A Note on Special Thue Systems With a Single Defining Relation¹

Ronald V. Book

Department of Mathematics, University of California, Santa Barbara, CA

Abstract. It is shown that a Thue system of the form $T_1 = \{(w, e)\}\)$ is Church-Rosser if and only if there is a Thue system T_2 that is Church-Rosser and is equivalent to T_1 .

1. Introduction

Thue systems are combinatorial rewriting systems often studied in computability theory. In the past decade Thue systems have been used to specify context-free languages in terms of unions of congruence classes; for this, the Church-Rosser property and its variations play an important role (see [2], [3], [5]). The Church-Rosser property has been investigated for abstract reduction or replacement systems, term-rewriting systems, tree-manipulating systems, etc. (see [6, 10, 12, 13, 14]), and in each case is very useful.

If a Thue system T_1 is not Church-Rosser, then it may be the case that there is a Thue system T_2 that is Church-Rosser and is equivalent to T_1 in the sense that T_2 generates the same Thue congruence as T_1 . O'Dunlaing [13] has shown that it is undecidable for a finite Thue system T_1 , whether there is a (finite or infinite) Thue system T_2 that is Church-Rosser and equivalent to T_1 . Jantzen [7] investigated the specific Thue system *((abbaab,* e)) which is not Church-Rosser, and showed that there is no (finite or infinite) Church-Rosser Thue system that is equivalent to *((abbaab, e)).*

In this note it is shown that a one-relator special Thue system $T_1 = \langle (w, e) \rangle$ is Church-Rosser if and only if there is a (finite or infinite) Thue system T_2 that is Church-Rosser and is equivalent to T_1 . This result contrasts with that of O'Dúnlaing and also reveals the basis for Jantzen's result.

For an introduction to the literature on Thue systems and replacement systems, see [2, 3, 5, 6, 12, 13, 14].

¹This research was supported in part by the National Science Foundation under Grants MCS80-11979 and MCS81-16327

2. Thue Systems

If Σ is a finite alphabet, then Σ^* is the free monoid with identity e generated by Σ . If $w \in \Sigma^*$, then the *length* of w is denoted by $|w|: |e| = 0, |a| = 1$ for $a \in \Sigma$, and $|wa| = |w| + 1$ for $w \in \Sigma^*$, $a \in \Sigma$.

A Thue system T on a finite alphabet Σ is a subset of $\Sigma^* \times \Sigma^*$. The *Thue congruence generated by T* is the reflexive, transitive closure $\stackrel{*}{\leftrightarrow}$ of the relation defined as follows: if $(u, v) \in T$ or $(v, u) \in T$, then for every $x, y \in \Sigma^*$, $xuy \leftrightarrow xvy$. The *congruence class* of $z \in \Sigma^* \pmod{T}$ is $[z] = \{w \in \Sigma^* | w \stackrel{*}{\leftrightarrow} z\}$. The *monoid presented by T* has as elements the congruence classes of Σ^* (mod T), and as multiplication $[x] \circ [y] = [xy]$, so that $[e]$ is the monoid identity. Every finitely generated monoid is presented by some Thue system. Thue systems T_1 and T_2 are *equivalent* if they define the same congruence, i.e., for all x, y, x $\stackrel{*}{\leftrightarrow}$ y (mod $\stackrel{+}{T_1}$) if and only if $x \stackrel{*}{\leftrightarrow} y \pmod{T_2}$. Thus, equivalent Thue systems present the same monoid.

For a Thue system T, write $x \to y$ if $x \leftrightarrow y$ and $|x| > |y|$, write $x \mapsto y$ if $x \leftrightarrow y$ and $|x| = |y|$, and write $x \mapsto y$ if $x \to y$ or $x \mapsto y$. A string x is *irreducible* if there is no y such that $x \to y$ and is *minimal* if $x \stackrel{*}{\leftrightarrow} y$ implies $|x| \le |y|$.

Let T be a Thue system.

(a) T is *Church-Rosser* if $x \stackrel{*}{\leftrightarrow} y$ implies that for some z, $x \stackrel{*}{\rightarrow} z$ and $y \stackrel{*}{\rightarrow} z$.

(b) T is *confluent* if $w \stackrel{*}{\rightarrow} x$ and $w \stackrel{*}{\rightarrow} y$ implies that for some z, $x \stackrel{*}{\rightarrow} z$ and $y \stackrel{*}{\rightarrow} z$.

 $y \to z$.

(c) T is *preperfect* if $x \stackrel{*}{\leftrightarrow} y$ implies that for some $z, x \stackrel{*}{\to} z$ and $y \stackrel{*}{\to} z$.

A Thue system on alphabet Σ is *special* if $T \subseteq \Sigma^* \times \{e\}$.

A Thue system with no length-preserving relations is confluent if and only if it is Church-Rosser (a simple proof is in [5]), so that a special Thue system is confluent if and only if it is Church-Rosser. If a Thue system is Church-Rosser, then each congruence class has a unique irreducible element and a string is irreducible if and only if it is minimal [5, 6, 10].

3. Results

A string w is *primitive* if there is no string x and integer $k > 1$ such that $w = x^k$; otherwise, w is *imprimitive*. In either case, the shortest x such that $w = x^k$ is the *root* of w, denoted $\rho(w)$. If for some u, v with $0 \le |u| \le |w|$, $uw = wv$, then w has *overlap.*

Nivat [11] has shown that it is decidable whether a finite Thue system is confluent. (Also, see [4].) For Thue systems T with no length-preserving relations, Nivat's algorithm amounts to testing for the following: for every pair of (not necessarily distinct) relations with $|u_1| > |v_1|$ and $|u_2| > |v_2|$, and $(u_1, v_1) \in T$ or $(v_1, u_1) \in T$, and $(u_2, v_2) \in T$ or $(v_2, u_2) \in T$, (i) if there exist *x*, *y* such that $u_1x = yu_2$ and $|x| < |u_2|$, then there exists z such that $v_1x \stackrel{*}{\rightarrow} z$ and $yv_2 \stackrel{*}{\rightarrow} z$, and (ii) if there exist x, y such that $u_1 = xu_2y$, then there exists z such that $v_1 \stackrel{*}{\rightarrow} z$ and xv_2 $y \stackrel{*}{\rightarrow} z$. Conditions (i) and (ii) are referred to as the "Nivat criteria."

Now consider a Thue system $T = \{(w, e)\}\)$. There are four (mutually exclusive) possibilities for the structure of w:

Case 1. w is primitive and has no overlap.

Case 2. w is imprimitive and $\rho(w)$ has no overlap.

Special Thue Systems with a Single Defining Relation 59

Case 3. w is primitive and has overlap.

Case 4. w is imprimitive and $\rho(w)$ has overlap.

In Cases 1 and 2 it follows from Nivat's criteria that $T = \{(w, e)\}\)$ is confluent since (i) is vacuous in Case 1 and trivial in Case 2, and (ii) is vacuous in both cases.

Consider Case 3. If w is primitive and w has overlap, then there exist strings, x, y and integer $k > 0$ such that $w = (xy)^k x$ and $xy \neq yx$ [9]. Thus, $xyw = wyx$, $|xy| = |yx|$, and $xy \stackrel{*}{\leftrightarrow} xyw = wyx \stackrel{*}{\leftrightarrow} yx$. Thus, xy and yx are congruent (mod T) and are irreducible (since $|xy| = |yx| < |w|$) but unequal (in Σ^*), so that $[xy]$ has two irreducible elements. Hence, T is not Church-Rosser. Second, since $T =$ $\{(w, e)\}\$, if u and v are strings such that $u \stackrel{*}{\leftrightarrow} v$, then the remainder of |u| upon division by $|w|$ equals the remainder of $|v|$ upon division by $|w|$. Thus $|xy| = |yx|$ $|w|$ implies that *xy, yx* are minimal with respect to the congruence $\stackrel{*}{\leftrightarrow}$, that is, for any finite or infinite Thue system generating the congruence T, the strings *xy* and *yx* are both irreducible. Since $xy \neq yx$, this means that no Church-Rosser system generates this congruence.

Consider Case 4. Note that there exist strings x , y and integers t , k such that $w = \rho(w)^t$, $t > 1$, $\rho(w) = (xy)^k x$, $k \ge 1$, and $xy \ne yx$. Now $((xy)^k x)^{t-1} (xy)^k w =$ $((xy)^k x)^{t-1} (xy)^k ((xy)^k x)^t = ((xy)^k x)^t (yx)^k ((xy)^k x)^{t-1} = w (yx)^k ((xy)^k x)^{t-1}$ so $w \to e$ implies $((xy)^k x)^{t-1} (xy)^k \leftrightarrow (yx)^k ((xy)^k x)^{t-1}$. Let $u = ((xy)^k x)^{t-1} (xy)^k$ and $v = (yx)^k((xy)^k x)^{i-1}$ so that $|u| = |v| < |w|$, $u \stackrel{*}{\leftrightarrow} v$, and $u \neq v$ (since $xy \neq yx$). Thus, just as in Case 3, u and v are distinct strings that are congruent and minimal with respect to the congruence generated by T . Hence, neither T nor any other Thue system equivalent to T is Church-Rosser.

Thus, we have the result.

Theorem. Let $T = \{(w, e)\}$. There is a (finite or infinite) Church-Rosser Thue *system equivalent to T if and only if T is Church-Rosser.*

One might ask about the computational difficulty of determining for a string w which of cases 1-4 holds. Avenhaus and Madlener [1] have noted that the pattern-matching algorithm of Knuth, Morris, and Pratt [8] can be used to decide in linear time which of the four cases holds.

One cannot obtain the analogous result for preperfect systems. To see this, let $T_1 = \{(aba, e)\}$ and $T_2 = \{(aba, e), (ab, ba)\}$ where $\Sigma = \{a, b\}$. In T_1 , ab \Leftrightarrow *ababa* \Leftrightarrow *ba* so that T_2 is equivalent to T_1 . The analysis of Case 3 above shows that the special system \overline{T}_1 is not Church-Rosser and, since T_1 has no length-preserving rules, not preperfect. Since $(ab, ba) \in T_2$, a and b commute by means of length-preserving rules. Since for every $w \in \{a, b\}^*$ there exist unique $p \ge 0$ and $q \ge 0$ such that $p + q = |w|$ and $w \neq a^p b^q$, and $aab \rightarrow e$, congruence classes of the congruence generated by T_2 are $[ab^n]$ and $[b^n]$ for every $n \ge 0$. Thus, T_2 is preperfect.

For any Thue system T_1 the preperfect Thue system $T_2 = \{(u, v) || u | \ge |v| \}$ and $u \stackrel{*}{\leftrightarrow} v \pmod{T_1}$ is equivalent to T_1 , so that every Thue *congruence* is preperfect.

References

I. J. Avenhaus and K. Madlener. String matching and algorithmic problems in free groups, *Revista Columbiana de Matematicas* 14, 1 - 16 (1980).

- 2. J. Berstel. Congruences plus que parfaites et languages algébrique, *Seminaire d'Informatique Theorique* (1976-77), Institut de Programmation, 123-147.
- 3. R. Book. Confluent and other types of Thue systems, *J. Assoc. Comput. Mach.* 29 (1982), to appear.
- 4. R. Book and C. O'Dunlaing. Testing for the Church-Rosser property, *Theoret. Comp. Sci.* 16, 223-229 (1981).
- 5. Y. Cochet and M. Nivat. Une generalization des ensembles de Dyck, *Israel J. Math.* 9, 389-395 (1971).
- 6. G. Huet. Confluent reductions: abstract properties and applications to term rewriting systems, J. *Assoc. Comput. Math.* 27, 797-821 (1980).
- 7. M. Jantzen. On a special monoid with a single defining relation, *Theoret. Comp. Sci.* 16, 61-73 (1981).
- 8. D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings, *SIAM J. Computing 6,* 323-350 (1977).
- 9. R. Lyndon and M. Schutzenberger. The equation $a^M = b^N c^P$ in a free group, *Michigan Math. J.* 9, 289-298 (1962).
- 10. M.H.A. Newman. On theories with a combinatorial definition of "equivalence," *Annals Math.* 43,223-243 (1942).
- 11. M. Nivat (with M. Benois). Congruences parfaites et quasi-parfaites, Seminaire Dubriel, 25^e Année (1971-72), 7-01-09.
- 12. M. O'Donnell. *Computing in Systems Described by Equations,* Lecture Notes in Computer Science 58 (!977), Springer-Verlag.
- 13. C. O'Dfinlaing. Finite and infinite regular Thue systems, Ph.D. dissertation, University of California at Santa Barbara, 1981.
- 14. B. Rosen. Tree manipulating systems and the Church-Rosser systems, *J. Assoc'. Comput. Mach.* 20 (1973), 160-187.

Received November 9, 1981, and in revised form January 29, 1982.