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Abstract. We show the undecidability of the universe problem for two 
restricted classes of nondeterministic one-counter machines. These classes 
are among the simplest known for which the universe problem can be shown 
unsolvable. 

1. Introduction 

In this paper, we introduce two very simple subclasses of one -coun te r  machines 
with restricted nondeterminism and show that the "universe" problem (whether 
an automaton accepts all its input strings) for each subclass is unsolvable. 

The equivalence problem for deterministic finite-turn pushdown machines 
and for deterministic one-counter machines is decidable [9, 10]. Equivalence is 
also decidable for deterministic two-way multicounter machines whose inputs 
and counters are reversal-bounded [6]. On the other hand, even the (simpler) 
universe problem for the class C of nondeterministic one -coun te r  machines 
whose counters make at most one reversal is unsolvable [1, 3]. This last result 
clearly illustrates the power of nondeterminism even in simple computing 
machines. As another example, it is well known that relational equivalence is 
decidable for deterministic generalized sequential machines (gsm's). However, in 
a recent paper [7], it is shown that relational equivalence is undecidable for 
e-free nondeterministic gsm's whose input or output alphabet is restricted to one 
letter. (The unsolvability without the alphabet restriction has been shown earlier 
in [4].) A related problem, the universe problem for relations defined by 
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multitape finite automata making at most one nondeterministic move, is also 
undecidable [2]. Here we consider another instance of the following general 
problem: Suppose a decision problem is undecidable for a given class of 
nondeterministic machines but decidable for the deterministic subclass. Find a 
subclass consisting of machines with "restricted" nondeterminism for which the 
problem remains unsolvable. We feel that a study of this kind will give us a 
better understanding of the true nature of nondeterminism as it relates to 
decision questions. For a related research effort, one that concerns hierarchies of 
computations based on the number of nondeterministic steps, see [8]. 

In this short note we exhibit two very simple subclasses C 1 and C 2 of C 
whose universe problems are unsolvable. The only nondeterminism involved in 
the operations of the machines comprising CI(C2) consists essentially of deciding 
when to reverse the counter (when to start using the counter for the first time). 
We believe that C~ and C2 are among the simplest known classes of machines 
containing the finite-state acceptors for which the universe problem can be 
shown undecidable. 

C 1 consists of counter machines M satisfying the following conditions: (1) 
M has no e-moves (e is the null string), (2) M can make at most one counter-re- 
versal, (3) The only nondeterminism involved in the operation of M is in 
deciding when to enter the counter-decreasing (---counter-reversal) mode. (This 
implies that once the counter-decreasing mode is entered, M's  moves are 
deterministic.) Formally, a machine in C~ can be specified by a 5-tuple M--- 
(K,E,3,qo, F), where K, Z, and FC_ K are finite nonempty sets of states, input 
alphabet and accepting states, respectively. K =  K 1 U K 2 with K l N K 2 = Zi, where 
K l consists of the states used in the counter-increasing mode and K 2 are the 
states used in the counter-decreasing mode. The start state qo is in K~ and 3 is a 
mapping from K × 2 × (0, 1 } into the subsets of K × ( -  1,0, +1} satisfying the 
following conditions (the third parameter in the domain is 0 or 1 depending on 
whether the counter has zero or nonzero value, respectively): 

(a) For each (q,a,b) in K I × E × ( 0 , 1  }, 3(q,a,b) is empty or of the form 
((pl,dl)} or ((p2,d2),(P3,d3)), where d i >~0,pl is in K l u  K2,P2 is in Kl, andP3 is 
in K 2. Thus, the only nondeterminism possible is in changing from increasing 
mode to decreasing mode. 

(b) For each (q,a,b) in K2X2×{O, 1},3(q,a,b ) is empty or of the form 
((p, d)),  where p is in K 2 and d < 0. This means that once the counter-decreasing 
mode is entered, the machine remains deterministic in this mode. Note that 
since M has no e-moves, e is accepted by M if and only if q0 is in F. 

The second class C 2 consists of counter machines M satisfying (1) and (2) 
above, and (3') the only nondeterminism involved in the operation of M is in 
deciding when to enter the counter-using mode, i.e., when to start using the 
counter for the first time. (Again, it is understood that once the counter-using 
mode is entered, M's moves are deterministic.) Thus, a machine in C 2 can be 
specified by a 5-tuple M=(K,E,3,qo, F ), where K, 2, and F are as above, 
K=K1UK2UK 3 with K i A K j = ~ ( i v a j )  and q0 in K t. 3 is a mapping from 
K × 2 × {0, 1 } into the subsets of K x ( - 1,0, + 1 } satisfying the following condi- 
tions: 

(c) For each (q,a) in K l XE,3(q,a, 1) is empty, and 3(q,a,O) is either empty 
or of the form {(pl,0)} or {(p2,0), (p3,0)}, wherep 1 is in K1U K2,P2 is in K 1, and 
t93 is in K 2. 
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(d) For each (q,a,b) in K 2 × X x ( O , l ) , d ( q , a , b  ) is empty or of the form 
{(p,d)),  wherep is in K 2 u K  3 and d~>0. 

(e) For each (q,a,b) in K 3×E X (0, 1},3(q,a,b) is empty or of the form 
((p,d)},  where p is in K3 and d-<<0. 

2. UndecidabiUty of the Universe Problem forC~ 

The proof of the undecidability of the universe problem for C~ involves the 
construction for each single-tape Turing machine Z of a counter machine M~ in 
C~ over some input alphabet Z. MI has the property that the language it accepts 
is equal to Z* if and only if Z does not halt on blank tape. 

Theorem 1. The universe problem for the class C l is undecidable. 

Proof Let Z be a single-tape Turing machine (TM) [5] with state set K and 
tape alphabet F = ( 0 ,  1,b} (b for blank). Assume that K o F = Z ~ ,  that the start 
state qo is not a halting state, and that Z does not write blanks. A configuration 
of Z can be represented by a string of the form x,/v, where q is in K and either x 
is in b+(0+ 1)* a n d y  is in (0+ 1)*b + or x is in b + a n d y  is in b(0+ 1)+b +. (Note 
that any string representing a configuration of Z must begin and end with at 
least one blank.) xqy represents the configuration in which Z is in state q 
scanning the leftmost symbol of y. If a represents a configuration of Z, then for 
any i,j ~ O, b iab j represents the same configuration. For any i,j ~ 1, b iqobJ repre- 
sents the initial configuration of Z on blank tape. If a represents a configuration 
of Z, we shall simply say a is a configuration of Z. Clearly, Z halts on blank 
tape if and only if there exist integers s >/4 and t >/2 and configurations a~ . . . . .  a t 
such that [al[(--length of a l )=  [a21 = . . . =  [at[ = s  and the sequence (a  1 .. . .  ,at)  is 
a halting computation of Z on blank tape. (t/> 2 since qo is not a halting state, 
and s >/4 since Z does not write blanks.) Note that for any l < i  < t, configura- 
tion ai+l differs from a i in at most 3 positions. 

Let # be a new symbol and let ~ =  K U  (0, 1,b, # ) .  For  any string x and 
O < m < n  < tx[, denote by [x,m,n] that portion of x starting with the ( m +  1)-st 
symbol and ending with the n-th symbol. Define a predicate Pl(x) on Z* as 
follows. For x in Y*,Pl(x)  is true if and only if there exist integers s/> 4 and t t> 2 
such that (see Fig. l): 

(1) The length of x is 2gs. 
(2) For i=  1,2 . . . . .  t, 

ai =[X,(2i--1)s,2is] 

is a configuration of Z, and all other symbols in x are the new symbol # .  
(3) The sequence (a~ . . . . .  a t )  is a halting computation of Z on blank tape. 

Note that if Pl(x) is true, then for any 1 < r  ~<s, 

(2 i+1-  1)s + r = ( (2 / -  1 ) s+r )  + 2is. 

Let Lj = {x[x in E*, Pl(x) is false). Then L l =Y.* if and only if Z does not halt 
on blank tape. We will describe a machine M~ in C 1 accepting L v The theorem 
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Fig. 1. Format  of x when Pl(x) is true 

would then follow from the unsolvability of the halting problem for Turing 
machines. 

We only sketch the operation of M 1 leaving most of the details to the reader. 
Given an input string x, Mj moves right on the input, incrementing the counter 
for each right move. At some point, M 1 guesses that it has reached a position r 
within some configuration et;. This position is represented by Y in Fig. 1. Then, 
without changing the counter, M l moves right until it reaches the # to the right 
of a i. When MI reaches the # ,  it moves right, decrementing the counter for each 
right move, until the counter becomes zero. (Note that if P~(x) is true then at the 
time the counter becomes zero, Mj must be on the same position r within ai+ ~. 
This position is represented by Y' in Fig. 1.) M 1 then checks whether Y' and its 
neighbors X '  and Z '  are appropriate for ai+ 1 to be a valid successor of %. ( W e  
assume that X, Y, Z have been recorded in the finite control.) If they are not 
appropriate, or if a I and a t are not seen (in passing) to be correct initial and 
halting configurations, respectively, then M l accepts the input; otherwise, M~ 
does not accept the input in this particular computation. [ ]  

3. Undecidability of the Universe Problem for C 2 

The proof of the unsolvability of the universe problem for the class C 2 follows 
the technique above. 

Theorem 2. The universe problem for  the class C 2 is undecidable. 

Proof. Let Z and Z be as in the proof of Theorem 1. We assume that Z can 
only halt after making an even positive number of moves. Define a predicate 
P2(x) on E* as follows. For x in Z*,P2(x ) is true if and only if there exist 
integers s > 4 and t > 1 such that: 

(1) x is of the form :~Otl:~:a2...q~a2t. 
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(3) The sequence (Otl,a ~ . . . .  ,ot2t_l,Ot~t ) is a halting computat ion of Z on 
blank tape, where ai r = reverse of string a i. 

Let L2= ( x l x  in E * ,P z (x  ) is false). Then L 2 = E *  if and only if Z does not halt 
on blank tape. We can now construct a machine M 2 in C 2 accepting L 2. Given 
an input string x, M 2 moves right on the input without using the counter. At 
some point, M 2 guesses that it has reached a symbol within some string a i and 
decides to enter the counter-using mode. This symbol is represented by Y in Fig. 
2. M 2 then moves rig, fit, incrementing the counter for each right move, until it 
reaches the # to the right of a i. When M 2 reaches the # ,  it moves right, 
decrementing the counter for each right move, until the counter becomes zero. 
Then M 2 checks whether X' ,  Y', Z '  are appropriate if a/+ ~ is a valid successor of 
a i. (We assume that X, Y, Z have been recorded in the finite control.) If they are 
not appropriate, or if a I and a~t are not seen (in passing) to be  correct initial and 
halting configurations, respectively, then M 2 accepts the input; otherwise, M 2 
does not accept the input in this particular computation. [ ]  

4. Conclusion 

The undecidability of the universe problem for the class C of nondeterministic 
one-counter machines whose counters make at most one reversal is well known 
[1, 3]. We have strengthened this result by exhibiting two very simple subclasses 
CI and C 2 of C for which the universe problem remains unsolvable. It  is obvious 
from the definitions of C~ and C 2 that they are properly included in C. Let L,L~ 
and L 2 be the classes of languages accepted by machines in C, C~ and C 2, 
respectively. We believe that L l - L 2 v a ~ , L 2 -  L l v ~  and L -  (L l U L2):~Z~. 
Candidate languages for L 1 - L 2, L 2 - L l and L - ( L  I U L2) are: 

A = {albJck[i, j ,k >1 1 , i = j  or i =  k}, 
B = reverse (A) and 
C = A u B .  

We shall consider these and other questions (e.g., closure properties, characteri- 
zations) in a future paper. 
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