT 
w - -  ~ ' D--~ ' 2r Du ' 

R3C 
c -  Du ' w 0 = w ( 1 ) '  (19) 

where P is the constant foundation pressure and fl de- 
pends on Q(~). In nondimensional terms, 

k(r)w(r) = 1 - 2cw 0 (20) 

(except for the case in Section 4.1), the constraint on total 
stiffness becomes 

1 

f k(r)rdr-4- e = K T ,  

0 

(21) 

and the equilibrium equation is given by 

r dr \ dr ] ] q(r) (22) 

where q(r) is defined in each example. Since kw is con- 
stant, (22) can be solved analytically. 

In the following examples with uniform plates, the 
spring constant C will be chosen to minimize the func- 
tional J defined by 

J = Fhs +F~,  F8 = 27rRCWo, Ff = r R 2 p ,  (23) 

where W 0 = W(R) .  Here F8 is the total force in the  
elastic support and Ff is the total force on the foundation. 
Minimization of J tends to equalize these two forces. 

4.1 Plate subjected to edge deflection 

Suppose that the edge of the plate is displaced downwards 



an amount  WO, as shown in Fig. 9a in nondimensional  

terms.  If fl = R 4 p  in (19), then (22) is appl icable wi th  

D = 1, kw = 1 and q = 0. The op t imal  foundat ion  
stiffness is 

k(r) = 64(64w 0 -- 3 -t- 4r 2 -- r4) -1  , (24) 

where w0 is de te rmined  from constraint  (21). It is required 

tha t  w0 > 3/64 to assure tha t  k(r)  is positive. Results  
are presented in Fig. 9b for K T = 1, 10 and 100. For 

K T -- 100 the value of k (O) /K  T is 62.5. As for beams,  the  
stiffness tends to concentra te  near  the centre of the pla te  

as K T increases. 

4.2 Plate under uniform load 

Suppose tha t  Q(?) = q0 (Fig. X0a) and fl = qo R4 in (19). 
Then D = 1 and q = 1 in (22) and the opt imal  solut ion 
has the form 

k(r)  = 32(1 -- 2cwo)w01(32 + 3c - 4cr 2 + cr4) -1  , (25) 

where once again wo is de te rmined  from (21). This stiff- 
ness d is t r ibut ion  is p lo t ted  in Fig. 10b for K T = 1,10 and 
100. As K T increases, the stiffness tends to concentra te  
near  the edge of the plate.  

4.8 Plate under parabolic load 

In this example ,  Q(~) = ql (R  2 _~2) ,  as shown in Fig. l : la,  
~3 = ql R6 in (19), and in (22), D = 1 and q = 1 - r  2. 

The  op t imal  foundat ion stiffness d is t r ibut ion is depicted 

in Fig. l l b  for K T  = 1, 10 and 25. If K T  is too large, a 
solut ion with  k > 0 ,  0 _< r < 1 does not  exist. 

5 N o n u n i f o r m  c i r c u l a r  p l a t e s  

In this section, the depth  of the  pla te  is assumed to be 
a piecewise-constant  function of ~ and the volume of the  
pla te  is fixed. The  stiffness C of the elastic suppor t  at  the 
edge is specified, along with  the to ta l  stiffness K T. In the  
op t ima l  solution,  the foundat ion pressure is uniform and 
the displaced volume under  given loading is minimized.  

5.1 Plate with sandwich cross-section 

Suppose the pla te  has a core of constant  depth  and face 

sheets wi th  equal thickness T s. for ~ j -1  < ~ < r-j, j = 
1 , . . . ,  n wi th  r0 = 0 and rn = R. Denote the correspond-  
ing flexural r igidi ty  by D j  and let Tu and Du be values 
for a reference uniform plate  with the same volume. In 
addi t ion  to the  nondimensional  quanti t ies  in (19), define 
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tj = Tj % (20) 
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Fig .  9. Circular plate with edge deflection: (a) geometry; (b) 

foundation stiffness distribution 
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Fig .  10. Circular plate under uniform load: (a) geometry; (b) 
foundation stiffness distribution 
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Then (20)-(22) are applicable with D = t a" for r j_  1 < r < rj  
If a concentrated load Q0 is applied at the centre of the 
plate, fl = Q o R 2 / r  in (19) and q = 5(r) in (22), while for 
a uniform load q0, B = qo R4 and q = 1. In nondimen- 
sional terms, a cross-section along a diameter of the plate 
would look like Fig. 5 with x, Zl and xj  replaced by r, r l  
and r~', respectively. 

The volume constraint is given by 

r t  

E ( r  2 - r ~ _ l ) t  j = 1 .  (27) 
j = l  

As for nonuniform beams, the equilibrium equation can be 
solved analytically. The objective functional to be mini- 
mized here is chosen to be 

1 

a = f (28) 
o 

For the case of a uniform load, G is proportional to the 
compliance (i.e. the work done by the load). The founda- 
tion design function k(r) and plate design parameters t j  
must  satisfy constraints (21) and (27). 

In the numerical results, rj = j / n ,  n = 10, v = 
0.3, c = 20 and K T = 40. Figure 12 depicts the op- 
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Fig:  11. Circular plate under parabolic load: (a) geometry; (b) 
foundation stiffness distribution 

timal thickness variations of the face sheets and Fig. 13 
illustrates the corresponding foundation stiffness distribu- 
tions. In comparison with the results in Fig. 6 for a sand- 
wich beam, the thickness of the face sheets for the plate 
is not concentrated as much near the centre. If the plate 
thickness were uniform (tj -- 1) and the foundation were 
designed for uniform pressure, as in Section 4, the value 
of G in (28) would be 35 percent higher in the case of the 
concentrated load and 5 percent higher for the uniform 
load. 

5.2 Plate with solid cross-section 

Suppose the plate is homogeneous and has depth //3- for 
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Fig. 12. Optimal face-sheet thickness variation for sandwich 
circular plate with c -- 20, K T = 40 and v = 0.3 under 
concentrated load ( ) and uniform load ( . . . .  ) 
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Fig. 13. Optimal foundation stiffness distribution for sandwich 
circular plate with e = 20, K T = 40 and v = 0.3 under 
concentrated load ( ) and uniform load ( . . . .  ) 
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Fj-1 < ~ < rj ,  with Hj = Hu and Dj  = Du for the refer- 
ence uniform plate. Using the nondimensional quantities 
in (19) and defining hj = H j / H u ,  the volume constraint is 
given by (27) with t j  replaced by hi, and the equilibrium 

3 for < r < rj. equation is given by (22) with D = h i r3._ 1 

Again, (20) and (21) are satisfied and G in (28) is mini- 
mized. 

Using the same loading conditions and parameters as 
for the sandwich cross-section, the optimal depth varia- 
tions of the solid plate are presented in Fig. 14. The cor- 
responding foundations are similar to those in Fig. 13. If 
the plate were uniform (hi = 1) and the foundation were 
designed for uniform pressure, the value of G in (28) would 
be 67 percent higher for the concentrated load case and 
11 percent higher for the uniform load. 

6 Conc lud ing  r e m a r k s  

Symmetric beams and axisymmetric circular plates on elas- 
tic foundations of the Winkler type have been treated. 
If the stiffness of the foundation can bedistr ibuted in a 
nonuniform manner, various objectives can be optimized, 
such as vibration frequencies, buckling loads and compli- 
ance. Attention here has been focused on the founda- 
tion pressure, which also was considered in an example by 
Taylor and Bends0e (1984). Often the maximum pressure 
which would be transmitted to a uniform foundation can 
be reduced substantially by an optimal distribution of the 
foundation stiffness. 

If K denotes the foundation stiffness (K > 0) and W is 
the downward deflection of the beam or plate, then K W  
is the pressure. With the exception of an initial exam- 
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ple which only involved spring supports, the foundations 
here were designed so that the pressure was uniform, i.e. 
K W  was constant and the minimum pressure was equal 
to the maximum pressure. This meant that W could not 
be zero or negative. Rigid supports with zero deflection 
could not be included, as well as beams or plates which 
would deflect upward in some regions and cause a nega- 
tive pressure (tension) or lift off the foundation (if it only 
acts under compression). In such cases, the constraint 
of uniform pressure could be replaced by the objective of 
minimizing the maximum pressure..This topic is left for 
future research, as well as consideration of other founda- 
tion models. 

In some of the examples, end springs were present in 
addition to the elastic foundation, with the total stiffness 
specified. For uniform beams and plates, the stiffnesses 
of these elastic supports were chosen to equalize the to- 
tal forces acting on the foundation and on these end sup- 
ports (Sections 2.4 and 4.1-4.3); for nonuniform beams and 
plates, the spring stiffnesses were fixed (Sections 3 and 5). 

An additional objective can be considered if both the 
foundation stiffness and the structural material can be dis- 
tributed optimally. In Sections 3 and 5, global measures of 
the deflection were minimized, subject to the constraint of 
uniform foundation pressure. If the depth of the beam or 
plate were allowed to vary continuously with position, the 
resulting optimality conditions could not be solved analyt- 
ically. Therefore, piecewise-constant functions were em- 
ployed. The lengths of the uniform-depth segments were 
specified, although they also could have been optimized. 
Sandwich and solid cross-sections were analysed, with con- 
centrated central loads and uniform loads. The percentage 
decrease in the deflection measure was found to be greater 
for a concentrated load than a uniform load, and greater 
for a solid cross-section than a sandwich cross-section. 
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Fig. 14. Optimal depth variation for solid circular plate with 
c : 20, K T -- 40 and v : 0.3 under concentrated load( ) 
and uniform load ( . . . .  ) 
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