
Math. Systems Theory 16, 57-60 (1983) Mathematical 
Systems Theory 

A Note on Special Thue Systems With a Single Defining Relation t 
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Abstract. It is shown that a Thue system of the form T 1 = ( (w ,e ) )  is 
Church-Rosser if and only if there is a Thue system T 2 that is Church-Rosser 
and is equivalent to T v 

1. Introduction 

Thue systems are combinatorial rewriting systems often studied in computability 
theory. In the past decade Thue systems have been used to specify context-free 
languages in terms of unions of congruence classes; for this, the Church-Rosser 
property and its variations play an important role (see [2], [3], [5]). The Church- 
Rosser property has been investigated for abstract reduction or replacement 
systems, term-rewriting systems, tree-manipulating systems, etc. (see [6, 10, 12, 13, 
14]), and in each case is very useful. 

If a Thue system T~ is not Church-Rosser, then it may be the case that there 
is a Thue system T 2 that is Church-Rosser and is equivalent to T~ in the sense that 
T 2 generates the same Thue congruence as T~. O'Dfinlaing [13] has shown that it 
is undecidable for a finite Thue system T1, whether there is a (finite or infinite) 
Thue system T 2 that is Church-Rosser and equivalent to T 1. Jantzen [7] investi- 
gated the specific Thue system ((abbaab, e)) which is not Church-Rosser, and 
showed that there is no  (finite or infinite) Church-Rosser Thue system that is 
equivalent to (( abbaab, e )). 

In this note it is shown that a one-relator special Thue system Tj = ((w, e)) is 
Church-Rosser if and only if there is a (finite or infinite) Thue system T 2 that is 
Church-Rosser and is equivalent to T~. This result contrasts with that of O'Dhnla- 
ing and also reveals the basis for Jantzen's result. 

For an introduction to the literature on Thue systems and replacement 
systems, see [2, 3, 5, 6, 12, 13, 14]. 
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2. T h u e  S y s t e m s  

If  Z is a finite alphabet, then 22* is the free monoid  with identity e generated by 
Z. If  w ~ Y*, then the length of w is denoted by Iw[: ]e I = O, lal = 1 for a ~ Y~, and 
Iwal = Iwl + 1 for w ~ Y~*, a ~ Z. 

A Thue system T on a finite alphabet Y. is a subset of  ~* × Y,*. The Thue 
congruence generated by T is the reflexive, transitive closure * of  the relation 
defined as follows: if (u, v) ~ T or  (v, u) ~ T, then for every x, y ~ 22", xuy ,~ xvy. 
The congruence class of z ~ Z* ( m o d T )  is [z] = {w ~ Y*lw * z). The monoid 
presented by T has as elements the congruence classes of  Y.* (mod T),  and as 
multiplication [ x ] o [ y ] =  [xy], so that [e] is the monoid  identity. Every finitely 
generated monoid  is presented by some Thue system. Thue systems TI and T 2 are 
equivalent if they define the same congruence, i.e., for all x, y, x ~ y (mod T~) if 
and only if x * y (mod T2). Thus, equivalent Thue systems present the same 
monoid.  

For  a Thue system T, write x --+ y if x ~ y and Ixt > [y[, write x H y  if x ~ y 
and Ixl = tYl, and write x ~ y if x -+ y or  x, H y .  A string x is irreducible if there is 
no  y such that x --+ y and is minimal if x ~ y implies Ixl ~ lYl- 

Let T be a Thue system. 
• . 

(a) T is Church-Rosser if x * y implies that for some z, x --+ z and y z. 
(b) T is confluent if w ~ x and w--+y implies that for some z, x --+ z and 

y " +  Z. 
* 

(c) T is preperfect if x * y implies that for some z, x ~ z and y z. 
A Thue system on alphabet  Y. is special if T ___ Y.* × (e ) .  
A Thue system with no length-preserving relations is confluent  if and only if 

it is Church-Rosser  (a simple proof  is in [5]), so that a special Thue system is 
confluent if and only if it is Church-Rosser.  I f  a Thue system is Church-Rosser,  
then each congruence class has a unique irreducible element and a string is 
irreducible if and only if it is minimal [5, 6, 10]. 

3. R e s u l t s  

A string w is primitive if there is no string x and integer k > 1 such that w = xk; 
otherwise, w is imprimitive. In either case, the shortest x such that w = x k is the 
root of w, denoted p(w). If  for some u, v with 0 < lu] < Iwl, u w  = w v ,  then w has 
overlap. 

Nivat [11] has shown that it is decidable whether a finite Thue system is 
confluent. (Also, see [4].) For  Thue systems T with no length-preserving relations, 
Nivat ' s  algorithm amounts  to testing for the following: for every pair of  (not  
necessarily distinct) relations with lull > Iv~l and lu21 > Iv=l, and (u I, vl)  ~ T or  
(vl ,  u l ) ~ T ,  and (u2, V z ) ~ T  or (v2, u z ) ~ T ,  (i) if there exist x , y  such that 
ulx = yu 2 and Ixl < In21, then there exists z such that v lx  * z andyv  2 * z, and (ii) 

:g 
if there exist x, y such that u~ = xu2y, then there exists z such that v~ -+ z and 
XVzy --+ z. Condit ions (i) and (ii) are referred to as the "N iva t  criteria." 

Now consider a Thue system T = ((w, e)). There are four (mutually exclusive) 
possibilities for the structure of  w: 

Case 1. w is primitive and has no overlap. 
Case 2. w is imprimitive and p(w)  has no overlap. 
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Case 3. w is primitive and has overlap. 
Case 4. w is imprimitive and p ( w )  has overlap. 
In Cases 1 and 2 it follows from Nivat 's  criteria that T =  ((w, e)) is confluent 

since (i) is vacuous in Case 1 and trivial in Case 2, and (ii) is vacuous in both 
cases. 

Consider Case 3. If w is primitive and w has overlap, then there exist strings, 
x, y and integer k > 0 such that w = ( x y ) k x  and xy  ~ y x  [9]. Thus, xyw = wyx, 
Ixyl  = l yx l ,  and xy  * xyw = wyx * yx .  Thus, xy  and y x  are congruent (mod T)  
and are irreducible (since Ixyl  = t y x l  < Iwl) but unequal (in Y.*), so that [xy] has 
two irreducible elements. Hence, T is not Church-Rosser. Second, since T = 
( (w ,e ) ) ,  if u and v are strings such that u * v, then the remainder of lul upon 
division by Iwl equals the remainder of Ivl upon division by Iwl. Thus Ixyl  = l y x l  < 
Iwl implies that xy, y x  are minimal with respect to the congruence * ,  that is, for 
any finite or infinite Thue system generating the congruence T, the strings xy  and 
y x  are both irreducible. Since xy  ~ yx ,  this means that no Church-Rosser system 
generates this congruence. 

Consider Case 4. Note that there exist strings x, y and integers t, k such that 
W = p(W) t, t > 1, p(W) = (xy )kx ,  k >~ 1, and xy  ~ yx.  Now ( ( x y ) k x ) t - l ( x y ) k w  = 
( ( x y ) k x ) , - l ( x y ) k ( ( x y ) g x ) t  = ( ( x y ) k x ) t ( y x ) k ( ( x y ) k x ) t - 1  = w ( y x ) k ( ( x y ) k x ) t - 1  SO 
W ~ e implies ( ( x y ) k x ) t - l ( x y )  k * ( y x ) k ( ( x y ) ~ x ) t - 1 .  Let u = ( ( x y ) k x ) t - l ( x y ) k  

and v = ( y x ) k ( ( x y ) k x )  t-  l SO that lul = Ivl < Iwl, u * v,  and u ~ v (since xy ~ yx ) .  
Thus, just as in Case 3, u and v are distinct strings that are congruent and 
minimal with respect to the congruence generated by T. Hence, neither T nor any 
other Thue system equivalent to T is Church-Rosser. 

Thus, we have the result. 

Theorem. Let T =  ( (w,e) ) .  There is a ( f ini te  or infinite) Church-Rosser Thue 
system equivalent to T i f  and only i f  T is Church-Rosser. 

One might ask about the computational difficulty of determining for a string 
w which of cases 1-4 holds. Avenhaus and Madlener [1] have noted that the 
pattern-matching algorithm of Knuth, Morris, and Pratt [8] can be used to decide 
in linear time which of the four cases holds. 

One cannot obtain the analogous result for preperfect systems. To see this, 
let T 1 = ((aba, e)) and T 2 = ((aba, e), (ab, ba)) where Y. = (a,  b). In T 1, ab 
~, ababa * ba so that T 2 is equivalent to T I. The analysis of Case 3 above shows 
that the special system T 1 is not Church-Rosser and, since T 1 has no length-pre- 
serving rules, not preperfect. Since (ab, ba) ~ T 2, a and b commute by means of 
length-preserving rules. Since for every w ~ (a,  b)* there exist unique p > 0 and 
q > 0 such that p + q = [w[ and w~-~aPb q, and a a b H a b a  ~ e, congruence classes 
of the congruence generated by T 2 are [ab n] and [b n] for every n > 0. Thus, T 2 is 
preperfect. 

For any Thue system T~ the preperfect Thue system T 2 = ((u, v)llu] >/Iv I and 
u ~ v (mod T 1)) is equivalent to T~, so that every Thue congruence is preperfect. 
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