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Introduction 

In this paper we continue the study, initiated in [1], of generalized differential 
equations and their solution families. Our principal concern is an investigation 
of some implications of Hermes' approximation theorem [2, Theorem 4]. This 
writer has elsewhere given a parafahrase [3, Theorem 1] of part of the content 
of Hermes' theorem. In this paper we state a paraphrase (Theorem 1.1) of 
another part of the content of Hermes' theorem. These two paraphrases are then 
utilized to obtain two separate improvements of an approximation theorem [1, 
Theorem 1.3] originally obtained by Zaremba [4, II.8]. One of these improve- 
ments leads to a generalization of the fundamental existence theorem [1, 
Theorem 2.3], [4, II.9] in a form which permits the extension of the rationale of 
Liapunov's second method to problems of weak stability [5, 6] associated with 
generalized differential equations. The other improvement of Zaremba's 
approximation theorem permits a further extension of Zaremba's generaliza- 
tion [4, III.6] of Kneser's classical theorem [7, pp. 15-16] on the connectedness of 
the attainable set of an ordinary differential equation. Inasmuch as heavy 
reliance is placed on [1], not only for fundamental results but also for notation 
and terminology, a familiarity with that paper is assumed. 

1. Approximation of Convex Set-Valued Functions 

For convenient reference we state first, as Theorem A, the author's para- 
phrase [3, Theorem 1 and Remark 2] of Hermes' approximation theorem [2, 
Theorem 4]. For this purpose let N = I × W, where I is a compact interval in 
E 1 and W is a compact subset of E n. 

THEOREM A. I f  R: N-+ F" is continuous, then there exists a sequence 
{Sk} of continuous functions Sk: N--> F" w.th support functions gk defined by 

gk(t, x, p) -- g(Sk(t, x), p), 

having the following properties: 
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(i) for each k and all (t, x) ~ N, Sk(t, x) is strictly convex and g k is of class C 2 
on N x  ( E " -  {0}); 

(ii)for each k and all (t, x) ~ N, ~(Sk+l (t, X), Sk(t, X)) = 0; 
(iii)for each k and all (t, x) E N, 

Zi((R(t, x)) 2-'k÷' ' ,  Sk(t, x)) = ~'(Sk(t, x), (R(t, x)) 2-k) = 0. 

Our second paraphrase of  Hermes '  approximat ion theorem is 

T H E O R E M  1.1. I f  R: N ~ F" is continuous, then for each k there exist 
functions ~k : N -+ E" and h k : N x (E" - {0}) -+ E", both of class C 1 and with h k 
satisfying ;tk(t, x, o,t~) = ak(t, x, ~), ~, > O, such that the sequence { Tk} of functions 
Tk: N ~ r" defined by 

where 

Tk(t,x) = {fk(t,x,l~): ][t~]l < 1}, 

fk(t, X, I~) = if(t, X)(1 -H/~IL)+H/~I[ hk(t, X, Iz), I~ ~ O, 

fk(t, X, O) = ~k(t, X), 

has the following properties: 

(i)for each k and all (t, x) ~ N, ~(Tk÷l(t  , x), Tk(t, x)) = O; 

(ii) for each k and all (t, x) ~ N, 

~((R(t, x)) 2-'k+' ' ,  rk(t, x)) = ~i(Tk(t, x), (R(t, x)) 2-k) = 0. 

For  the p roo f  of  Theorem 1.1 we shall need the following preliminary 
results. 

L E M M A  1.1. Let A e I'" be strictly convex and smooth (i.e., each point of the 
boundary of A lies on a unique support hyperplane); then with gp(A, p) denoting 
the gradient with respect to p of g(A, .) , for each/3 ~ (0, 1) and each p ~ 0 the 
point 

~(fl, p) = flg,(A, p) + (I - fl)gp(A, - p )  

satisfies ~(fl, p) c int A. 
Proof. By [3, Lemma 1] we have 

g(A,p) = pogp(A,p), [[p[] = 1, 

and the smoothness of  A implies that if Pl  -¢ P2 then gp(A, Px) -~ gp(A, P2). 
For  ]]pl] = ]lPol] = 1 a n d p  :~ Po, we have 

P°/~(fl, Po) = fpogp(A, Po) + (1 - f)pogp(A, -Po), 

and then the aforementioned consequence of  smoothness together with [3, 
Lemma 1] implies 

°~(f, Po) < f g ( A , p ) + ( 1 - f ) g ( A , p )  = g(A,p). 

Moreover  

Po ° ~(f, Po) = Big(A, Po) - (1 - f)g(A, -Po) 

and since, by virtue of  the restrictions on A, -g (A ,  - p )  < g(A, p), p ¢ O, 
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we conclude that poo~(fl, Po) < g(A, Po). The proof is completed by invoking [1, 
Lemma 1.4]. 

COROLLARY 1.1. Let A be strictly convex and smooth and let 8o e (0, 1), 
Po E E" -{0}  be fixed; with/~ -- {p: Ilpll --< I}, the function ~o: E ~ --> E" defined 
by 

~o(p) = ~(flo, Po)(1-llpll)+llpllgp(h,p), p ~ O, 

~(0) = ~(~o, po), 

is a homeomorphism of B onto A. 
Proof. That ~o is continuous on E" -{0}  is a consequence of the continuity 

ofgp(A, -) on E " -  {0} [3, Lemma 1]. Moreover, by the same token, I[gp(A, P)II 
= Ilgv(A,p/llpll)ll < K, so that 

]l ~o(p) - ~o(0)II < tiP II (K+ II ~(/3o, Po)II) 

when 0 < [IPll < 1, implying the continuity of~o a t p  = 0. Now let ( ~ A ;  then 
the half-line with endpoint at ~(flo, Po) and passing through ~ intersects the 
boundary of A in a unique point, x(~:), which lies on a unique support hyper- 
plane to A with outward unit normal p* = p*(x(~)). It follows that ~: = ~o(Tp*), 
where 

II ~ -  ~(~o, po)LI 
9' = 7(~:) = II x ( ~ : ) -  ~(/3o, po)I1'  

hence ~o is onto and the function inverse to ~0 is given by 

~(~(~o,  po))  = 0 

~7(0 = ~,(Op*(x(~)), ~ ~ -~(flo, Po). 

The continuity of ~ then ensues from that of ~0 and the compactness of/~. 
Now let us prove Theorem 1.1. Denoting by y a generic point (t, x) ~ N, we 

direct the reader's attention to the proof of [3, Theorem 1 ]. The sets Q(Yi, E) of 
that proof satisfy the hypotheses of Corollary 1.1; we denote by cp'(y~, p) the 
mapping of that corollary corresponding to Q(yi, E). Then by the argument of 
[3, Theorem 1], ~o'(y~, .) is of class C 1 on E" -{0} .  For the function Q(., E) 
defined by [3, (4)] it follows readily that Q(y, E) has the representation 

Q(y, ~) = {~o'(y,p): Ilpl[ ~ 1}, 

where ~o'(y, p) is defined as 
m + l  

~p'(Y, P) = ~, oq(y)q~'(Y,, p). 
i = 1  

The continuity of ~o'(., .) and ~0~(-, -) now follows from Corollary 1. I and the 
proof of  [3, Theorem 1]. Imitating Hermes' use [2, Theorem 4] of the mollifier 
technique and invoking [3, Rema/'k 2], we complete the proof of Theorem 1.1. 

The next two theorems are the promised improvements of [1, Theorem 1.3]. 
Only Theorem 1.2 will be proved, the proof of Theorem 1.3 being similar. 
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T H E O R E M  1.2. I f  R: N ~ F" is upper semicontinuous, then there exists a 
sequence {Q,,} of continuous functions Q,,: N ~ F", with support functions o]" 
defined by 

¢o'(t, x, p) - g(Q,.(t, x), p), 

having the following properties: 

(i)for each m and all (t, x) ~ N, Q,.(t, x) is strictly convex and o/+ is of class 
C 2 on N x  ( E " -  {0}); 

(ii)for each m and all (t, x) ~ N, ~(Q,,+ a(t, x), Q~(t, x)) = 0; 
(iii)for each m and all (t, x) E N, ~(R(t, x), Qm(t, x)) = 0; 
(iv)for each (t, x) E N, limm-.o0 Zx(Q,,(t, x), R(t, x)) = O. 

T H E O R E M  1.3. I f  R: N ~ F" is upper semicontinuous, then for each m there 
exist functions ~": N ~ E" and )t": N × (E " -  {0}) -+ E", both of class C 1 and 
with ;V' satisfying 

Am(t, x, ,t~) = h"(t, x, t~), o~ > O, 

such that the sequence {Z,,} of functions Z,,: N ~ F" defined by 

Zm(t, x) = {f~(t, x,p,): IIt~ll < 1}, 
where 

fro(t, x,t ,) = ~m(t, x)(l-II/~[l)+]t/~l[Am(t, x ,~) ,~  # 0, 

fro(t, X, O) = ~m(t, X), 

has the following properties: 

(i)for each m and all (t, x) ~ N, A(Zm+l(t, X), Zm(t, x)) = 0; 
(ii)for each m and all (t, x) E N, A(R(t, x), Zm(t, x)) = 0; 

(iii)for each (t, x) E N, lim,,_, oo A(Zm(t, X), R(t, x)) = O. 

For the proof  of  Theorem 1.2, let us call the approximations to R(t, x) 
corresponding to [1, Theorem 1.3] and to Theorem A approximations of  types 
! and II respectively. Let {Rm} be an approximation of type I to R on N and, 
for each m, let {S~'} be an approximation of  type II to Rm on N. Defining 
Qm = S2, we see that (i) is an obvious consequence of Theorem A (i). By virtue 
of [1, Theorem 1.3, (iii)] and Theorem A (iii), (iii) follows from the estimate 

A(R(t, x), Qm(t, x)) < A(R(t, x), R,,(t, x))+ A(Rm(t, x), Qm(t, x)). 

For the proof of (ii), we find that 

~X(Qm+ x(t, x), Qm(t, x)) = ~X(Qm+ x(t, x), (R,,+ l(t, x)) 2-cm+') 
+ ~((R,.+ l(t, x)) 2-c" ÷ ' ,  (R,.(t, x)) 2 -,m+ . )  

+ ~((R,,(t, x)) 2-'m+l', Qm(t, x)). 

The first and third terms of the right member of this inequality are zero by 
virtue of Theorem A (iii); the second term is zero by virtue of  [1, Theorem 1.3 
(ii)]. Finally, from Theorem A (iii) we obtain 

7X(Qm(t, x), R(t, x)) < 2-m+/X(R,,(t, x), R(t, x)), 

from which (iv) follows by virtue of [1, Theorem 1.3 (iv)]. 
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2. A New Existence Theorem for Generalized Differential Equations 

The central result of this section is a generalization of the fundamental 
existence theorem [1, Theorem 2.3], [4, II.9] for the Cauchy problem 

(1) 2 e R(t, x), X(to) = Xo. 

We shall need the class ~/'(D) of functions V: D ~ E 1, where D is an open 
subset of  E 1 × E", which are of class C 1 cn D and for which the gradient 
Vx(t, x) with respect to x does not vanish on D. 

T H E O R E M  2.1. Let  D be an open subset of  E 1 × E"  containing (t o, Xo) and 
let R: D --+I'" be upper semicontinuous; then for  each V e ~Cr(D) there exists a 
solution go of  (1) satisfying 

d 
v ' ( t ,  go(t)) - d t  v ( t ,  go(t)) = V,(t ,  g o ( t ) ) - g ( n ( t ,  go(t)), - V A t ,  go(t))) 

almo~ everywhere on its maximal  interval of  existence. Moreover, all solutions 
of  (1) may be continued to the boundary of  D. 

Proof. Let the set N = I x  W of  the preceding section be chosen in such a 
way that to is the midpoint o f / ,  W is a neighborhood of  Xo and N c D. On 
N we construct an approximation to R of the type given in Theorem 1.2; we 
condense our notation by defining 

vm(t, x, p) = - tom(t, x, - p ) ,  

v(t, x, p) = - g ( R ( t ,  x), - p ) .  

The functions km: N - +  E"  defined by 

k"(t ,  x) = v~(t, x, Vx(t, x)), m = 1, 2, 3, • • • , 

are continuous on N. As in the proof  of [2, Theorem 5], we may infer that the 
function ~: N --~ E a defined by 

~(t, x) = max {l l~ l l :  ~ e Ql(t,  x)} 

has a maximum M on N. It follows that 

Ilkm(t,x)ll < M,  ( t , x )  e N ,  m = 1,2,3,  • • " ,  

so that there is an interval [q, t2] containing ,to in its interior and independent 
~.- 

of  m on which all solutions of  the differential equations 

(2) :~ = k " ( t , x ) ,  X(to) = . x  o, m = 1 , 2 , 3 , "  • " ,  

exist. Since k"(t ,  x) e Q,,(t, x) on N, an argument like that for [1, Theorem 2.3] 
shows that every sequence {x"} of solutions of (2) on [tl, t2] has a subsequence 
which converges uniformly on that interval to a solution go of (1). 

The function v(., go(.), V~(., go('))) is Lebesgue summable on [tl, t2] since, 
by [1, Corollary 1.2], it is lower semicontinuous--hence measurable--on [tl, t2] 
and by [1, Lemma 1.6] it is bounded on [ta, t2]. Let us define V*: D - ~ E  1 by 

(3) V*(t, x) = V,(t, x) + v(t, x, V~,(t, x)); 
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it is a consequence of the definition of v and the fact that ~0 is a solution of ( l)  
that 

V'(t, ~(t)) >_ V*(t, ~(t)) 

almost everywhere on [tl, t2]. Let us suppose that the set P defined by 

P = {t ~ [tl, t21: V'(t, ~(t)) > V*(t, ~0(t))} 

has positive Lebesgue measure; we shall show that this assumption leads to a 
contradiction. Defining the positive number ¢ by 

¢ = 2 -1 fp  [V'0", ~(0)-V*0", ~(r))]dr, 

wc find that 

V(t,, ~(t,)) = fttl V*(r, ~o(r))dr+2~. V(t2, tp(t2))- 

Now letting {x m} denote a sequence of solutions of (2) converging uniformly on 
[tl, t2] t o  % we obtain from the last formula, (2) and the definition of k m, the 
formula 

(4) [V(t2, ~o(t2))-  V(t2, xm(t2))]-- [V(tl ,  ~ ( t l ) ) -  V(tl, xm(tl))] 

---- ft2. [V*0", ~o0"))-- V*0", xm(~))]d~-+2~ :, m = 1, 2, 3, • ' • .  

But now we may find L = L(~:) > 0 such that if m > L, then 

IV(t, cp(t))- V(t, xm(t))l < ~/2, t e It1, t2] 

and 

> 

together with (4), these estimates produce the absurdity ~: < ~:. Thus P must be 
of measure zero, so that 

(5) V'(t, ~(t)) = V*(t, ~(t)) 

almost everywhere on [tl, t2]. 
The proof of Theorem 2.1 is completed by observing that if 9~ is a solution 

of (1) on an interval 0-1, ~2) and (r 1, ~0(zl +0)) [(r 2, cp0-2-0))] e D, then the 
foregoing construction may be repeated to continue ~o as a solution of (1) satis- 
fying (5) to the left of ~'1 [right of ~'2]. The final step is then an application of 
[8, Theorem 4]. 

Turning our attention now to questions of weak Stability for (1), we note 
that the definitions given below are in some respects more general than those 
given by Roxin [5, 6]. Throughout the remainder of this section we shall assume 
that R: E 1 × E n -+ l TM is upper semicontinuous and that ~r: E 1 -~ ~2" is a given 
continuous function. 

Definition 2.1. We say that (1) is attracted to ~ if and only if the following 
conditions are satisfied: for each ~ > 0 and to e E 1, there exists/z =/~(E, to) > 0 
such that for each x o satisfying 0 < ~(Xo, ~r(to)) </z, there exists a solution ~ of 
(I) satisfying 0 < ~(~o(t), ~r(t)) < E on its right maximal interval of existence 
[to, T) and, provided T < 0% limt_, r ~(~t), 7r(t)) = 0. 



162 T . F .  BRIDGLAND, JR. 

Definition 2.2. We say that (1) is quasi-asymptotically attracted to rr if and only 
if the following conditions are satisfied: for each t o e E 1, there exists e = e(to) 
> 0 such that for each Xo satisfying 0 < ~(Xo, 7r(to) ) < e, there exists a solution 
q~ of (1) satisfying 0 < ~(~o(t), ~r(t)) on its right maximal interval of existence 
[t o, T) and limt_, r ~(~o(t), rr(t)) = 0. 

Definition 2.3. We say that (1) is asymptotically attracted to rr if and only if 
it is both attracted and quasi-asymptotically attracted to ~r. 

Remark 2.1. The pattern established by these three definitions makes it 
clear how one may proceed by analogy with Liapunov stability theory to give 
definitions of  uniform attractedness, global asymptotic attractedness, etc. It is 
not our purpose here to give an exhaustive treatment of this generalization of 
weak stability theory, but rather to show how Theorem 2.1 provides the means 
to develop the analogue of Liapunov's second method for this theory. Thus we 
shall be content with obtaining sufficient conditions for attractedness and 
asymptotic attractedness. 

For our next group of definitions we shall need the following sets: 

Z~ = {(t, x) e E1 x E":  ~(x, 7r(t)) = 0} ; 

N~ = {(t ,x)  e E l x  E " : 0  < ~(x,~r(t)) < 3}. 

That N~ is an open subset of E 1 x E" is an easy consequence of the continuity 
of ~(., 7r(.)); Y~ is clearly closed by the same token. 

Definition 2.4. A function V: E 1 × E"  ~ E 1 is positive definite (with respect 
to ~) if and only if it satisfies the following conditions: 

(i) V(t, x) = 0 if and only if (t, x) ~ Z~; 
(ii) there exists a continuous, strictly increasing function p on E 1 satisfying 

cp(0) = 0 and 
p(o~(x, 7r(t))) __< V(t, x) 

on E ; ,  the complement of Z~. 

Definition 2.5. A function V: E 1 x E" ~ E 1 is decrescent (with respect to 7r) 
if and only if there exists a continuous, strictly increasing function A on E l 
satisfying A(0) = 0 and 

IV(t, x)l < h(~(x, ~-(t))) 
on Z~. 

Definition 2.6. A continuous function V: E ~ x  E " - +  E ~ will be called a 
gauge function if and only if V is positive definite with respect to rr and V e 3U(Z~'). 

We may now state our main results on attractedness. 

T H E O R E M  2.2. If  there is a gauge function V and a 8 > 0 for which the 
function V* defined by (3) satisfies V*(t, x) <= 0 on N~, then (1) is attracted to 7r. 

T H E O R E M  2.3. If  there is a decrescent gauge function V and a 8 > 0 for 
which V*(t, x) < -~b(c~(x, It(t))) on N~, where the function ~b on E 1 is continuous, 
non-negative and strictly increasing, then (1) is asymptotically attracted to rr. 
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For the proof of Theorem 2.2, we observe that V ~ Y'(N~), so that by (5) and 
the hypothesis for V* we have 

(6) V'(t, q~(t)) < 0 a.e. on [to, T), 

where ~ is the solution of (1) whose existence is ensured by Theorem 2.1. We 
assert that there exists ~ = ~(to) e (0, 8) such that if 0 < ~(x o, ~(to)) < ~, then 
V(to, Xo) < p(8). Indeed, since by [1, Lemma 1.5] 0r(to))6 ~ ~2", the uniform 
continuity of V(to, ") on (~r(to)) 6 implies the existence of g(to) such that IV(to, 
Xo)-V(to,  xl)[ < p(3) when IIxo-xlN < ~ and Xo, xt E (~r(to)) n. In particular 
this is true if xx is a point of ~(to) nearest Xo, from which the assertion follows. 
Now if 0 < ~(Xo, ~r(to)) < ~(to) and ~(~(T-0),  ~(T)) = 3, we obtain from (6) 
the absurdity 

p(3) = p(~(9(T-0), rr(r))) < V(T, ~o(T-0)) < V(to, Xo) < p(3). 

Thus when 0 < ~(Xo, rr(to)) < g(to), the only modes in which (t, q~(t)) can tend 
to the boundary of N,* as t --~ T - 0  are (i) ~(q~(T-0), rr(T)) = 0 or (ii) T = oo. 
The remainder of the proof of Theorem 2.2 and the proof of Theorem 2.3 
follow by means of standard Liapunov arguments applied to 9 (vide [9, pp. 14- 
151). 

Remark 2.2. The sufficiency of the condition of [10, Theorem t] may be 
seen to be a consequence of  Theorem 2.1. It is noteworthy that the class of 
gauge functions examined in [10] may be useful in connection with the theorems 
on attractedness which we have proved above. 

3. Generalization of the Kneser-Zaremba Theorem 

In his extension [4, III.6] of Kneser's theorem [7, pp. 15-16], Zaremba 
proved, in effect, that if Go e f~" is connected then d ( t ,  to, Go) is connected for 
each t e L In Theorem 3.1 below, we find the even stronger conclusion that 
H(to, Go) is a connected subset of cg,(i); from Theorem 3.1, the Zaremba- 
Kneser theorem follows as a corollary. Setting H = H1 u 1t2 in the example 
following Corollary 1.3 of [1] discloses the fact that for an element HE J,~"(I), 
G(t; H) may be connected even though H is not. This fact provides still more 
cogent evidence for the value of making the solution family H(to, Go) of a 
generalized differential equation the fundamental object of analysis. 

Before stating Theorem 3.1, it will prove desirable to list some preliminary 
results concerning elements of t2" and ~ " ( I )  which are also connected subsets 
of E" and ga"(I) respectively. 

LEMMA 3.1. Let H E ~ " ( I )  be connected; then G(t; H) is connected for  each 
t e L  

Proof. We shall prove the contrapositive; hence, suppose that for some 
tl E L G(tx; H) is not connected. Then there exist disjoint A, B ~ f2" such that 
A u B = G(q ; H). Let Ha be the largest subset of H for which G(q ; HA) = A, 
with a similar definition for HB. It is evident that H = Ha w HB and that Ha 
and HB are nonvoid and disjoint. Let h e H be a cluster point of HA; then h(tx), 
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as a cluster point of A, is in A. Thus h e Ha, and we conclude that HA, H B 
~ " ( I ) .  Consequently, H is not connected. 

LEMMA 3.2. Let the sequence {H,n} c ~ " ( I )  satisfy ~(Hm+,, H,,) = O for  
all m and suppose that each H,, is connected; then the set H* defined by H* = 
n H,, satisfies: (i) H* e ~ " ( 1 ) ;  (ii) H* is connected; (iii) lim,,_.o~ 6(H,,, H*) = O. 

Proof. Immediate from [1, Theorem 1.6] and [11, p. 163, F(b)]. 

LEMMA 3.3. I f  G e ~2" is connected, then for  each ~7 > O, G ~ is arcwise 
connected. 

Proof. The set G~ = {x e E": =(x, G) < 7} has the following easily obtained 
representation: 

= U {B(x, O: x c} ,  

where B(x, 7) is the open ball of radius r/and center x. Thus G~ is open and since 
B(x, 7) is connected, it is a consequence of [12, p. 83, Problem 9] that G 7 is 
connected. This in turn implies, by virtue of [12, Theorem 2-8V], that G~ is 
arcwise connected. Since any point ~e satisfying ~(~, G) = ~7 can be joined to a 
point y e G nearest ~: by a line segment all of whose points (except ~:) lie in G~, the 
lemma follows. 

Now let us assume that R: I x  E" ~ F" is upper semicontinuous and satisfies 
either (i) or (ii) of [1, Theorem 2.4]. By virtue of [1, Theorem 2.5], if (to, Go) 
I x f2" then H(to, Go) e J,~"(I), where /7(to, Go) is the restriction to 1 of the 
solution family of the generalized differential equation 

(7) 5c ~ R(t, x), X(to) ~ Go. 

THEOREM 3.1. Under the foregoing assumptions, if G O c ~2" is connected 
then H(to, Go) is connected. 

Proof. Consider the problem 

(8) (R(t, x)) 1, X(to) G o; 

we denote by J(t o, Go 1) the restriction to I of the solution family of (8). By [1, 
Lemma 2.2], J(to, Go 1) e ~ " ( 1 )  and then F(J(to, Gg)) e ~F"(1). Setting N = F(Y(to, 
Gg)), we may construct on N an approximation to R of the type described in 
Theorem 1.3. We denote by Hm(to, G) the restriction to I of the solution family 
of 

(9) ~ e Z,,(t, x), X(to) E G, m = 1, 2, 3, • • • . 

Inasmuch as (vide the proof of [1, Theorem 2.3]) 

= Go ), H(to ' Go ) ~ Rm(tO, ,,-1 

by virtue of Lemma 3.2, it will suffice to show that for each m, Hm(to, G'~-~) is 
connected. To this end, we utilize the proof recently devised by Hermes [13, p. 
261] for a closely related problem. By Theorem 1.3 and the Filippov Lemma 
[1, Lemma 1.12], to each solution ~o of (9) with G = G~ '-* there corresponds a 
function u: I - ->E" having Lebesgue measurable components and satisfying 
Ii u(t)II < 1 on I such that ~o is a solution on I o f t h e  ordinary differential equation 

~¢ = f ' ( t ,  x, u(t)), X(to) = cp(to). 
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Now let ~o ° ¢ ~o 1 be two solutions of (9) with G = G~ '-1 and let u °, u 1 be the 
corresponding functions whose existence is ensured by the Filippov Lemma. 
Since by Lemma 3.3, G~ -1 is arcwise connected, there exists a homeomorphism 
c on [0, 1] into G~ -1 such that c(i) = ~0i(to), i = 0, 1. Defining u(',/~) on I by 

u(t, [3) =/3ul( t )  + (1-/3)u°(t), 

we consider the differential equation 

(I0) ~ = fm(t, x, u(t, /3)), X(to) = c(/3). 

From the form o f f  m given in Theorem 1.3, we deduce readily that fm is uni- 
formly Lipschitzian on the compact set Nx /7 ;  hence for each/3 E [0, 1], (10) has 
a unique solution whose value at t we denote by ~o(t, /3). Thus the function 
~o(., .) is continuous on 1× [0, 1]. Inasmuch as ~o(.,/3) is also a solution of (9) 
with ~o(., i) = ~o i, i = 0, 1, for each/3 E [0, 1], we have demonstrated that to each 
pair of elements of Hm(to, G~ -1) there corresponds a connected subset of 
-~,(to, G~ -1) containing the pair. By [12, Lemma 2-8VI] we may conclude that 
Hs(t  o, G"~-1) is connected, and the proof is complete. 

As indicated earlier, by virtue of Lemma 3.1 the Kneser-Zaremba theorem 
is an immediate corollary to Theorem 3.1. 
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