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A b s t r a c t  Maximization of the integral stiffness of a structure 
composed of one or two isotropic materials of large stiffness is 
considered using the homogenization technique. Material is mod- 
elled by a second rank composite, and we use the concentrations 
and orientations of the composite as design variables. Numerical 
results are presented at the end of the paper. 

1 I n t r o d u c t i o n  

During the last decade a number of software systems for 
shape optimization based on boundary variation have been 
developed in the field of structural optimization. The ef- 
ficiency and user-friendliness of many of these systems are 
so satisfactory that  they can be used in industries as CAE 
(Computer Aided Engineering) tools. The first experiments 
dealing with boundary variation optimization were carried 
out in the seventies. Since then, authors such as Esping 
(1984, 1986), Braibant and Fleury (1984), Haftka and Gandhi 
(1986), Rasmussen (1990) and aodrigues (1988) have pub- 
lished results on the subject. 

The boundary variation method, however, has some lim- 
itations. The result of the optimization process is, e.g. very 
dependent on the chosen initial design, as the optimized 
structure is topologically equivalent to this. The user of the 
optimization program will have to define an initial design of 
the structure and define how the boundaries of the structure 
may change. If this is not done appropriately, the gain of the 
optimization process may be very limited. During boundary 
variation the user may also have to manually re-define the 
finite element mesh in order to retain a satisfactory mesh. 

Using topology optimization we avoid the above- 
mentioned problems. By this method a prescribed initial 
topology is not required, and topology optimization can of- 
ten be applied as a most suitable preprocessor for problems 
of boundary variation, in which a sensible initial design is 
essential. Integration of topology and boundary variation 
optimization was successfully implemented by Bendsoe et al. 
(1990a), Bendsee and Rodrigues (1990b) and Olhoff et al. 
(1991) by manual definition of the bounds of a boundary vari- 
ation model based on a topology optimized structure. An 
automatic interface between the two optimization methods 
has been developed by Papalambros and Chirehdast (1990) 
and implemented in the system SAPOP. 

This paper deals with topology optimization of plane, lin- 
early elastic structures. Topology optimization is performed 
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as a material  distribution problem using a composite mate- 
rial. We apply the method described by Thomsen (1991), 
which deals with the optimization of plane composite struc- 
tures consisting of fiber and matr ix  materials, where the con- 
centration and the orientation of the fibers are used as de- 
sign variables. Assuming the fiber concentration of such a 
composite material  can take on values from 0 to 100%, and 
the stiffness of the matr ix  material  is chosen to be very low 
compared to the stiffness of the fibers, we have in principle 
defined a topology optimization problem, where there will be 
"no material" and "material" in domains with 0 and 100% 
fibers, respectively. 

In this paper, the material  model is a second rank com- 
posite consisting of an isotropic material  of large stiffness and 
a very soft material. The elastic moduli Ai j  of the composite 
are obtained by homogenization. On account of the continu- 
ous nature of the composite material, the optimization can be 
carried out with two different fiber concentrations as design 
variables. The concentration of the material  of large stiffness 
determines whether there will be "material" or "no material" 
at a given point of a loaded structure. In the following the 
term "stiff" means that  material  does not imply "rigid" ma- 
terial. The term "stiff" means material  of large but finite 
stiffness. 

The purpose of introducing a composite material  is not 
only to obtain a convenient, continuous material  model which 
can be used to obtain analytical expressions for the elastic 
moduli. Thus, if the problem had been stated as an integer 
optimization problem so that  either "material" or "no ma- 
terial" could be generated at any point of a design domain, 
the formulation would not have been correctly proposed, and 
the existence of a solution (an optimal design) would not be  
obvious (Strang and Kohn 1986). The key would then be to 
reformulate the optimization problem by introducing a fam- 
ily of composites constructed from the basis materials of the 
original problem. This process is sometimes called relaxation 
and has, e.g. been studied by Murat and Tatar  (1985), Lurie 
and Cherkaev (1986), Kohn and Strang (1986), Thomsen and 
Olhoff (1990) and Thomsen (1991). Relaxation implies en- 
larging of the design space, and tends to remove local op- 
t ima (Kohn 1990). Traditionally, it was thought that  one 
must consider the total i ty of all possible composites assem- 
bled from the set of originally given materials. This approach 
is called full relaxation. Recent investigations, have however, 
shown that  only the set of finite rank laminar composites need 
to be considered for many optimization problems (Avellaneda 
1987; Kohn 1988; Kohn and Lipton 1988). This technique is 
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called partial relaxation and is performed by introducing some 
convenient, finite-parameter microstructure. This approach 
also enlarges the design space but has the disadvantage that 
the solution may be dependent on the chosen microstructure. 
In addition, a partial relaxation implies the same difficulty as 
the discrete material/no material problem, that the problem 
may have no solution. Studies on bounds on the effective 
material properties of composite materials composed of two 
materials have shown that for plane elasticity the stiffest ma- 
terial can be obtained by a layered medium, with layering 
at two different micro scales (Avellaneda 1987). This means 
that the existence of solutions is ensured for minimum com- 
pliance shape optimization problems if such a material model 
is used. 

This paper deals with maximization of the integral stiff- 
ness of a structure with given load and boundary conditions 
and with a given amount of available material. The inte- 
gral stiffness of the structure for a given load case is repre- 
sented by the internal elastic energy. Numerical analysis of 
the structure is performed by means of the finite element pro- 
gram MODULEF, and the concentration of the stiff material 
and the axes of orthotropy in each finite element are used as 
design variables. 

Assuming the strain field to be determined at a given de- 
sign stage, we apply an iterative two-level optimization pro- 
cedure where: 

- the distribution of the amount of available material is deter- 
mined by using analytical sensitivity analysis and a convex 
mathematical programming technique, and 

- the orientations of the axes of orthotropy are determined 
using a global optimality criterion method. 

The above formulation of topology optimization was recently 
extended to cover application of two materials with different 
stiffnesses so that subregions with "material 1", "material 2", 
"no material" and "mixtures of material 1, material 2 and no 
material" can be generated in any part of a design domain. 
This model makes it possible to generate typical sandwich 
structures. 

2 M a t e r i a l  m o d e l  

We now formulate a material model which can describe an 
arbitrary plane structure consisting of one or two stiff ma- 
terials. In the literature dealing with topology optimization, 
several numerical and analytical material models have been 
used. In all models integer optimization is avoided by using 
a continuous material model, which can have intermediate 
values of "material" and "no material", meaning that essen- 
tially the optimization can be performed as a sizing prob- 
lem. Bendsoe and Kikuehi (1988), Suzuki and Kikuchi (1989) 
and Diaz and Bendsee (1990) used a numerically determined 
material model based on a microstructure consisting of an 
isotropic material with rectangular holes, and they used the 
orientation and the size of the holes as design variables of the 
optimization problem. 

In this paper we use an analytical model, where two 
isotropie materials with different stiffnesses can be described 
by a second rank composite material. The composite is con- 
structed in three micro levels. At the first level we model a 
composite using "material 1" and "material 2" by turns. The 

concentrations of the two materials are given in terms of the 
thicknesses 61 and 1 - 51 as shown in Fig. la. At the sec- 
ond level we construct a composite composed of the material 
in Fig. l a  and "very soft material", where the ratio between 
these is given in terms of 52 and 1 - 52, refer to Fig. lb. At 
the third level we construct a composite using "material 1" 
and the composite in Fig. lb  by turns, where the concentra- 
tions of these are given in terms of 7 and 1 - 7, refer to Fig. 
lc. The three basis materials used in the material model are 
isotropic and defined by the stiffness matrices 

Qkfl : material 1, Qm kl : material 2, 

Qkl : very soft material. 

(a) 

2 

o 

(b) (o) 

Fig. 1. Construction of composite materials. (a) First level, (b) 
second level, and (c) third level 

Fig. 2. Material model for optimization with one stiff material 

If the design variables of the material model are chosen suit- 
able, we can define topology optimization problems for either 
one or two stiff materials. If 51 = 1, we obtain the compos- 
ite shown in Fig. 2, which can be used in usual problems of 
topology optimization, where there may be either "material" 
or "no material" at a given point of a design domain. This 
formulation has previously been used by Bendsee (1989). If 
all the design variables of the material model in Fig. lc are 
allowed to vary between 0 and 1, we obtain a composite, 
which can describe "material r ' ,  "material 2" and "no ma- 
terial" when suitable values of 7 ,  61 and 52 are chosen. We 
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presume that the relatively simple material model in Fig. lc 
is general enough to be used in problems of topology opti- 
mization. In addition to 3'(x), 61(x ) and 62(z ) we apply the 
material orientation 0(x) in a point x as a design variable. 
As mentioned, structures composed of isotropic materials can 
be generated during the optimization. It is, however, possi- 
ble that parts of the structure may become anisotropic, as 
mixtures of the materials may be formed. 

3 O p t i m i z a t i o n  p r o b l e m  

This paper deals with stiffness maximization of linearly elas- 
tic structures loaded in plane stress. Structures are analysed 
using a fixed finite element model with known boundary con- 
ditions and in plane loadings. The structure of maximum 
integral stiffness will be defined as the structure having mini- 
mum total elastic strain energy subject to a given loading. 
The total internal elastic energy U is given by, see e.g. Jones 
(1975), 

U = gAu (ei + q I )  + ( q  - q I )  cos 2¢ + 

-t-lA12 [ ( s i - I - c i i ) 2 - ( c i - s i i ) 2 c o s 2 2 ~ ]  + 

+~A66(si.cii)2sin22¢}S} , (1) 
i 

where e I and ~1I are the principal strains, [A] is the ma- 
trix of extensional stiffness, ¢ is the angle from the direetion 
corresponding to the numerically largest principal strain eI  
to the direction associated with the largest stiffness .411 and 
S is the area of an element. The design variables of the 
optimization problem are the density and the orientation of 
"material" in each finite element. 

By topology optimization using one stiff material, we ap- 
ply the concentrations 7 and 62 (refer to Fig. 2) along with 
the orientation 0 of the composite as design variables. We 
formulate a constraint that enforces the total amount of stiff 
material to be less than or equal to a given upper bound M 

0_<7i_<1 ; 6 1 i = 1  ; 0 _ < 6 2 i < 1  ; i = l , . . . , n ,  
n 

C1--  E ["/i +(1-~/i)62i]S i < M .  (2) 
i=1 

By topology optimization using two stiff materials we apply 
7,  61, 62 (refer to Fig. lc) and 0 as design variables, and we 
enforce the total amounts of "material 1" and "material 2" to 
be less than or equal to M 1 and M2, respectively, 

0_<7i_<1;  0_<61i_<1 ; 0 _ < 5 2 i < 1  ; i = l , . . . , n ,  
n 

C2 = E [ 7 i  +(1--7i)62i61i]Si <-- M1;  
i=1 

n 

C3 = E [(1 - 7/)(1 - 61i)62i] S i _< M2" (3) 
i=1 

4 Stiffness m a t r i x  in t e r m s  of  des ign  var iab les  

The stiffness matrix of the material shown in Fig. lc is de- 
termined by homogenization in three steps, where stiffnesses 
are found for each micro level. We follow Bendsce (1989) in 
determining the constitutive matrix O H of a composite 

M 1 -1 

= 2 M ± - 1  

[ O H = M(O12~ M 
\ O 1 1 ]  

M 1 -1  
QH66=[ ( ~ 6 6 ) ]  ' (4) 

where M(f) is the average value of a function I(Y) in the 
interval Y, 

M(f) = ~ f(y) dy, (5) 

Y 
and Qkt are the so-called reduced stiffnesses, which for an 
isotropic material with Young's modulus E, Poisson's r a t i o ,  
and plane stress conditions are given by (6) (Jones 1975) 

E ,E E 
e l i  = O22 = 1 - . 2 ,  O12 = 1 - . 2 ,  0 s 6  - 2 ( 1 +  d)" (s)  

We now consider a composite material composed of two 

materials with the stiffnesses Qlul.o and Q ~ ,  refer isotropic 
to Fig. la. To simplify the calculation both materials are 
presumed to have the same Poisson's ratio. The elasticity 
constants QH1 of the composite are found by (4)-(6) 

oH 1 =']-1; oH1= J3", o H 1  "J1, QHI = 1-2..]1, (7) 

where Q1//11 and QH1 are the stiffnesses corresponding to the 
orientation of the 1- and 2-axes, refer to Fig. 1, and 

- 1  

Jl= 51 +--~1 J , J2=51Qf11+(1-51)Q~ , 

-/3 = ]2( 1 - 1/2) 4 ,211.  (8) 

The constitutive matrix QH3 of the second rank composite 
shown in Fig. lc can be determined, by repeating twice the 
use of (4) and (5) 

7 , 

02H23 = ~/Q{1 -t- (1 - ~,)QIH12 - ,2 ["/Q{1 -}- (QIH12)21 - ~' 
o g  2 

H3 H2 i-- 7 2] 
- Q l l  ( " / + Q l l  ~ 2  2 )  J ' O g  3 :  "k~f-I-tdll f ' ~H21-'Y'~H3~--~22)~11 ' 

= 2 Q---~12] , (91 

where J1, J3, QIH12 and QH2 22 are given by (8) and (10). 

(62 1 -- 62"~ - 1  
= Z l ' 



Q2 H2 = 

: ~52 J;: } + (1-(52}Ql1-~ '2 [~'2]1 + (1-~2)Ql l ]  + v2Q1H12 .(10) 
Finally, we determine the matr ix  of extensional stiffness Akl  
of a disc with the thickness h (Vinson and Sierakowski 1987) 

hi2 

Ak  1= / QIIakl d z =  hQ H a .  (11) 

- h / 2  

5 O p t i m i z a t i o n  t e c h n i q u e  

The optimization problem is solved iteratively by a two-level 
procedure of redesign. 'The stress/strain field is initially de- 
termined by finite element analysis using MODULEF in each 
loop of redesign, and improved orientations Oi(i = 1 , . . .  , n) 
of the composite are subsequently determined by means of 
an optimality criterion at the first level of redesign. At the 
second level of redesign the material  densities ~ l i ,  62i and 7i 
are improved by a method of analytical sensitivity analysis 
and mathematical  programming. 

A notable feature of the present problem is that  a usual 
gradient method may fail in determining the optimal orien- 
tation of the composite because local opt ima normally exist. 
To circumvent this inherent difficulty, we use results obtained 
by Pedersen (1989, 1990), who has performed an analytical 
investigation of the first and second derivatives of the total  
strain energy with respect to the orientation of the compos- 
ite. The results of the investigation are summarized in a table 
shown in the papers by Pedersen (1990) and Thomsen (1991). 
In an optimization problem where the stiffness of a structure 
is maximized using the material  orthotropy directions as de- 
sign variables, we may either orient the composite material  
relative to the principal stress or strain directions (Pedersen 
et al. 1991). Numerical examples, however, show that  the 
best convergence of the optimization problem is obtained, if 
the composite is rotated relative to the principal stress direc- 
tions. Coincidence between the largest principal stress and 
strain directions is always found to be a result of the orienta- 
tion optimization, and normally these directions will coincide 
with the material  direction associated with the largest stiff- 
ness [unless the material  has a relatively high shear stiffness, 
see Pedersen (1990)]. 

The second stage in the loop of redesign consists in deter- 
mining an improved distribution of the amount of material, 
i.e. to obtain improved values of the design variables 61i, 62i 
and ~7i (i =" 1 , . . .  , n). We apply a dual method of math- 
ematical programming using mixed variables as developed 
b~; Svanberg (1987) and implemented in the computer code 
MMA (Method of Moving Asymptotes).  To this end we need 
the sensitivities of the objective function and the constraints 
with respect to the above-mentioned design variables. 

Results of Pedersen (1990, 1991) show that  by means of 
Clapeyron's theorem and the principle of virtual displace- 
ments for structures with design independent loads, the gra- 
dient of the total  strain energy u can be determined from the 
gradient of the specific strain energy u i of a given element, 
whose strain field is considered to be fixed 
dU Ou i _ 

- - ;7 -S i ,  i = l , . . . , n .  (12) 
da i oa i 
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Here a i denotes any of the design variables 61i, 62i or 7i (i = 
1 , . . .  ,n).  Thus, the sensitivities of the total  strain energy 
U with respect to 61i , ~2i and 7i can be determined by (1) 
and (12), assuming the strain field to be fixed, and restricting 
variation to the stiffness matr ix  [A]. For the i-th element of 
the discretized geometry we obtain the following expression 
for sensitivities with respect to the design variables ai: 

U, aim - -  g 11 [(EI -t- gII )  -F (~I -- "k 

- -  + 

+.~A66(s I - e i i )  2 sin 2 2¢ S , 
i 

i = 1 , . . .  , n .  (13) 

Itere A~I is a shortened notat ion for the derivatives dAkl /da i  
of a component of the stiffness matr ix  [A]. These sensitivi- 
ties have been analytically derived by Thomsen (1992), and 
results can be found in that  paper. Sensitivities of the con- 
straints in (2) and (3) are readily derived analytically, and 
thus we have all necessary sensitivity information required 
for the optimization at the second level of redesign. 

6 E x a m p l e s  of  o p t i m i z a t i o n  us ing  one  m a t e r i a l  of  
l a rge  s t i f fness  

Initially, we consider examples of topology optimization 
where we only use one material  of large stiffness. The opti- 
mization method has been tested for a number of structures 
with various design domains and boundary conditions, and 
we have chosen examples where the results can be compared 
with analytical solutions. 

The optimization is performed iteratively by choosing the 
orientation and concentration in each finite element which 
separately maximize the stiffness of the structure. We apply 
an initial geometry consisting of an anisotropic material as 
shown in Fig. 2 with orientations 0 i = 0 and concentrations 
Vi = 62i (i = 1 , . . . ,  n). 

Let us now consider a Michell truss, which is an analytical 
solution to an optimization problem. A Michell truss is ob- 
tained by volume minimization of a "truss-universe", which 
has prescribed upper bounds on allowable tension and com- 
pression stresses, see Hemp (1973). Figure 3 shows such an 
example, where the force 2P is carried by the truss structure 
in the design domain ABCD. The same topology was con- 
firmed by discretized truss optimization (Rozvany and Zhou 
1991, p. 62; Zhou and Rozvany 1991, p. 321). By the topol- 
ogy optimization we presume that  the optimal structure is 
symmetrical about the centreline in Fig. 3, and using this we 
reduce the design domain as shown in Fig. 4. 

Figure 5 shows results of topology optimization where 4- 
node elements have been used. The available amount of ma- 
terial is set to be 40% of the design domain in volume. From 
Fig. 5 it appears that  the structure is very similar to the 
Michell truss in Fig. 3. We see that  only very few elements 
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Fig. 3. Michel truss. Analytical solution lor truss optimization 
problem in the design domain ABCD (b) 

Fig. 6. Michell trusses 

Fig .  4. Design domain,  load and boundary  condit ions using sym- 
metry 

in the optimized structure remain anisotropic (hatched ele- 
ments), which means that  the design domain has been sepa- 
rated into sub-domains consisting of very soft material (holes) 
and isotropic stiff material, respectively. 

Similar results were obtained by Rozvany et al. (1992), 
who used a solid isotropic microstructure with penalty 
(SIMP) for intermediate densities. The fact that  in Fig. 5 
herein most non-empty elements contain isotropic material  
supports the validity of the SIMP approach for this problem. 

tO0 
I" i 
iiiiiiiiiiiiiiiiiiiiii iii iiiiiiiiiii  i i<  
iii'i'i',iiiii, liiiiiiiiiiiiii   iiiiiii 

100 

°I 
,iiiii iiiiiiiiiiiir iiji 

(b) 

l 
Fig. 7. Design domain, load and boundary conditions using sym- 
metry 

Fig. 5. Optimal topology. Volume = 40% (n = 28 x 90) 

Figure 6 illustrates two other examples of Michell trusses 
which are simply supported and fixed against displacements 
in two points, respectively, and where the design domains are 
the upper half planes. By topology optimization of the struc- 
tures with the load and boundary conditions shown in Fig. 
6, we utilize the symmetry about the vertical centrelines and 
thus only analyse the left half of the structures assuming the 
right edges to be simply supported, refer to Fig. 7. Available 
amounts of material of the structures in Figs. 7a and b are set 
to be 30% and 25%, respectively, and we obtain the optimal 
topologies in Fig. 8. 

(a) Volume=30% (b) Volume=25% 

Fig. 8. Optimal topologies (n = 50 × 50) 

Michell trusses all follow two geometrical conditions 
(Hemp 1973, pp 70-101): 

- if a pair of tension and compression members meet at a 
point, they must be orthogonal (see e.g. the intersession, 
where the force is acting in Fig. 3); 

- if two tension (compression) members and one compres- 
sion (tension) member meet at a point, then the compres- 
sion (tension) member must be orthogonal to the other 
two [see e.g. the upper (lowest) row of members in Fig. 3 
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and the intersection points along the curved lines in Figs. 
6a and b]. 

Considering the optimal topologies, we see that they all com- 
ply with these conditions. If we had used larger amounts of 
available material, the topologies would have had frame char- 
acter and would have differed from Michell trusses, which 
have joint connections in the intersection points of the truss 
members. 

By topology optimization we do not take stability of com- 
pression loaded truss members into consideration. To obtain 
a practically useful truss structure we could apply the opti- 
mized topologies as initial designs in a traditional truss opti- 
mization program. Truss optimization has been undertaken 
by Pedersen (1972), who minimized the total weight of a 
truss structure considering cross-sectional areas at the bar 
and joint coordinates as design variables. Pedersen considers 
truss optimization for several simultaneous load cases tak- 
ing stress constraints into consideration for bars in tension 
and stability constraints for bars in compression in the elas- 
tic (Euler) and plastic domains. A corresponding method is 
applied by Olhoff et al. (1991), who minimize the weight of 
a truss structure with fixed compliance using a toplogy opti- 
mized structure as an initial design for the truss optimization 
program SCOTS. 

7 Example s  of o p t i m i z a t i o n  us ing  two ma te r i a l s  of 
large st iffnesses 

Finally we consider examples of topology optimization, where 
the material is modelled by one very soft material with elastic 
moduli Q~) and two stiff materials with the elastic moduli 

Qfkl and Q~,  respectively. We consider optimization of the 
cantilever beam in Fig. 9, and once more use symmetry. 

A ~ ii ~! : ii!i! iiiii!i! iiiiiiiiiii !i !iii!i!i iiii!i!i!i il !i!ii~i i~i fill ill ilili:!iii!i ii :iii i~i i! i~i~i ii fill iilii i~iii i!~i i~i~i ii i~!~iii~i ii~i i ~ i~i ili i~i ~!iiiiii~iiii![i~i~i!ii~iiii~ ili i~i !iiiili iil ii ̧ | lliiiiiiiiiiiiiii!!iiiiiiiiiiiiiiiiiii!i!iiiiii!iiiiiii!i  iiiiiiiiiii!iiiiiiiiiiiiiliiiiiiiiiiiii!iiiiiiiiiiiiii!iiiiiiii  o i 
200 

Fig. 9. Cantilever beam 

Initially, we show two examples where the stiffness ratios 
between "material 1" and "material 2" are set to be 10 and 
75, respectively, 

(a) Qfkl = lOQkml ' (b) Qfkl = 75Qkml • (14) 

The available amounts of "material 1" and "material 2" are 
set to be 20% and 65%, respectively, of the design domain 
volume. During the optimization we choose the orienlalions 
0 i and concentralions 7i ,  51i and 52i , which maximize the 
stiffness of the structure. 

Figure 10 shows the optimal topologies of the two exam- 
ples where the structures have been discretized into 12 × 96 
4-node elements. The hatching densities of an element in 
two perpendicular directions are proportional to the elastic 
moduli A l l  and A22 , and the orientation of the hatching 
indicates the corresponding directions. The optimized struc- 
tures mainly consist of orthotropic material. Only very few 

elements along the upper left edges consist of isotropic "ma- 
terial 1", and isotropic "material 2" elements have not been 
generated. The stiffer material along the upper edge carries 
the large normal stresses, whereas the shear stresses are car- 
ried by a softer orthotropic material, the stiffnesses of which 
are almost equal in the two principal material directions. Ele- 
ments at the right, upper and the left, lower corner have small 
strain energy densities due to the applied load and boundary 
conditions, and no material is distributed in these elements. 

For the examples in Figs. 10a and b, we have chosen the 
material orientations 0 i such as to maximize the stiffness of 
the structure. We now show two examples where we choose 
the material orientations that minimize  the stiffness of the 
structure, while we still choose the material concentrations 
51i , 52i and 7i that maximize the stiffness. When this is 
done, anisotropic material becomes very unfavourable, be- 
cause the material stiffnesses in the directions of the principal 
stresses become very low relative to the material consump- 
tion. This leads to generation of topologies that only consist 
of "holes" and isotropic "material 1" and "material 2". Fig- 
ures l l a  and b show two examples, where we have used the 

same elastic moduli Qfkl and Q ~  and amounts of available 
material as in Fig. 10, but where the orientations are chosen 
such as to minimize the stiffness. It should be noted that 
the orientation of the material has no influence on the stiff- 
ness when all material has become isotropic. In this figure 
the distributions of isotropic "material 1" and "material 2 " 
are illustrated by black and hatched domains, respectively, 
whereas white elements illustrate void. It appears that stiff 
"material 1" is distributed along the upper edge of the struc- 
ture in order to carry the largest normal stresses, and that 
shear stresses are carried by softer "material 2" like in ordi- 
nary sandwich structures composed of two "skins" and one 
"core". For the structure in Fig l l b  it has been advantageous 
to use an amount of the stiff "material 1" as "shear force rein- 

f m forcement", because the stiffness ratio Q k l / Q k  I = 75 of this 
example is large, and since there is a relatively large amount 
of "material 1" available. Note that the topologies in Figs. 
l l a  and b represent local optima, and they store 3% and 26% 
more elastic energy than the topologies in Figs. 10a and b, 
respectively. The purpose of the examples in Fig. 11 has been 
to demonstrate how to obtain a topology only consisting of 
isotropic materials, which is preferable from the point of view 
of manufacture. 
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