
Structural Optimization 2, 125-131 (1990) 

Structural Optimization 
© Springer-Verlag 1990 

Discrete  opt imizat ion  of geometr ica l ly  nonl inear truss 
s tructures  under stabi l i ty  constraints  

M. P y r z  

Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Swietokrzyska 
21, 00-049 Warsaw, Poland 

Abstract .  The paper deals with discrete optimization of elas- 
tic trusses with geometrical nonlinear behaviour and constraints 
on stability. The problem consists of minimizing the weight and 
determining the optimal member distribution so that the exter- 
nal load does not cause a loss of stability of the structure. Mem- 
ber cross-sections are selected from a catalogue of available sec- 
tions. Element stresses, elment stability and global structural 
stability constraints are considered. A controlled enumeration 
method according to the increasing value of the objective func- 
tion is applied. Shallow space trusses are numerically analysed. 

1 I n t r o d u c t i o n  

The design of truss structures involves the selection of ele- 
ments from a discrete set of fabricated components. In an 
optimal design problem, design variables are selected so 
as to minimize the weight of the structure and satisfy all 
constraints. Cross-sectional areas of the members are dic- 
tated by dominant constraints, depending generally on the 
geometry and the nature of applied loads. In space struc- 
tures, element or system stability can become a critical 
constraint. The paper deals with the discrete optimization 
of elastic shallow trusses of given layout with geometrical 
nonlinear behaviour. The problem consists of determin- 
ing the optimal, minimum weight bar distribution so that 
external loads do not cause a loss of stability of the struc- 
ture. Member cross-sections are selected from catalogues 
of available sections. Element stresses, element stability 
and global structural stability constraints are considered. 
Minimum weight design of elastic, geometrically nonlinear 
trusses with global stability constraints have been exam- 
ined by Khot (1983), Kamat et al. (1984) and Khot and 
Kamat (1985), where cross-sectional areas were assumed 
to be continuous. 

The simplest technique for coping with discrete vari- 

ables is to solve the problem by continuous variables meth- 
ods and then rounding off the continuous solution to the 
nearest discrete one. This approach often leads to results 
which are not optimal from the point of view of discrete 
optimization. The most popular methods applied in dis- 
crete optimization of engineering structures can be divided 
into branch and bound methods, e.g. Cella and Soosaar 
(1973), Bauer et al. (1981); heuristic and approximate 
methods, e.g. Templeman and Yates (1982); dual for- 
mulation methods, e.g. Fleury and Braibant (1982); and 
controlled enumeration methods, e.g. Fox and Liebman 
(1980) and Gutkowski et al. (1986). In this paper the 
enumeration method according to the increasing value of 

• the objective function (Greenberg 1971) was used. This 
leads to the global optimum of the problem described with 
a linear objective function and arbitrary constraints and 
catalogues of discrete design variables. 

2 F o r m u l a t i o n  of  the  p r o b l e m  

The truss structures under consideration are idealized with 
straight, elastic bar elements of constant cross-sections. 
The geometry and the partition into k linking groups, i.e. 
regions in which elements have the same cross-section and 
material properties, are given. The magnitude of conserva- 
tive, static external loads p acting on nodes of the struc- 
ture is represented by one loading parameter Ap. The 
minimum weight design problem consists of the optimal 
selection of bar elements from a discrete set-catalogue so 
that the external load Ap does not cause a loss of stability 
of the structure. 

The objective function (the weight of elements) is 

k 
W(Ai)  = ~ diAiP i ~ min, (1) 

i=l 

the stress constraint 
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ffmin --< a P ( A i , I i )  (- amax, (s = 1, . . .  , M ) ,  

the local stability constraint 

( 2 )  

loc  a P ( A i , I i )  < a s (Ai , I i )  , (s = 1 , . . . , M ) ,  (3) 

the global stability constraint 

Acr(Ai ,I i )  > A p ,  (4) 

and the variable discreteness constraint 

- -1  --2 --r i 
A i E { A i , A i , . . . , A  i } ,  

-1 -2 -ri } ,  (i = 1 , . . . , k ) ,  (5) 

where M is the number of bar elements, k the number of 
linking groups, A i the cross-sectional area of bar from the 
i-th linking group, I i the moment of inertia correspond- 

--i --2 --r i --i -2 ~-~r i 
ing to cross-section Ai, {A i ,  A i , . . . ,  A i }, { I i ,  I i , . . . ,  I i } 
catalogues of r i cross-sectional areas and corresponding 
moments of inertia in the i-th linking group, r i the num- 
ber of available element profiles in the catalogue for the 
i-th linking group, d i the sum of the lengths of the i-th 
linking group elements, Pi the mass density, a P the axial 
stress of s-th bar corresponding to the external load vector 
p; O'min, O'ma x the limiting elastic tensile and compressive 
stresses in bars, _loc the element axial stress corresponding o 8 

to elastic buckling, Act the critical load parameter, 

p = Appo, (6) 

p the vector of forces externally applied at the nodes and 
Po the reference load vector. 

The cross-sectional areas A i and the moments of iner- 
tia I i are design variables. The discrete problem (1)-(5) 
has been transformed into an integer programming prob- 
lem by the introduction of new zero-one variables zj. The 

k 
number of design variables has increased from k to ~ ri, 

i=l 
but now the enumeration method according to the increas- 
ing value of objective function (Greenberg 1971) can be 
used. 

3 S tab i l i ty  cons t ra in t s  

The nonlinear behaviour of the structure may be due to 
the presence of large deflections or rotations. The shal- 
low truss structures are often characterized by geomet- 
ric nonlinear behaviour and nonlinear terms in the strain- 
displacement relations must be included. 

An elastic three-dimensional truss structure described 
by N nodal displacements qy (j = 1 , . . . ,  N) and one load- 
ing parameter A is considered. A nonlinear strain dis- 
placement relation is obtained by employing the following 
definition for strain 

- 
' (7) 

where l i and l: are the undeformed and deformed lengths 
of the i-th truss. It was assumed that large and finite dis- 
placements are allowed and the strain resulting from such 
a displacement is small enough to permit a linear stress- 
strain relation. The total potential energy of a structure 
built up for M truss elements can be expressed as 

M 
V =  E ( 1 E A i l i ~ 2 ~  - qTp = II(q) - A q T p o ,  (8) 

i=l 

where E is Young's modulus and q = { q i , . . . ,  qN} the vec- 
tor of global displacements of the nodes. A set of N non- 
linear equations of equilibrium of the structure is provided 
by the principle of stationary value of the total potential 
energy 

OV OH 
- - - - -  A p o = 0 .  ( 9 )  
0q 0q 

An accurate location of a critical point (limit or bifurca- 
tion point) determined by Act in stability constraint (4) 
must be calculated. The critical point is characterized by 
that load level A at which (Thompson and Hunt 1984) 

det [ 02V ] 
LOqyo9 ]l = o .  (10) 

The value of Acr(Pcr = Acrpo) and the corresponding 
stresses were calculated from the set of N + 1 nonlinear 
equations (9) and (10) for the unknown q], (j -= 1 , . . . ,  N) 

and A. The element stresses a P in (2) and (3) were ob- 
tained from (9) by setting A = Ap. In both cases the 
Newton-Raphson iteration technique was used. In the lo- 
cal stability constraint (3) the stresses in the s-th truss 
element corresponding to its elastic buckling can be ex- 
pressed in the form 

a~ ° c -  ~r2EsI8 (11) 
Af t  2 

4 E n u m e r a t i o n  m e t h o d  

The methods of discrete optimization using controlled enu- 
meration consist of the use of such algorithms which allow 
the optimal solution to be reached by partial enumeration, 
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without  checking all feasible variants. The  enumerat ion 
method according to the increasing value of the objective 
function (Greenberg 1971) may  be applied in the case of 
a linear objective function with arb i t ra ry  constraints and 
leads to the global opt imum.  It was first used in the min- 
imum weight opt imizat ion of bar  s tructures by Iwanow 
(1981) and Bauer et al. (1981). 

In our case the opt imizat ion problem may be wri t ten 

1 P 

lo + Io q 

Fig. 1. Two-bar truss 

t 

W : 2 ciz.~" : £T  ~ ) min ,  (12) 
j = l  

z E P , (13)  

where z = [Zl , . . .  ,zt] and c = [Cl, . . .  ,ct] are vectors of 
zero-one design variables and constant  non-negative coef- 
ficients characterizing components  of the objective func- 

k 
tion (t = ~ ri), and P C A/t is a set determined by the 

i=1 
constraints.  

The  idea of the enumerat ion method consists of form- 
ing a sequence of design variable vectors z 

{ z O , z l , z 2 , . . . } ,  (14) 

5.1 Two-bar truss 

The shallow symmetr ic  two-bar  truss shown in Fig. 1 
(l 0 = 2.00 m, f = 0.07 m and P = 1.5 kN) was considered. 

The cross-sections of bars A 1 and A 2 were chosen f rom 
the catalogue 

Ai[m 2 x 10 -4] C {12.57; 15.9; 19.63;23.76; 28.27;33.18; 

38.48} ,  (i = 1, 2) .  

The results of discrete opt imizat ion for two variants: 
(a) A 1 = A2 and (b) A1,A2 optional,  are given in Table 
1. 

so tha t  the referred sequence of objective functions 

{ W ° , W l , w  2 . . . .  } ,  W i = w ( z l ) ,  (i -- 0 , 1 , . . . )  (15) 

Table  1. Optimal results for the two-bar truss 

was non-decreasing. If nmi n is the smallest na tura l  n E A/, 
for which the condition (13) is satisfied, then the solution 
of the opt imizat ion problem (12) and (13) is 

Z rain = Z nmin , W rain : W (z  r~min ) . (16)  

The  problem of finding the min imum of the objective func- 
t ion (12) is t ransformed to forming the sequences (14), 
(15) and to checking whether  the subsequent vector z i be- 
longs to the admissible region. The first point encountered 
belonging to this region is the solution of the problem. The  
detailed a lgor i thm is presented by Greenberg (1971). 

5 N u m e r i c a l  e x a m p l e s  

Numerical  examples deal with the discrete opt imizat ion of 
shallow trusses. The mater ia l  is characterized by E - 
7000 X 107 N / m  2, - a m i  n = O'max -- 20 X 107 N / m  2, p = 
27500 N / m  3. Constraints  (2)-(5) were considered, bars of 
circular sections were chosen and cross-sectional areas A 
are given in opt imizat ion results (corresponding moments  
of inertia I = A2/4~r). Computa t ions  were pe r fo rmed  on 
an IBM PC/XT. 

A1 
[m 2 X 10 -4] 

a 23.76 
b 19.63 

23.76 

A2 Per W 
[m 2 × 10 -4] [kN] [N] 

23.76 1.728 261.5 
23.76 1.563 238.8 
19.63 1.563 238.8 

I f 

4 3 

// .... ....... / 

/' Io ¢ Io "/ 

Fig. 2. Four-bar symmetrical truss 
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Table 2. Optimal results for four-bar symmetrical truss 

A1 
[m 2 X 10 -4] 

A2 
[m 2 X 10 -4 ]  

A3 
[m 2 X 10-  4] 

A4 
[m 2 X 10 -4] 

-Pcr 
[kN] 

W 

IN] 

38.48 

38.48 

38.48 

38.48 

3.138 

1197.583 

33.18 

33.18 

38.48 

38.48 

2.907 

1115.109 

23.76 

44.18 

23.76 

44.18 

2.775 

1057.222 

23.76 

44.18 

23.76 

44.18 

2.775 

1057.222 

The discrete optimal solution is characterized by ele- 
ments of different cross-sectional areas. Discrete optimiza- 
tion of a structure of symmetrical  geometry and loading 
does not always lead to the symmetry  of elements. The 
continuous variable optimization of such a structure is con- 
nected with elements of equal areas, see e.g. Khot (1983) 
and Khot  and Kamat  (1985). The two bar symmetri-  
cal truss of different element areas is characterized by the 
asymmetrical  loss of stability mode. 

5.2 Four-bar symmetrical truss 

The four-bar symmetrical  truss in Fig. 2 (lo = 2.00 m, 
f = 0.07 m) was optimized for design load P = 2.75 kN. 

The optimal results for different variants of partit ion 
into linking groups: (a) A 1 = A2 = A3 = A4; (b) A 1 = 
A2,A3 = A4; (c) A1 = A3,A2 = A4; (d) optional Ai, 
(i = 1, 2, 3, 4); and cross-sectional areas from the catalogue 

A i [m 2 x 10 -4] ~ {19.63; 23.76; 28.27; 33.18; 38.48; 44.18; 

50.27},  (i = 1, 2, 3, 4) 

are given in Table 2. 

4 IP 3 

/°4 L , 2 411 
/ / / , \ / 
3 I / I \ I ;0 , , y  /AX,  ,, 

/, Zo' ./, ./ 

Fig. 3. Four-bar unsymmetrical truss 

The discrete optimal solution of this symmetrically 
constructed and loaded truss, as in the first example 5.1 is 
not connected with the selection of equal areas elements. 

5.3Four-bar asymmetrical truss 

The optimization results of the four-bar asymmetrical truss 
shown in Fig. 3 (l 1 = 2.50 m, l02 = 1.50 m, l03 = 2.25 m, 
l04 = 1.75 m, f = 0.07 m) for P = 3.5 kN and the catalogue 

and variants of linking groups as in Example 5.2 are given 
in Table 3. The symbol d describes the optimal solution 
for arbi t rary A i (i = 1,2,3,4) .  The results d t are con- 
nected with the next solution satisfying all constraints in 
the variant d of part i t ion into linking groups, following the 
optimal one in the sequence of increasing values of the ob- 
jective function. Note that  solutions d and d I correspond 
to close objective functions, but  they are characterized by 
a quite different distribution of elements. 

5.~ Dome structure 

The 30 member three-dimensional dome structure shown 
in Fig. 4 was optimized for a concentrated load P applied 
in the vertically downward direction at node 1. Nodes 8- 
19 are fixed. The coordinates of the node points in one 
quarter are given in Table 4. The coordinates of the other 
node points can be found by symmetry.  

The structure was parti t ioned into four linking groups. 
Region 1 includes bars 1-6, region 2 includes bars 7-12, 
region 3 includes 13-18, and region 4 includes bars 19-30. 
The optimization results for two design loads P -- 15 kN 
and P = 25 kN and for the catalogue 

Ai[m 2 × 1 0  -4] E {12.57; 15.9; 19.63;23.76;28.27;33.18; 
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Table 3. Optimal results for four-bar unsymmetrical truss 

A1 
[m 2 × 10-41 

A2 
[m 2 × 10 -4] 

A3 
[m 2 × 10-41 

A4 
[m 2 × 10 -4] 

Pc/" 

[kN] 

W 
IN] 

a 

44.18 

44.18 

44.18 

44.18 

3.867 

1388.396 

44.18 

44.18 

38.48 

38.48 

3.569 

1309.848 

38.48 

44.18 

38.48 

44.18 

3.626 

1298.147 

d 

44.18 

44.18 

38.48 

33.18 

3.512 

1238.783 

d t 

38.48 

50.27 

33.18 

38.48 

3.519 

1239.543 

38.48; 44.18; 50.27}, 

are given in Table 5. 

6 Conc lus ions  

( i =  1,2,3,4) The most time consuming part  of the computer solution 
of the problem under consideration is the evaluation of 
nonlinear critical loads. In practical design, the most ef- 
fective numerical algorithms of nonlinear stability analysis 
or approximate, sufficiently exact methods must be ap- 
plied. The enumeration method according to the increas- 
ing value of the objective function can be a useful tool for 

The optimal discrete solution of the problem under con- 
sideration must not be evaluated by 'rounding off' known 
continuous variable solutions. Taking discrete greater sizes 
near the solution in continuous variables may lead to a 
solution which is not optimal from the discrete optimiza- 
tion point of view and taking smaller sizes may cause a 
violation of the constraints. The discrete optimal design 
can be obtained by discrete programming methods (see 
Pyrz 1990). The continuous variable optimization of struc- 
tures of symmetrical geometry and loading usually leads 
to the symmetrical distribution of elements. The discrete 
minimum weight designs of such problems is not always 
symmetrical. Discrete optimization results depend on the 
partition of the structure into linking groups and on the 
catalogues of available sections. The large number of link- 
ing groups usually leads to the structure of less weight. 

Table 4. Coordinates of the node points of the dome structures 

node point 

1 
3 
4 
11 
12 
13 
14 

X 

[m×10 -2] 

0.0 
300.0 
150.0 
600.0 
450.0 
300.0 

0.0 

Y 
[m×10 -2] 

0.0 
0.0 

259.8075 
0.0 

259.8075 
519.615 
519.615 

Z 

[m×10 -21 

65.041 
48.923 
48.923 

0.0 
16.404 

0.0 
16.404 
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Fig. 4. Dome structure 

discrete optimization problems with linear objective func- 
tions and arbitrary constraints and catalogues of available 
design variables. This guarantees the global optimum of 
the problem. The effectiveness of the method is limited by 
the number of design variables and the number of standard 
sections in catalogues. It can be increased if the solution 
of the continuous variable optimization problem is known. 
The continuous variable optimal solution of the minimiza- 
tion problem is the lower bound of discrete optimal results. 
There is no need to check the constraints if discrete de- 
sign variables correspond to objective functions less than 

Table 5. Optimal results for the dome structure 

the known continuous optimization solution. In the au- 
thor's opinion, the most effective algorithms of discrete 
optimization of the problem under consideration with a 
large number of design variables can be obtained by the 
skillful connection of discrete and continuous variable op- 
timization methods. 

The conclusions formulated above deal with properties 
of discrete optimal solutions observed on the basis of the 
presented numerical examples and need not occur in all 
discrete optimization problems of the considered class of 
structures. They can, however, be important in the case of 
practical discrete optimization of engineering structures. 
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