Math. Systems Theory 16, 57-60 (1983) Mathematical

Systems Theory

A Note on Special Thue Systems With a Single Defining Relation'
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Abstract. It is shown that a Thue system of the form T,={(w,e)} is
Church-Rosser if and only if there is a Thue system 7, that is Church-Rosser
and is equivalent to T7.

1. Introduction

Thue systems are combinatorial rewriting systems often studied in computability
theory. In the past decade Thue systems have been used to specify context-free
languages in terms of unions of congruence classes; for this, the Church-Rosser
property and its variations play an important role (see [2], [3], [5]). The Church-
Rosser property has been investigated for abstract reduction or replacement
systems, term-rewriting systems, tree-manipulating systems, etc. (see [6, 10, 12, 13,
14)), and in each case is very useful.

If a Thue system T is not Church-Rosser, then it may be the case that there
1s a Thue system T, that is Church-Rosser and is equivalent to T, in the sense that

T, generates the same Thue congruence as T,. O’Duanlaing [13] has shown that it
is undecidable for a finite Thue system 77, whether there is a (finite or infinite)
Thue system 7, that is Church-Rosser and equivalent to 7). Jantzen [7] investi-
gated the specific Thue system {(abbaab, e)} which is not Church-Rosser, and
showed that there is no. (finite or infinite) Church-Rosser Thue system that is
equivalent to {(abbaab, e)}.

In this note it is shown that a one-relator special Thue system T, = {(w, e)} is
Church-Rosser if and only if there is a (finite or infinite) Thue system 7, that is
Church-Rosser and is equivalent to 7). This result contrasts with that of O’Dunla-
ing and also reveals the basis for Jantzcn s result.

For an introduction to the literature on Thue systems and replacement
systems, see [2, 3, 5, 6, 12, 13, 14].
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2. Thue Systems

If 2 is a finite alphabet, then 2* is the free monoid with identity e generated by
2. If we =*, then the length of w is denoted by |w|: |e|=0, |a| =1 for a € Z, and
lwa|=|w|+1forweZ* acZ.

A Thue system T on a finite alphabet = is a subset of Z* X 2*. The Thue
congruence generated by T is the reflexive, transitive closure & of the relation
defined as follows: if (u, v) € T or (v, u) € T, then for every x, y € Z*, xuy & xvy.
The congruence class of z€2* (modT) is [z]={(w &€ Z*w & z). The monoid
presented by T has as elements the congruence classes of £* (modT), and as
multiplication [x]e[y]=[xy], so that [e] is the monoid identity. Every finitely
generated monoid is presented by some Thue system. Thue systems T, and T, are
equivalent if they define the same congruence, i.c., for all x, y, x & y (mod T 1) if
and only if x & y (mod 7,). Thus, equivalent Thue systems present the same
monoid.

For a Thue system 7, write x — y if x & y and |x| > |y|, write x|y if x & y
and |x| = |y|, and write x = y if x = y or x| y. A string x is irreducible if there is
no y such that x - y and is minimal if x & y implies |x| < |y|.

Let T be a Thue system.

(a) T is Church-Rosser if x & y implies that for some z, x >z and y 5 z.

(b) T is confluent if w= x and w> y implies that for some z, x 2>z and
y—z.

(¢) T is preperfect if x & y implies that for some z, x > z and y =5 z.

A Thue system on alphabet 2 is special if T C Z* X{e}.

A Thue system with no length-preserving relations is confluent if and only if
it is Church-Rosser (a simple proof is in [5]), so that a special Thue system is
confluent if and only if it is Church-Rosser. If a Thue system is Church-Rosser,
then each congruence class has a unique irreducible element and a string is
irreducible if and only if it is minimal [5, 6, 10}.

3. Results

A string w is primitive if there is no string x and integer k£ >1 such that w = x*;
otherwise, w is imprimitive. In either case, the shortest x such that w = x* is the
root of w, denoted p(w). If for some u, v with 0 < |u| <|w|, uw = wo, then w has
overlap.

Nivat [11] has shown that it is decidable whether a finite Thue system is
confluent. (Also, see [4].) For Thue systems T with no length-preserving relations,
Nivat’s algorithm amounts to testing for the following: for every pair of (not
necessarily distinct) relations with |u;| > |v|| and |u,|> |v,}, and (u;,0,)€T or
(v, u) €T, and (uy,0,)ET or (v,,u,)ET, (i) if thcre exist x, Y such that
u;x = yu, and |x| < |u,|, then there exists z such that v,x > z and yv, > z, and (ii)
if there exist x, y such that u, = xu, y, then there exists z such that o) %z and
xv, y 5 z. Conditions (i) and (ii) are referred to as the “Nivat criteria.”

Now consider a Thue system 7 = {(w, e)}. There are four (mutually exclusive)
possibilities for the structure of w:

Case 1. w is primitive and has no overlap.

Case 2. w is imprimitive and p(w) has no overlap.



Special Thue Systems with a Single Defining Relation 59

Case 3. w is primitive and has overlap.

Case 4. w is imprimitive and p(w) has overlap.

In Cases 1 and 2 it follows from Nivat’s criteria that 7 = {(w, e)) is confluent
since (i) is vacuous in Case 1 and trivial in Case 2, and (ii) is vacuous in both
cases.

Consider Case 3. If w is primitive and w has overlap, then there exist strings,
x, y and integer k > 0 such that w=(xy)*x and xy = yx [9]. Thus, xyw = wyx,
Ixy| = |yx|, and xy & xyw =wyx & yx. Thus, xpy and yx are congruent (mod T')
and are irreducible (since {xy|=|yx| <|w|) but unequal (in Z*), so that [xy] has
two irreducible elements. Hence, T is not Church-Rosser. Second, since T =
{(w, e)), if u and v are strings such that u < v, then the remainder of |u| upon
division by |w| equals the remainder of |v| upon division by |w|. Thus |xy| = |yx| <
{w| implies that xy, yx are minimal with respect to the congruence <, that is, for
any finite or infinite Thue system generating the congruence T, the strings xy and
yx are both irreducible. Since xy #= yx, this means that no Church-Rosser system
generates this congruence.

Consider Case 4. Note that there exist strings x, y and integers ¢, k such that
w=p(w), t>1, p(w)= (xp)x, k >1, and xy = yx. Now ((xy)" YWy )ew =
((xp)*x)'~ 1(xy) ((xy)kX)' ((xy)"X) (yX) M) x) ™! = w(yx) () x)" " so
w e implies ((xy)*x)~(xp)* & (yx) () x)"~". Let u=((r)ox)' ™ (xp)*
and v = (px)*((xy)*x)"~"! so that |u| = |v| < |w|, u & v, and u = v (since xy = yx).
Thus, just as in Case 3, # and v are distinct strings that are congruent and
minimal with respect to the congruence generated by 7. Hence, neither T nor any
other Thue system equivalent to T is Church-Rosser.

Thus, we have the result.

Theorem. Let T={(w,e)). There is a (finite or infinite) Church-Rosser Thue
system equivalent to T if and only if T is Church-Rosser.

One might ask about the computational difficulty of determining for a string
w which of cases 1-4 holds. Avenhaus and Madlener [1] have noted that the
pattern-matching algorithm of Knuth, Morris, and Pratt [8] can be used to decide
in linear time which of the four cases holds.

One cannot obtain the analogous result for preperfect systems. To see this,
1et T = {(aba e)} and T2 {(aba,e), (ab,ba), where Z={a,b}. In T,, ab
S ababa & ba so that T, is equivalent to T,. The analy51s of Case 3 above shows
that the special system T1 is not Church-Rosser and, since 7, has no length-pre-
serving rules, not preperfect. Since (ab, ba) €T,, a and b commute by means of
length-preserving rules. Since for every w € {a, b)* there exist unique p > 0 and
g = 0 such that p + g = |w| and wpa?b?, and aab}Haba — e, congruence classes
of the congruence generated by 7, are [ab"] and [b"] for every n > 0. Thus, 7, is
preperfect.

For any Thue system T, the preperfect Thue system 7, = {(u, v)|u| > |v| and
u S v (modT))) is equ1va1ent to T, so that every Thue congruence is preperfect.
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