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Abstract. We present a simple theory for the cluster size de- 
pendence of the average cluster magnetic moment of tran- 
sition metal clusters. Assuming a local environmental de- 
pendence of the atomic magnetic moments, the cluster mag- 
netization exhibits a magnetic shell structure, reflecting the 
atomic structure of the cluster. Thus, the observed oscilla- 
tions of the average cluster magnet moment may serve as a 
fingerprint of the cluster geometry. We also discuss the gi- 
ant magnetoresistance (GMR) exhibited by an ensemble of 
magnetic clusters embedded in a metallic matrix. It is shown 
that the magnetic anisotropy affects strongly the magnetiza- 
tion of the cluster ensemble under certain conditions. Since 
the GMR depends on the cluster ensemble magnetization, 
it can be used to determine the cluster magnetic anisotropy 
energy. 

PACS: 36.40.+d; 72.15.Gd; 75.30.Cr 

1 Introduction 

Magnetic clusters, in particular transition metal and rare 
earth metal clusters, have been studied intensively both ex- 
perimentally [1-4] and theoretically [5], and exhibit inter- 
esting magnetic properties. Recent Stern- Gerlach- experi- 
ments revealed oscillations in the magnetization of small Fe, 
Co, and Ni clusters as a function of the cluster size in the size 
range 50 < N < 700 [1, 2]. The local magnetic moment, in 
particular for itinerant electron systems, depends sensitively 
on its atomic environment. As a rule of thumb the magnetic 
moment is the larger the lower the coordination number [6]. 
Therefore, the average cluster magnetic moment per atom of 
transition metal clusters is expected to vary with cluster size 
and structure, and in particular to reflect the atomic cluster 
geometry. The interplay of the geometric and the magnetic 
structure has been calculated only for relatively small clus- 
ters [5]. In Sect. 2 we present a simple model for the calcu- 
lation of the average cluster magnetic moment as a function 
of the cluster size and cluster atomic structure. The atomic 
magnetic moments are assumed to depend only on their lo- 
cal environment. Shell-by-shell cluster growth and different 

cluster structures are considered. The results calculated by 
this theory are compared with experimental data. 

Furthermore, we analyze the magnetoresistance of an en- 
semble of magnetic metal clusters embedded in a metallic 
matrix. The magnetic moments of the cluster atoms are fer- 
romagnetically aligned, if the cluster temperature is well be- 
low the internal magnetic ordering temperature of the cluster. 
Hence, when deposited on a metallic substrate or dissolved 
into a nonmagnetic metallic matrix, the magnetic clusters 
act like paramagnetic impurities with large magnetic mo- 
ments and thus cause a giant magnetoresistance (GMR), as 
observed experimentally [7]. In Sect. 3 we discuss the pos- 
sible connection between the magnetization, the magnetic 
anisotropy, and GMR of a cluster ensemble. The tempera- 
ture and magnetic field dependence of GMR may be used 
to determine the magnetic anisotropy. 

2 Average cluster magnetic moment 

In this section we present a simple analysis of the atomic 
structure effects on the average cluster magnetic moment 
as a function of the cluster size. In accordance with obser- 
vations at surfaces of bulk material, of thin films, and of 
magnetic alloys we assume that the magnetic moments #i 
depend solely on the atomic environment of the lattice site 
i. In particular, for transition metals #i is expected to be the 
larger the lower the number of nearest neighbors qi [6].  For a 
first estimate, we simply assume a surface magnetic moment 
P.sarf for the atoms at the cluster surface, and the bulk value 
#bulk for the other atoms. Then the average cluster magnetic 
moment per atom is given by 

]~ (N)  : (#surf - ]~bulk) N - l / 3  + ~bulk , ( l )  

N being the number of cluster atoms. Such a behavior of 
/2(N) should reflect the magnetic moments of very large 
clusters. For smaller clusters, especially in the size range of 
several hundred atoms [1, 2], details of the atomic cluster 
structure should be visible in the magnetic behavior. Then 
/2(N) and the distribution of #i wilt reflect also the cluster 
geometry and lattice structure, From a comparison of/~(N) 
with experimental data one may gain information about the 
cluster structure. 



274 

Table 1. Number of atoms N for various cluster structures with closed 
shells ('oct. '= octahedron, 'c.-o.'=cubo-octahedron). N(/~min) refers to the 
experimentally observed cluster sizes where the average magnetic moment 
/2(N) is minimal [l]. Values in brackets refer to very shallow minima. 
n refers to the shell number, which is the length of the cluster edges in 
elementary units. For cubes and octahedrons the primed numbers n t refer to 
'rounded' clusters, obtained by removing all edge atoms from clusters with 
n completely filled shells, yielding intermediate values of N.  Comparison 
of the calculated values N with ]V(/2min) indicates that best agreement is 
obtained for cube shaped clusmrs with a b.c.c, lattice in the case of Fe, for 
cube shaped clusters with a f.c.c, lattice in the case of Ni, and for octahedraI 
shaped clusters with a f.c.c, lattice in the case of Co 

Shell Closed shell cluster size N N(pmin) 

fcc- fcc- fcc- bcc- bcc- 
n cube oct. c-o. cube oct. Fe Co Ni 

2' 43 43 15 27 
2 63 85 55 35 57 45 

3' 140 165 59 89 
3 I72 231 147 91 143 85 
4' 321 399 145 203 (150) 
4 365 489 309 189 289 191 
5' 610 777 285 385 273 
5 666 89t 561 341 511 
6' 1031 1331 491 651 
6 1099 1469 923 559 825 551 

50 
85 72 

129 
173 131 
232 175 
355 (260) 
483 381 

625 

Similarly as Billas et al. [2] we present first an atomic 
shell model for the average cluster magnetic moment. The 
cluster is assumed to grow shell-by-shell, occupying subse- 
quently sites of a b.c.c, or a f.c.c, lattice. For larger clusters 
one expects that the cluster structure converges towards the 
bulk lattice structure, at least for the cluster interior. The 
overall cluster shape is expected to resemble a cube, an oc- 
tahedron, or a cubo-octahedron, i.e. regular shapes which 
minimize the surface energy. In addition to such cluster 
shapes, we have considered a cluster growth assuming a suc- 
cesive occupation of free sites with smallest distance from 
the cluster center, yielding compact and spherically shaped 
clusters. The magnetic moments are different for different 
atomic shells, and may even vary within the topmost in- 
complete shell. The average coordination number 0 will be 
largest for almost closed atomic shells. In accordance with 
the above mentioned general rule, maxima of 0 should cor- 
respond to minima of the average cluster magnetic moment 
p(N).  Thus, an oscillatory behavior of fi.(N) as a function 
of the cluster size is expected by adding additional atomic 
shells to the cluster. This will modulate the monotonous be- 
havior of #(N) as given by (1). Clearly, the oscillations of 
#(N) should reflect the atomic structure of the clusters. 

To study also clusters with rounded edges, we assume 
for cubes and octahedrons also the following growth mode: 
first sites on the faces of the cluster surface are occupied by 
atoms, then after occupation of all face sites the edge sites 
are populated. The shell dependent magnetic moments are 
determined correspondingly. 

Using these growth modes, we calculate the number of 
atoms N corresponding to various cluster sizes with closed 
atomic shells. Since for these sizes the average magnetic 
moment #(N)  is expected to be minimal, we compare these 
numbers N with the measured N(/2min) for Fe, Co, and Ni 
clusters in the size range 30 < N < 700 [1, 2], at which 

/2(N) is minimal. Results are given in Table 1. For Fe the 
measured minima of #(N) seem to correspond best to N -  
values of closed shell sizes of a b.c.c.- cube. Similarly, the 
12- minima of Ni clusters correspond best to N -  values of 
closed shell f.c.c.- cubes, and the ones of Co clusters to 
f.c.c.- octahedrons. We have also considered the closed shell 
sizes of a number of other growth modes and atomic struc- 
tures, in particular the f.c.c.- cubo-octahedron. The agree- 
ment with experimental data is not as good as for the above 
mentioned structures. Note that the results given in Table 1 
allow certainly no definite conclusion about the cluster struc- 
ture, but serve as an interesting hint and indicate which 
closed shell structure yield minima of #(N).  

Next we calculate the average cluster magnetic moment 
#(N) by taking the atomic environmental dependence of the 
atomic magnetic moments more properly into account than 
in (1). First, a statistical model is proposed for the shell 
dependent magnetic moment and for the above mentioned 
growth modes. The average magnetic moment per atom of 
the topmost shell (0) is assumed to be 

#0  = x 0 ( 1  - x0)]sat  + x 2 SS~u,-f, (2)  

where x0 is the concentration of statistically occupied sites 
in this shell. In (2), ]Sat is the magnetic moment of an atom 
without nearest neighbors in the topmost shell, and ]ssurf the 
magnetic moment of an atom surrounded by other atoms in 
the topmost shell, taken to be similar to the surface mag- 
netic moment of bulk material. In addition, dependent on 
the concentration of deposited atoms x0 in the topmost shell, 
the average magnetic moment t21 of the shell (1) below the 
topmost shell will also change. For the average magnetic 
moment of this shell we put 

/71 = (1 - x0)]ssu~f + x0 Pbu~k. (3)  

Due to (3) the magnetic moment of an atom in shell (1) 
is equal to ]ssurf, if it has no nearest neighbor atoms in the 
topmost shell (0), and is equal to the bulk value ]sbulk, if it is 
completely covered by topmost shell atoms. For simplicity, 
all magnetic moments of the inner atomic shells of the cluster 
are put equal to Pbulk, simulating the increasing degree of 
itineracy and bulk character of the cluster interior. It follows 
from (2,3) that the average cluster magnetic moment per 
atom as a function of the cluster size N is given by 

ATOD 0 + 1%,T1DI + -~',Tbulk]sbulk 
# ( N )  = , (4) 

xoNo + N1 + Nbulk 

with No and -N1 being the number of sites in the two out- 
ermost cluster shells (0) and (1), dependent on the cluster 
shape, s. Table 1. Nbulk is the total number of atoms in the in- 
ner shells, and N = x0N0+N1 +Nbutk. Note that fi.(N) calcu- 
lated using (4) yields a magnetic shell structure: it exhibits an 
oscillatory behavior with minima near closed cluster shells 
(x0 = 1), and maxima for almost half filled shells, s. solid 
curves in Fig. 1. We assume in general #bulk < ]ssur~ < ]sat- 

Secondly, we assume that each magnetic moment #i on 
a lattice site i is determined by its actual number of nearest 
neighbors qi. In particular, we put 

= # ( q i )  = ~ ~1 '  q~ <_ q~ , ]si (5) ( #2 ,  q~ > qc • 
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Fig. l a -e .  Results for the magnetic shelI structure of the average magnetic 
moment # ( N )  of (a) Fe, (b) Co, and (e) Ni clusters as a function of the 
number N of cluster atoms. In view of the results in Table 1, a b.c.c- cube 
for Fe clusters, a f.c.c- cube for Ni clusters, and a f.c.c- octahedron for 
Co clusters is assumed. The solid curves are calculated by (4) assuming a 
statistical shell-by-sheIl growth of  the clusters. Only cluster structures with 
completely filled atomic shells are considered. We use for Fe the values 
p, at = 4-0/~B, /~stu£ = 3.0#B, #bulk = 2.21~B, for Co /&t = 3.0/~B, 
#surf = 1.9#B, /Xbulk = 1.72#B, and for Ni /-tat = 1.2#B, #surf = 0.7/zB, 
P, bulk= 0.62b~B. The dashed curves are calculated from (5) with magnetic 
moments #(q i )  dependent on the number of nearest neighbors qi of lattice 
site i. We assume for Co clusters /~(1) + ,a(3) = 3.3#B, /~(4) + ,a(7) = 
2.3,u B, and #(8) +/z(12)  = 1.72#B; for Ni clusters /z(1) + #(3) = 2.0#B, 
#(4) -k #(7) = 0,9#B, and #(8) + ~(12) = 0.62,aB. For Fe clusters we 
put #(qi)  = 4 .0pB if qi < 4 and ql ) < 4, /~(qi) = 3.0#B if qi < 4 and 

q(2/ > 4, and p,(q~) = 2.2I/~B if qi > 4. q~2) is the number of next nearest 
neighbors. The stars ( , )  refer to measurements of transition metal clusters 
[1, 2] 
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Fig. 2, Results for the magnetic shell stxucture of  the average magnetic 
moment per a tom/2(N)  of Ni clusters as a function of the cluster size N .  
A f.c.c, lattice structure with cube like, octahedral like, and cubo-octahedral 
like cluster shapes are assumed as indicated./2(N) is calculated by use of 
(5), assuming the same values of the magnetic moments p(q~) as used in 
Fig. lc 

Such a model has been used for describing the environmen- 
tal dependence of magnetic moments in alloys [8]. When 
applied to clusters, qi and t~i are calculated for each cluster 
atomic site. This model takes into account best the actual 
atomic cluster structure. The values of #i used in our cal- 
culations are monotonous functions of q~ and are similar to 
values of magnetic moments obtained for surfaces and thin 
films [6]. As is known in the case of a b.c.c, lattice the 
atomic magnetic moment will depend also on the number of 
next nearest neighbors q~2). Thus, for clusters with a b.c.c.- 

structure we consider also q~2) for the determination of ~ .  
The cluster atomic sites are occupied subsequently. From (5) 
one gets immediately the average cluster magnetic moment 

N p(N) = (~ i<  m)/N. 
In the following we present results for the average mag- 

netic moment per atom as a function of the cluster size N 
of ferromagnetically ordered clusters, corresponding to the 
cluster magnetization at T = 0. In Fig. 1 the average mag- 
netic moment/] (N) is given, obtained from the simple mod- 
els as described by (4) or (5). The results are compared with 
Stem- Gerlach measurements [1, 2] for Fe, Co, and Ni clus- 
ters in the size range 30 < N < 700. As an example, we 
have assumed for the atomic structure b.c.c.- cubes for Fe 
clusters, f.c.c.- octahedrons for Co clusters, and f.c.c.- cubes 
for Ni clusters, as suggested in Table 1 from the minima of 
/2(N). The average magnetic moment calculated by the sta- 
tistical model, (4), yields the observed minima of/~(N). The 
more sophisticated model, (5), improves the magnitude of 
/2(N), whereas the difference between the different cluster 
structures is less pronounced. This is demostrated in Fig. 2 
for/2(N) of Ni. Considering clusters shapes corresponding to 
cubes, octahedrons, and cubo-octahedrons, one gets an idea 
how much/2(N) depends on the cluster structure. The agree- 
ment with experiment is satisfactory in view of the simple 
theoretical models. However, a clear evidence for a distinct 
cluster structure cannot be extracted from comparison with 
the available experimental data of the cluster magnetization. 
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Fig. 3. Average magnetic moment per atom # ( N )  of Fe clusters as a func- 
tion of the cluster size N .  The dashed lines are calculated using (1), as- 
suming/-*surf = 3#B and/*surf = 41*B of the surface magnetic moment, and 
#bulk = 2.21#B. In addit ion/2(N) is shown using (4), considering cluster 
shapes refering to rounded cubes as well as to cubes with filled shells (full 
line), s. Table 1, in contrast to the full line of Fig. I a. The same values of 
the magnetic moments are taken as in Fig. la 

In Fig. 3 we present results for Fe clusters indicating 
the resulting changes of /2(N)  if we perform the calcula- 
tions using (4) also for rounded b.c.c.- cube clusters. Note 
that such a growth mode yields more minima for #(N). For 
comparison, we show also results using (1), which gives no 
atomic shell structure. As in Fig. la, the calculated results 
for/2(N), except for the dashed curve using #~rf = 3#B, are 
larger than the experimental ones for large clusters having 
more than 400 atoms. The reason for this discrepancy is not 
clear presently, also not for the oscillations of/2(N) around 
//,bulk (S. also [2] for an explanation). Possibly, (4) underes- 
timates the increasing itineracy or cluster surface relaxation. 
Actually, putting/20 = #~rf and/21 = ~bulk as physically ex- 
pected due to relaxation and neglect of surface roughness, 
we would get #(N)  ~ #bulk for the larger clusters. Regarding 
the comparison with experimental data, note that our results 
refer to T = 0, while the experiment observes the magnetiza- 
tion at T > 0. The experimental data are corrected to T = 0 
afterwards by assuming the same cluster temperature for all 
cluster sizes. In principle, non-equilibrium effects due to in- 
creasing lattice anisotropy may cause a reduced cluster mag- 
netization, if the relaxation time 9-jr exceeds the flight time 
rst.c, of the clusters in the Stern- Gerlach- magnet [9]. The 
discrepancy between theory and experiment regarding #(N) 
calculated by (4) of the smaller clusters with N < 200 re- 
sults from not properly taking into account the atomic struc- 
ture. This follows also from comparing with results obtained 
from using (5), s. Fig. la. 

In Fig. 4, we present results for the cluster size depen- 
dent magnetic moment of small Rh clusters (N < 43). Quite 
interestingly, these clusters are found to order fen'omagnet- 
ically [3, 5], whereas Rh bulk is nonmagnetic. The values 
used for #(q) are in accordance with recent first principle 
electronic calculations for Rh films on Ag [10], which indi- 
cate a maximum of p(q) for q = 4. Concerning the cluster 
growth we find that growth by 'caps' rather than by a sym- 

z 
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c l u s t e r  a t o m s  N 
Fig. 4. Magnetic shell structure of Rh clusters with a cap-  like growth of 
a f.c.c.- cubo-octahedron as a function of the number of  cluster atoms N.  
We use (5) and assume #(3) = 0.8/~B,/~(4) = t.0/~B, #(6) = 0.7/~ B, and 
/~(q) = 0 for q > 7. Furthermore, we put (a) #(5) = 0.4#B (solid line), 
and (b) /*(5) = 0.85/~B (dashed line). The experimental results (*) were 
obtained from 13] 

metrical occupation of sites in the topmost shell yields bet- 
ter agreement with experiment [3]. A ' c a p ' -  like growth is 
expected to have a larger cohesive energy. It is to be empha- 
sized that these results are only qualitatively valid, since the 
atomic magnetic moments t~i of such small clusters should 
depend not only on the coordination number qi, but also on 
the cluster size N and the actual cluster geometry. 

In summary, the magnetization of clusters reveals inter- 
esting information regarding the interplay of atomic structure 
and magnetic properties. The observed oscillations of the av- 
erage cluster magnet moment #(N)  should result from mag- 
netic shell structure and are expected to be a fingerprint of 
the atomic shell structure. We have proposed a model for the 
size dependence of/2(N) by assuming clusters which grow 
shell-by-shell. The atomic magnetic moments #i = #(qO 
are assumed to depend only on their local environment, and 
in particular to decrease monotonous with increasing num- 
ber of nearest neighbors. This reflects the increasing degree 
of itineracy of the atomic magnetic moments with increas- 
ing cluster size. A smooth transition to the bulk magnetic 
properties results. The assumption of a local environmental 
dependence of the atomic magnetic moments is not so valid 
for very" small clusters, since for such systems the magnetic 
moments depend sensitively on the overall cluster size and 
structure, i.e. #i : #(q~, N , . . . ) .  

Within our simple model we find an atomic shell struc- 
ture for the average cluster magnetic moment /2(N), thus 
reflecting the cluster geometry. The minima of/2(N) are ex- 
pected to correspond to clusters with closed atomic shells. 
Changes of the local environment affect the atomic mag- 
netic moments stronger for Fe than for Co and Ni [6]. In 
connection with the more open b.c.c, lattice structure this 
feature leads to a more pronounced variation of /2(N) for 
Fe. It is remarkable that our simple approach yields an os- 
cillatory structure in/2(N) which magnitude compares well 
with experiment. Comparison of theoretical results with ex- 
perimental data indicate certain geometrical structures for 
the transition metal clusters in the considered size range. 
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However, from the available magnetic measurements clear 
evidence for a distinct cluster atomic structure on the basis of 
our simple models cannot be drawn. From mass abundance 
spectra Broyer et al. concluded that Ni and Co clusters in the 
size range 50 < N < 800 may be represented by an icosahe- 
dral growth mode [11]. Such an icosahedral structure is not 
a part of a f.c.c, or a b.c.c, lattice, but corresponds closely 
to a cubo-octahedral structure. As already mentioned, from 
the magnetic data one cannot decide that the Ni and Co 
clusters build up cubo-octahedrons. For Fe clusters complex 
structures are observed, possibly reflecting thermal disorder. 
Already a fair agreement with experimental results is ob- 
tained for Rh, which magnetism is believed to depend very 
sensitively on the atomic structure. While the interdepen- 
dence of magnetic and atomic structure is of considerable 
interest, this remains a difficult problem due to experimental 
and theoretical problems. Note that also a spin dependent 
electronic shell structure due to density of states oscillations 
z~no(e) may be present in magnetic clusters [12]. Thus, first 
principle calculations as welt as further measurements of the 
cluster magnetization are necessary for a proper analysis of 
the cluster geometry. Finally, we remark again that the in- 
terdependence of magnetism and atomic structure is a very 
important problem in particular for very small clusters de- 
posited on a substrate, for example. A better theory may be 
able to determine the difference between growth by faces or 
shells. 
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Fig. 5. Magnetization re(T, H)  and the corresponding giant magnetoresis- 
tance zAp(T, H)  = (p(T, H)  - p(T,  oo))/(p(T,  O) - p(T,  oo)) as a function 
of the external magnetic field H of an ensemble of clusters with a random 
orientation of the anisotropy easy axes. The cluster temperature is chosen 
to be T = 0.2 N K 2 ,  where K2 is the anisotropy energy. The magnetiza- 
tion is calculated within statistical equilibrium (T >> Tbl) and for strong 
blocking (T << Tbl), where Tbl is the blocking temperature. We assume 
Ap(T,  H)  oc 1 - rr~(T, H), and metallic contact between the magnetic 
clusters. The inset indicates measurements of ra(H) and zAp(H) for lay- 
ered perovskites for differently treated samples: (a) as deposited, and (b) 
annealed [15] 

3 Magnetoresistance of a cluster ensemble 

Regarding other magnetic properties of clusters, note that an 
ensemble of free clusters in a beam, of clusters dissolved in 
a metal matrix, or of deposited clusters on a surface, may 
in general be treated as a superparamagnetic system. For 
temperatures much smaller than the internal cluster ordering 
temperature, the clusters act magnetically like atoms with a 
magnetic moment N#(N) due to the strong (Heisenberg) ex- 
change coupling. For such clusters the magnetic anisotropy, 
which is typically enhanced at surfaces or interfaces, is of 
particular interest with regards to many applications. This 
quantity determines the direction of magnetization (easy 
axis) within the cluster. The magnetic anisotropy can be 
measured with the help of the magnetization or the suscepti- 
bility of clusters in a matrix [4, 131, yielding clear deviations 
from the superparamagnetic (Langevin) behavior. However, 
the magnetic anisotropy is generally difficult to determine. 
In the following we discuss how this quantity may be ob- 
tained by measuring the giant magnetoresistance (GMR) of 
a cluster ensemble [14]. GMR originates from spin depen- 
dent electron scattering. Magnetic clusters act like paramag- 
netic impurities with a large magnetic moment in metallic 
alloys, contributing to the magnetoresistance. This was re- 
cently observed for magnetic metal clusters dissolved in a 
nonmagnetic metal matrix or deposited in metallic contact 
on a surface [7]. 

Consider now an ensemble of metal clusters with gi- 
ant magnetic moments N#(N) dissolved in a metallic ma- 
trix. Magnetic interactions between the clusters are neglected 
first. Furthermore, an uniaxial lattice anisotropy NK2 is 
present causing a random orientation of the easy axes of 

the clusters. Thus, for H = 0 the clusters represent a su- 
perparamagnetic system with a vanishing global magnetiza- 
tion. If an applied magnetic field H starts to align the mag- 
netic clusters, the magnetoresistance Ap(T, H )  = (p(T, H ) -  
p(T, ~))/(p(T, O)-p(T, oo)) decreases, and OAp(H)/OH < 
0. Finally, Ap(H) --~ 0 for H --+ Arc, when parallel orienta- 
tion of the magnetic moments of all the clusters is reached. 
Then the system exhibits the common magnetoresistance. 
Thus, the behavior of GMR reflects the transition from ran- 
dom to ordered cluster magnetic moments. Clearly, this de- 
pends on the magnetization re(T, H) of the cluster ensemble. 
We assume a linear dependence Ap(T, H )  ~ 1 - re(T, H),  
as suggested by experiments [7, 15]. The equilibrium mag- 
netization re(T, H)  of the cluster ensemble in presence 
of a lattice anisotropy is similar to the Langevin function 
[4, 13]. However, for low cluster temperatures T such that 
T << Tbl e( NK2, where Tbl is the blocking temperature, 
blocking effects may be visible [16], causing a reduced mag- 
netization of the cluster ensemble with respect to the equi- 
librium value. For H#at > K2 the magnetic field will over- 
come the anisotropy field, leading to a sudden increase of 
the magnetization. Thus, in view of the assumed dependence 
of Ap(T, H) on re(T, H), the GMR will exhibit a kink at 
H~ = K2/#at, as shown in Fig. 5. By increasing the temper- 
ature the sharp kink of the magnetization at H#at = K2 is 
smeared out, yielding a corresponding change of Ap(T, H). 
Therefore, from GMR one can in principle determine the 
magnetic anisotropy and also the blocking temperature. We 
emphasize that the enhanced GMR for blocked cluster mag- 
netic moments originates from the random orientation of the 
easy axes. In contrast, if the easy axes are aligned parallel 
to the magnetic field, then no GMR will result [7]. 
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Summarizing, we have discussed the magnetoresistance 
of a magnetic cluster ensemble and in particular the rela- 
tionship between the magnetization and the GMR of a clus- 
ter ensemble. Measurements of Zlp(T, H) should reflect the 
magnetic properties of the cluster system and may be used 
to determine the lattice anisotropy. If the ferromagnetic ex- 
change interaction between the clusters dominates the lattice 
anisotropy, then one expects Ap(H) ~ 0 for the cluster en- 
semble. Similarly, if the magnetic dipolar interaction, which 
favors a ferromagnetic spin alignment parallel to the surface, 
is important (as in the case of magnetic clusters deposited 
on a metallic substrate), then also Ap(H) -+ 0 is expected. 
Considering technological application of the GMR, note that 
a cluster system dissolved in a matrix seems to be much eas- 
ier to fabricate than multilayer systems with ultrathin atomic 
layers. 

It is interesting to remark that the magnetic proper- 
ties and the enhanced magnetic anisotropy can also be de- 
termined with the help of the nonlinear magneto-optical 
Ken" effect [17]. Therefore, such measurements should be 
performed in addition to Stem- Gerlach experiments and 
magnetoresistance measurements to determine the magnetic 
properties of clusters. 

Note added." After completion of this work we became aware of another 
model for the shell structure of the average cluster magnetic moment pro- 

posed by Biltas et at. [2]. 

Discussions with L. Falicov, G. Pastor, W. de Heer, and E. v. Suizbach are 
gratefully acknowledged. This work was partly supported by the Deutsche 
Forschungsgemeinschaft (DFG). 
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