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A b s t r a c t  This paper describes the application of a genetic 
algorithm to the stacking sequence optimization of a laminated 
composite plate for buckling load maximization. Two approaches 
for reducing the number of analyses required by the genetic algo- 
rithm are described. First, a binary tree is used to store designs, 
affording an efficient way to retrieve them and thereby avoid re- 
peated analyses of designs that appeared in previous generations. 
Second, a local improvement scheme based on approximations in 
terms of lamination parameters is introduced. Two lamination 
parameters are sufficient to define the flexural stiffness and hence 
the buckling load of a balanced, symmetrically laminated plate. 
Results were obtained for rectangular graphite-epoxy plates under 
biaxial in-plane loading. The proposed improvements are shown 
to reduce significantly the number of analyses required for the 
genetic optimization. 

1 I n t r o d u c t i o n  

The design of composite laminates is often formulated as a 
continuous optimization problem with ply thicknesses and 
ply orientation angles used as design variables (e.g. Schmit 
and Farshi 1977). However, for many practical problems, ply 
thicknesses are fixed, and ply orientation angles are limited 
to a small set of angles such as 0 °, 90 °, and 4-45 °. Designing 
the laminate then becomes a stacking sequence optimization 
problem which can be formulated using integer programming. 

The laminate stacking sequence design problem with fre- 
quency constraints has been formulated by Mesquita and Ka- 
mat (1977) with the numbers of plies as the design variables, 
leading to a nonlinear integer programming problem. More 
recently, Haftka and Walsh (1992) showed that the use of ply 
identity design variables linearizes the integer programming 
formulation of the stacking sequence buckling maximization 
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design problem. However, when strength constraints are in- 
cluded, the problem becomes nonlinear again. The buckling 
maximization of laminates with strain constraints has been 
solved by Nagendra et al. (1992) using a sequential linear 
integer programming technique. The branch and bound al- 
gorithm was used to solve integer programming problems in 
the papers by Mesquita and Kamat (1977), Haftka and Walsh 
(1992), and Nagendra et al. (1992). More recently, Le Riche 
and Haftka (1993) solved this problem by genetic algorithms 
(GA), which can handle nonlinear integer problems without 
the need for linearization. 

An early implementation of genetic search methods is 
credited to Rechenberg (1965), although the work by Holland 
(1975) has provided the theoretical basis of most contempo- 
rary developments. Genetic algorithms are stochastic opti- 
mization methods (e.g. Metropolis et al. 1953; Rinnoy Kan 
and Timmer 1984, 1985; Byrd et al. 1986; Eskow and Schn- 
abel 1988) that work on a population of designs by reeombin- 
ing the most desirable features of existing designs. Following 
the evolutionary concept of survival of the fittest, selection of 
mates favours the fittest members (designs) of the population, 
and offspring (newly created designs) are created by splicing 
together features (genes) of the parent designs. Additionally, 
genetic mutation is used to create new design features. Ge- 
netic algorithms do not use any gradient information, and 
thus are particularly suited for problems (such as discrete 
optimization) where derivatives are not available. In the last 
decade, genetic algorithms have proven their /tbility to deal 
with a large class of combinatorial problems. In structural 
optimization applications, GAs have appeared only recently 
(Le Riche and Haftka 1993; Hajela 1990; Rao et al. 1990; 
Hajela and Lin 1992). 

Despite their numerous advantages, a serious drawback 
of GAs is their high computational cost. Genetic algorithms 
usually require a large number of analyses, sometimes in the 
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range of thousands or even millions. Therefore, improve- 
ments in both the efficiency of the analysis and the execution 
of the GA are needed in order to make the genetic optimiza- 
tion affordable. The objective of the present work is to reduce 
the cost of the genetic search for the optimization of compos- 
ite panels. We propose the use of a binary tree data structure 
to store the results of all new analyses performed during op- 
timization, and retrieve the information for designs that  ap- 
peared in previous iterations without the need for reanalysis. 
We also propose an approximation of the buckling load based 
on two lamination parameters. After evaluating exactly the 
buckling load for each design created by the genetic oper- 
ators, new design strings are created by trying all possible 
exchanges of the locations of pairs of plies in the laminate. 
Then the buckling loads for these new designs are estimated 
using the approximation, and the best of these designs re- 
places the nominal design. By searching for a local optimum 
in a small neighbourhood of the nominal design, we try to 
improve the performance of the combinatorial optimization 
problems. This type of local improvement (searching for a 
local optimum in a small neighbourhood) was used for com- 
binatorial problems by Tovey (1985, 1986). We apply this 
idea to improve the performance of genetic optimization for 
composite panel design. 

The efficiency of the proposed local improvement for the 
genetic search, as well as the use of the binary tree to re- 
trieve previously analysed designs, are investigated for buck- 
ling load maximization of a rectangular 48-ply unstiffened 
laminated composite plate subjected to biaxial inplane loads. 
The analysis cost associated with this problem is low enough 
that  thousands of genetic optimizations can be carried out for 
the purposes of averaging out the randomness in the perfor- 
mance of a single genetic optimization, and tuning the per- 
formance of the algorithm by adjusting the values of various 
control parameters. 

1.1 Analysis and lamination parameters 

The optimization problem is to maximize the buckling load of 
a simply supported plate by changing the laminate stacking 
sequence. Additionally, strain constraints are applied, and 
the number of contiguous plies of the same orientation is 
limited to four to alleviate matr ix cracking problems. The 
analyses of the plate are needed to calculate the buckling 
load and the strain constraints. 

The simply supported plate, shown in Fig. 1, has longitu- 
dinal and lateral dimensions of a and b, respectively, and is 
loaded in the z and y directions by ANx, ANy, respectively, 
where A is a load amplitude parameter that  we would like to 
maximize. The laminate is composed of N plies and assumed 
to be a symmetric, balanced laminate, made up of 0 °, 90 °, 
and =k45 ° plies of thickness t each. To reduce the number of 
design variables and enforce the balanced condition, the lam- 
inate is constrained to be made up of stacks of two 0 ° plies, 
two 90 ° plies, or a +45 ° and - 4 5  ° pair of plies. These stacks 
are denoted by 0~, 90~, and =t=45 °. Taking into account the 
symmetry, only N/4 ply orientations are required to define 
the entire laminate. 

For a simply supported plate under biaxial compression 
loading, the plate buckles when the load amplitude parameter 
A reaches a critical value Acb given as 
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Fig. 1. Laminated plate geometry and loading 
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where m and n are the number of half waves in the x and 
y directions, respectively, that  minimize Acb. The Dijs are 
the flexural stiffnesses, which depend on the lamination se- 
quence. For a laminate made out of a single fibrous material, 
the flexural stiffnesses can be expressed in terms of only two 
lamination sequence parameters and material constants (e.g. 
Miki and Sugiyama 1991), 

h 3 
911 =  i(vl + v2w  + u3w3), 

h 3 
022 = ~ ( U 1  - U2W ~ + U3WJ), 

h 3 h 3 
U * 1 O12 = -i-~(U4 - 3W~) D66 = ]~(U5 - U3W~) (2) 

where U i (i = 1 , . . . ,  5) are the material constants, h is the 
total plate thickness, and W{ and W~ are the bending lam- 
ination parameters 

h/2 h/2 
12 / ] 2 /  

W; = U z2cos2Odz, W~ = ~ z2cos4Odz, (3) 

-h/2 -h/2 
defined in terms of the laminate ply orientation angles 0. The 
flexural stiffnesses D16 and D26 are assumed to be negligible. 

The strain failure constraint requires all strains to remain 
below their allowable limits. In our case 7xy is zero, and the 
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laminate strains are related to the loads on the plate by the 
relations 

ANz = Allex + A12¢y, ANy = A12cz + A22¢y. (4) 
The strains in the i-th layer are obtained from the laminate 
strains by transformation 

¢1i = c°s20i ez + sin2Oigy , ¢2i = sin2Oivx --b cos2Oivy , 

712i ---- sin2Oi(cy -- ex), (5) 
where the Aijs  are the in-plane stiffnesses, and 0 i is the ply 
orientation angle of the i-th ply. These stiffnesses can also 
be expressed in terms of in-plane lamination parameters and 
the material constants as 

All  = h(U 1 + U2V~ + U3V~), 

A22 = h(U 1 - U2V~ + U3V2*), d12 = h(U4 - U3V~), (6) 
where the in-plane lamination parameters are defined as 

h/2 h/2 1/ 1/ 
VI* = X cos2Odz, V2* = ~ cos4Odz. (7) 

-h/2 -h/2 
The strain failure load Acs is the largest load factor A such 
that all the principal strains in every layer are less than or 
equal to the strain allowable values. 

The ply contiguity constraint is implemented by penal- 
izing the objective function, which is defined as the smallest 
of the load factors Acs and Acb, for constraint violations. This 
is achieved by redefining the objective function A* as 

A* = pn min (Acs,)%b), (8) 

where n is the number of contiguous plies in excess of the 
constraint value of four and p is a penalty parameter with a 
value of less than 1. The value of p in this study is 0.9. 

2 Genetic  a lgor i thm 

For a genetic algorithm, each design is coded as a finite string 
of digits. Here, a 0~ stack is assigned the digit 1, a +45 ° 
stack the digit 2, and a 90~ stack the digit 3. For example, 
the laminate [90~/± 45~/90~/0~/+ 45~/0~] S is encoded as 
1 2 2 1 3 2 2 3 . The leftmost 1 corresponds to the layer 
closest to the laminate plane of symmetry. The rightmost 3 
describes the outermost layer. 

Figure 2 shows the pseudocode for the algorithm. The 
genetic search begins with the random generation of a pop- 
ulat~on of design alternatives. Each individual has a fitness 
value based on its objective function that determines its prob- 
ability for selection as a parent. Parents exchange parts of 
their genes (strings) in a process called crossover to create 
offspring (new design strings). Additional genetic operators, 
namely mutation and permutation, are applied to the child 
designs which then replace the parent generation. 

Here, the best design is always carried to the next gen- 
eration, which is an "elitist plan" version of the genetic al- 
gorithm. The optimization process is repeated until some 
specified number of generations provide no improvement in 
the best design. Following the generation of a new popula- 
tion, a local improvement procedure is implemented. The 
local improvement procedure replaces each design generated 
by the genetic operators by the estimated best of the neigh- 
bout designs. The procedure is described in detail in Section 
2.2. 

P r o c e d u r e  Genetic algorithm 
begin  

initialize population; 
do I = 1, population size 
evaluate objective function; 
e n d d o  
rank designs; 
while number of consecutive generations without 
improvement in the best design less than a speci- 
fied number do 
begin 

do I = 1, population size 

select parents; 

create children by crossover; 

perform mutations; 

perform permutations; 

enddo  
one of new designs replaced by the best 
design of the previous generation; ("elitist 
plan" version) 
do I = 1, population size 

evaluate objective function; 

local improvement; 

enddo  
rank designs; 

end  

end  

P r o c e d u r e  Local improvement 
begin  

search for 5 nearest neighbours in the binary tree; 
construct a ]east squares approximation to buck- 
ling load; 
while two point interchange not finished do 
begin  

perform two point interchange of stacks; 
compute buckling load approximation; 
adjust objective function for strain failure 
load and contiguous ply constraint; 

end  
replace nominal design by the best interchanged 
design; 

end  

Fig. 2. Pseudocode for genetic algorithm with local improvement 

2.1 Efficient retrieval of designs by a binary tree 

During the evolution process, populations often contain de- 
signs that have also appeared in previous generations. If the 
calculation of the objective function is expensive, iris worth- 
while to keep track of designs to avoid duplicate calculation. 
The binary tree data structure (Kernighan and Ritchie 1988, 
pp. 139-143) provides a way to store previous designs which 
permits efficient search for duplicate designs. The cost of 
searching a tree grows logarithmically with the size of the 
tree, and is therefore practical even for very large trees. The 
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tree is used to store all data  pertinent to the design: the 
design string, in-plane lamination parameters, bending lam- 
ination parameters, strain failure load, buckling load, and 
objective function. 

P r o c e d u r e  Evaluation of objective function using binary 
tree 
b e g i n  

search for the given design in the binary tree; 
if  found; 

get objective function value from the binary 
tree; 

else 

search for design having identical in-plane 
lamination parameters; 
i f  found; 

get strain failure load from the binary 
tree; 

else 
perform in-plane strain analysis; 
e n d i f  
perform buckling analysis; 
adjust objective function for contiguous ply 
constraint; 
add design to the binary tree; 

end.if 

e n d  

Fig. 3. Calculation of objective function with the aid of the 
binary tree 

Figure 3 shows the pseudocode for calculation of the ob- 
jective function with the aid of the binary tree. After a new 
generation of design strings is created by the genetic opera- 
tions, the binary tree is searched for each new design. If the 
design is found, the objective function value is obtained from 
the tree without analysis. Otherwise, the tree is searched for 
designs with identical in-plane lamination parameters and 
hence identical in-plane strains. If a design with identical in- 
plane lamination parameters is found, then the strain failure 
load is obtained from the tree. Otherwise, the strain failure 
value is obtained by exact analysis. Then the buckling load 
is calculated, and finally, the objective function value is ad- 
justed for the ply contiguity constraint. This new design and 
its concomitant data  are then inserted in the tree. 

2.2 Local improvement 

Local improvement is used to improve the performance of 
combinatorial optimization algorithms by searching for a lo- 
cal optimum in a small neighbourhood of the nominal design. 
The present work considers as neighbours all the designs ob- 
tained by interchanging two stacks in the laminate. In this 
study, a two point interchange operator is introduced in or- 
der to produce neighbouring designs in which two digits of 
the design string are interchanged. An example of a stack 
interchange is 

nominal design: 1 2 3 1 3 2 2 1 2 2 3 1 ,  

perturbed design: 1 2 3 2 3 1 2 1 2 2 3 1 .  (9) 

The number of all possible different laminates obtained by 
interchanges is less than or equal to n(n - 1)/2, where n is 
the string length. 

An example of the distribution of the perturbed designs 
in the bending lamination parameter space is shown in Fig. 
4. The central point corresponds to the nominal design, and 
the three branches correspond to the three possible exchanges 
(1 ~ 2, 1 ~ 3, 2 ~ 3). The distance from the nominal point 
depends on the locations of the exchanged stacks. 

o . s  i ................... +-! " ~ .. . . . . . . .  i ..... 

+ + & +  + + i /  
* ~ "  0 . . . . . . . . . . . . .  : ......................... i.~ + .............. : ...................... ............ \ / .................... 

-1 
-0.S 0.S 1 

W 

Fig. 4. Example of distribution of perturbed designs, nominal de- 
sign [90~/(+45°/0~)4/+45~/90~]s, W~* = 0.09838, W2* = 0.11806 

The interchange operation does not change the in-plane 
stiffnesses and the strain failure load. Only the buckling load 
is influenced by this operation. To reduce the cost of evalu- 
ating the objective function for all the possible interchanges, 
the buckling load at neighbouring designs is estimated by 
a linear least squares approximation based on the bending 
lamination parameters, 

A = A 0 + A A W ~  + B A W ~ ,  (10) 
where "~0 is the buckling load of the nominal design, and 
A W l  and AW~ are the changes in the bending lamination 

(W* W. *'~ parameters k 1, 2 J from the nominal design. The coeffi- 
cients A and B are determined as follows: first, the binary 
tree is searched for the five nearest neighbours of the nominal 
design in the Euclidean (Wf,  W~) plane. Then the coeffi- 
cients are determined by the least squares fit of the form (10) 
to the five nearest neighbours. 

The approximate buckling load is then used to evaluate 
the objective function for all the perturbed designs~ and the 
best one is used to replace the nominal one. An example of 
the effectiveness of this local improvement is shown in Fig. 5. 
This data was obtained from the 10-th generation of a single 
genetic optimization run when the population size was set to 
eight. Only five designs are shown, because the other three 
designs were repetitions of these designs. The first column of 
each pair is the objective function value of the nominal design. 
The second column represents the exact value of the objective 
function for the best design which replaces that  nominal de- 
sign. The third column represents the approximate value of 
the best design used by the local improvement procedure to 
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select the best design. Design 2 is not replaced, because this 
nominal design is better than all of the interchanged designs. 
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Fig. 5. Example of the effect of local improvement during the 
10-th generation 

The accuracy of the approximation depends on the distri- 
bution of the nearest neighbours. The nominal design of Fig. 
4 together with the five nearest neighbours are shown in an 
expanded view of the bending lamination parameter space in 
Fig. 6. The accuracy of the approximations for all the per- 
turbed designs of Fig. 4 is shown in Fig. 7. The horizontal 
axis in Fig. 7 is the distance from the nominal design in the 
bending lamination plane. The vertical axis is the buckling 
load normalized by the buckling load of the nominal design 
[90~/(:k45°/0~)4/-4-45~/90~] S. When the circles (approxi- 
mate analysis) overlap the diamonds (exact analysis), the ap- 
proximation works well. The approximation fails completely 
when it predicts an increase in buckling load while the true 
buckling load is actually less than the nominal value. Figure 
7 indicates that such failures are likely to occur only when 
the change in the buckling load from the nominal design is 
small (in fact no such failure is observed in Fig. 7). Thus~ 
it is unlikely that the design selected as the best among the 
perturbed designs on the basis of the approximation is worse 
than the nominal design. Note that the design which has 
the highest buckling load is not always selected as the best 
perturbed design, because the selection also considers the 
contiguous ply constraint. 

The distribution of the accuracy of all points from one 
genetic optimization run is shown in Fig. 8. The horizon- 
tal axis is the normalized improved value by approximation 
(Aap - Anom)/Anom, and the vertical axis is that by the ex- 
act analysis (Aex - A n o m ) / A n o m .  When the approximation 
works well, points lie close to the 45 ° line where hap is equal 
to Aex. When the point lies above the line, the approximation 
underestimates the buckling load, otherwise, it overestimates 
the load. If the point is in the first or third quadrants, the 
approximation predicts correctly whether the interchange in- 
creases or decreases the buckling load. When the point is in 
the second or fourth quadrants, the approximation does not 
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Fig. 6. Example of the distribution of nearest neighbours 
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Fig. 7. Exact versus approximate normalized buckling loads. 
Nominal design and perturbed designs shown in Fig. 4 

even capture the sense of the effect of the interchange. As 
can be seen from the figure, very few points lie in the bad 
quadrants, and these have small normalized values. So, these 
points are not likely to be selected as the best among the 
perturbed designs. 

2 . 3  V a r i a t i o n  o f  f a i l u r e  a n d  b u c k l i n g  l o a d s  i n  t h e  l a m i n a l i o n  

p a r a m e l e r  p l a n e s  

The objective function for the genetic algorithm combines 
the buckling and strength failure loads which are' determined 
uniquely by the bending and in-plane lamination parameters, 
respectively. The variation of the failure load, as calculated 
from (4)-(7), as a function of 1/1" is shown in Fig. 9 for a fixed 
value of 1/2" = -0.5.  It can be seen that there is a singularity 
at the boundary where V2* = -2V1" - 1. Note that because 
the laminate is limited to 0 °, 4- 45 o and 90 ° plies, the lam- 
ination parameters 1/1" and V2* are confined to a triangular 
region (similar to the one shown in Fig. 4 for W~ and Wf). 
The boundary 1/1" = -0.25 represents laminates which do 
not have any 0 ° plies. Points near this boundary have few 
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Fig. 8. Distribution of accuracy of all designs from a single run 

0 ° plies, and the strain in these plies is critical, reducing the 
failure load. When the last 0 ° ply is eliminated, the failure 
load increases suddenly because failure of 0 ° plies need not 
be considered. Such singularities are known to cause difficul- 
ties for continuous optimization algorithms because, unless 
the ply that causes the singularity is absent, the algorithm 
would tend to increase that ply's thickness rather than elimi- 
nate the ply. Genetic algorithms can circumvent singularities 
because they permit temporary degradation in performance. 
Thus a design with two zero stacks can change into one with 
only a single stack by mutation or crossover, although this 
reduces the failure load. A subsequent mutation or crossover 
can then eliminate the remaining stack. 
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7500 J 

500o ............................................................................................................ 

2 5 0 0  
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-0.5 -0.25 0.25 0.5 
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Fig. 9. Variation of the failure load in the lamination parameter 
space at V2* = =0.5 for load case 3 

The distribution of the buckling load with respect to the 
bending lamination parameters is shown in Fig. 10. The con- 
tour plot for each buckling mode is obtained from (1)-(3), and 
the contours are given by 

W~ : [Tr2h3U2(a4n 4 - b4rn4)W~ q- 12Aa2b2(b2m2 Nx q- 

a2n2Ny) - 7~2h3 {Ul(a4n 4 + b4m 4) + 2a2b2rn2n2(U 4 + 

2U5)}]/Tr2h3(a4n 4 -6a2b2m2n 2 + b4m4) . (11) 

The contours in Fig. 10 are piece-wise linear with each seg- 
ment corresponding to combinations of the wave numbers m 
and n that minimize the buckling load. 
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Fig. 10. Variation of the buckling load for load case 3 

3 Resu l t s  

Results were obtained for a 48-ply graphite-epoxy plate 
with the following material properties: E 1 = 18.50E6 psi 
(127.59 GPa); E 2 = 1.89E6 psi (13.03 GPa); G12 = 
0.93E6 psi (6.41 GPa); u12 = 0.3; t = 0.005 in (0.127 mm). 
The ultimate allowable strains are c~ a = 0.008, c~ a = 0.029 
and 7 ua = 0.015. These allowable strains were reduced by 12 
a safety factor of 1.5. The plate has longitudinal and lateral 
dimensions of a = 20in (0.508m) and b = 5in (0.127m), 
respectively. Because of symmetry and the use of 2-ply 
stacks, the 48-ply laminate is described by a 12-gene string. 
The genetic algorithm was applied to three load cases with 
Ny/Nx = 0.125,0.25, and 0.5, called load cases 1,2, and 3, 
respectively, where Nx is set to 1.0 lb/ in  (175 N/m). 

In this problem there are many near optimal designs. For 
this reason, designs that are within a tenth of a percent of the 
global optimum are accepted as optimal and are called prac- 
tical optima here. To evaluate the efficiency of the algorithm 
we define a normalized price, which is the average number 
of evaluations (also called price) of the objective function 
divided by the probability of reaching a practical optimum 
(called practical reliability). 

Average prices and practical reliabilities were calculated 
by performing one hundred genetic optimizations for each of 
the three load cases. The algorithm was considered satisfac- 
tory only if the practical reliability was at least 0.8. This 
means that a single genetic optimization run has at least an 
80 percent chance of finding a design within 0.1 percent of the 
global optimum. The requirement of 0.8 practical reliability 
was used to determine the stopping criterion. We start 100 



optimization runs with the stopping criterion set to 10 gener- 
ations without improvement. We then increase the stopping 
criterion until a practical reliability of 0.8 is achieved. 

Table 1. Normalized prices and practical reliabilities without lo- 
cal improvement (probability of permutation = 1.0, population 
size = 8) 

Load case Stopping Normalized Practical 
criterion price reliability 

1 19 350 0.84 
44 
44 
63 
38 

530 
1126 
1250 
832 
963 

0.99 
0.71 
0.78 
0.81 
0.77 44 

Average 44 836 0.823 

3.1 Performance of a genetic algorithm without local im- 
provement 
Le Riche and Haftka (1993) investigated the performance of 
a genetic algorithm without local improvement for the Same 
problem with the same three load cases. They found that 
good performance was obtained with a population size of 8, 
probability of mutation of 0.01, probability of crossover of 1.0, 
probability of permutation of 1.0, and a penalty constant in 
the objective function of 0.9. The same values are used here. 
The performance of the algorithm depends strongly on t h e  
load case, as shown in Table 1. 

Table 2a. Optimal designs for load case 1" 

Design variable 
Stacking sequence 

[~45s/04/4- 45/ 
04/902/o2]s 
[4-45s/o4/9o2/o4/ 
4-45/o~]3 
[~452/9o2/4-45/ 
(4-45/04)2/4- 45/o2]~ 
[4-454/02/4- 45/ 
04/4-45/o4/9o2]~ 
:[4-454/02/ 4- 45/ 
04/902/04/4- 45]~ 
[4-45,/0~/4- 452/ 
o4/9o~/o~/± 45/02]~ 
902/4- 452/ 
(4-451o2)3102/4- 45/027s 
[90, / (4-452/02)2 / 
±45/04/4- 45/02]s 
[4-453/(02/-t-45)2/04/ 
±45/02/902]s 

Load factor 
Genetic code Buckling Failure 

131121122222 14659.583 13518.661 

121131122222 14610.845 13518.661 

121121122322 14421.311 13518.661 

311211212222 14284.145 13518.661 

211311212222 14251.656 13518.661 

121311221222 14029.490 13518.661 

121121212223 14013.722 13518.661 

121121221223 13831.525 13518.661 

1312112121222 13744.604 13518.661 

*There are many other practical optimum designs because the 
strain failure is critical 

The table shows the stopping criterion (number of genera- 
tions without improvement), the normalized price, and the 
practical reliability for the three load cases without local im- 
provement. For load case 2, the practical reliability did not 
reach 0.80 even with a stopping criterion of more than 60 
generations, but in the other load cases, it reached 0.80 with 
a much lower stopping criterion. This behaviour was inves- 
tigated and found to depend on the nature of the optimum 
for each ioad case. 
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Table 2b. Optimal and near-optimal* designs for load case 2 

Design variable Load factor 
Stacking sequence Genetic code Buckling Failure 

[4-452/902/4- 453/02/ 121121222322 12743.451 12678.777 
4-45/o4/4- 45//0218 
[4-45/902/4- 454/ 121121222232 12725.257 12678.777 
02/4- 45/02)2]s 

[902/4- 455/(02/4- 121121222223 12674.853 12678.777 
~5/02)2]s 
[+452/902/4- 453/ 121211222322 12622.464 12678.777 
D4/(4-45/02)2]S 
4-45/902/4- 454/ 121211222232 12617.837 12678.777 

04/(4-45/02)2]S 

[4-452/902/4- 453/ 211211222322 12592.217 12678.777 
(04/4- 45)2]S 

[4-45/902/4- 454/ 211211222232 12590.982 12678.777 
(04/4- 45)2]S 

[4-453/902/4- 452/ 12112122322212568.94212678.777 
(02/4- 45/02)2]8 
*Only the top three designs are the practical optima 

Table 2e. Practical optimal designs for load case 3 

Design variable 
Stacking sequence 

[9O2/:k 452/(902/4- 45)2/ 
4-45~]s 
[902/4- 452/(902/-I- 45)2/ 
4-454/902]s 
[(902/4- 452)2/(902/4- 45)2/ 
4-452]s 
[(902/4- 45)2/4- 452/ 
(+45/902/+ 45)2]~ 
[4-45/904/4- 452/902/ 
4-454/902/4- 45]s 
[(4-45/902 )2/902/4- 
454/902/4- 452]3 
[904/:t: 457/902/+ 
452]s 
[904/4- 456/ 
(4-45/9o2)2]~ 
[(902/4- 45)2/4- 45a/ 
(902/4- 45)2/4- 4538 

Load factor 1 
Genetic code Buckling Failure 

222222323223 9998.198 10398.136 

322222323223 9997.614 10187.937 

222323223223 9997.614 10187.937 

232232222323 9994.836 10187.937 

232222322332 9994.836 10187.937 

223222233232 9994.836 10187.937 

223222222233 9994.694 10398.136 

323222222233 3994.110 10187.937 

223232222323 ~994.110 10187.937 

[-t-45/904/(-t-452/902/4- 45)2/223222322332 3994.110 10187.937 
4-45]s 

[904/4- 457/904/ 233222222233 3990.606 10187.937 
4-45]s 

[4-45/904/4- 45a/ 222233222332 ~990.606 10187.937 
304/4- 454]s 

1902/4- 453/904/4- 222232332223 9990.606 19187.93~ 
145/902/4- 454]s 

For the optimum design for load case 1, the failure load 
is critical while the buckling load is not. The failure load 
depends only on the ratio of total thicknesses associated 
with the ply orientation angles, and does not depend on the 
through-the-thickness location of the plies as long as the con- 
tiguous ply constraint is satisfied. Consequently, there are 
many optimum designs, some of which are shown in Table 
2a. Therefore, it is easy to reach a practical optimum design 
and the price of the optimization is low. 
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For load case 2, there are only three practical optimum 
designs as shown in Table 2b. Two of these designs have 
critical failure load and one has critical buckling load. The 
failure load and the buckling load are very close at the opti- 
mum. Changes in the stacking sequence easily degrade either 
the buckling load or the failure load, so there are few practical 
optimum designs, and it is more difficult to find one. 

For load case 3, only the buckling load is critical for the 
practical optimum designs as shown in Table 2c. The opti- 
mum designs do not have any zero plies, and there is some 
freedom to change the ratio of the 4.45 ° plies and 90 ° plies 
without degrading the buckling load significantly. 

3.2 Effect of binary tree 

The efficiency of the binary tree for the objective function 
evaluation without local improvement is shown in 'fable 3. 
The second column in the table, the price, is the mean (over 
100 runs) of the number of designs considered by the algo- 
rithm. Since an elitist strategy is adopted in our genetic 
algorithm implementation, the best design is passed on from 
one generation to the next, and the reanalysis of this design 
is not necessary. The elitist price is the mean of the num- 
ber of analyses required by taking advantage of this property. 
Finally, the average number of nodes in the tree shows the 
mean of the number of different designs per optimization. 
The standard deviations of these means are also given in this 
table. It is clear from Table 3 that 20 to 50 percent of the 
analyses can be avoided by keeping track of previous designs. 

Table 3a. The efficiency of the binary tree; 
stopping criterion = 56 generations without 
bility of permutation = 0.5 

Load Price 
c a s e  

population size = 8, 
improvement proba- 

"Elitist" Avg. no. % Practical 
price* of nodes saving reliability 

in tree 
1 i656.04.11575.04.10 329.54.6 42.7 0.99 
2 937.0 4. 25 820.8 4. 22 467.8 4. 12 43.0 0.63 

3 937.0 + 27 

~843.3 4. 15 

*Price excluding repeated analyses of best design (passes on 
to next generation with elitist strategy) 

820.8 4. 23 394.9 :t: 12 51.9 0.74 

738.9 4. 13 397.4 4. 7 46.2 0.786 

Table 3b. The efficiency of the binary tree; population size = 8, 
stopping criterion = 56 generations without improvement proba- 
bility of permutation = 1.0 

Load Price "Elitist" Avg. no. % Practical 
case price* of nodes saving reliability 

in tree 
646.2 4. 12 566.4 4. 11 453.0 4. 9 20.0 0.99 I 

2 907.0 + 27 794.7 4- 23 631.9 4- 18 20.5 0.71 
3 918.5 + 27 804.7 4. 23 504.4 4. 16 37.3 0.86 

IAverage1823.9 4-15:721.9 4.13 529.7 4.101 26.6 [ 0.853 I 
*Price excluding repeated analyses of best design (passes on 
to next generation with elitist strategy) 

Table 3 also shows that  the number of nodes in the binary 
tree increases with the permutation rate. This indicates that 
the permutation operator contributes to the creation of new 

design strings. Table 3 may indicate that if a binary tree is 
used to avoid reanMyses of designs, the optimum permutation 
probability may be lowered. 

Table 4. NormMized price and practical reliability with local im- 
provement (probability of permutation = 1.0, population size = 
8). 

Load case Stopping Normalized Practical 
criterion price reliability 

i 10 193 0.80 
50 520 1.00 

2 22 435 0.81 
50 720 0.96 

3 50 1646 0.46 
63 2209 0.45 

Average 50 813 0.807 

3.3 Effect of local improvement 

The performance of the genetic algorithm with the local im- 
provement using the same genetic parameters as in Table 1 
is shown in Table 4 for the three load cases. For load cases 
1 and 2, local improvement worked very well, especially for 
the load case 2, where the performance improved by about a 
factor of three. 

For load case 3, however, local improvement made the 
performance worse (see tables). We investigated the reasons 
for the poor performance of the algorithm for load case 3. 
Table 5 shows frequently obtained designs by local improve- 
ment for this load case. In comparison with the practical 
optima found without the local improvement (see Table 2c), 
these designs all have 0 ° plies near the midplane. The rest 
of the stacking sequence is the same as those of the practical 
optima which do not have any 0 ° plies. 

Upon further investigation the problem was found to be 
due to the singularity of the optimum for load case 3. As 
discussecl earlier, the failure load exhibits a Singularity at 
the boundary of the lamination diagram (see Fig. 9) where 
the laminate does not have any 0 ° plies. This situation is 
illustrated in Fig. 11 which shows the effect of pushing the 
0 ° plies toward the midplane and replacing them with i 4 5  ° 
stacks (indicated by the laminate definition on the horizon- 
tal axis) when they reach the midplane. As can be seen in 
Fig. 11, the buckling load increases monotonically during this 
operation. However, the failure load decreases as we reduce 
the number of 0 ° plies until they are all eliminated, when 
it jumps up. Recall that  this happens because we no longer 
need to enforce strain constraints in the 0 ° plies. 

Crossover and mutation are two genetic operators that  
can potentially get rid of the undesirable layers from the lami- 
nate. Consider, for example, the following crossover scenario 
where both parents have 0 ° plies occupying different positions 
in the strings: 

parent l  22/11, parent2 11/22, child 22 22. (12) 

Local improvement interferes with this mechanism because it 
will move 0 ° plies towards the midplmm, where they have the 
least detrimental effect on the buckling load, in all members 
of the population. For example, due to local improvement 
parent 1 in the above design is likely to be changed to 



215 

Table 5. Frequently obtained designs for load case 3 (with local 
improvement) 

Design variable 
Stacking sequence 

[904/± 456/(±45/02)2]s 
[(902/± 45)2/± 
453/902/04/902/02] s 
[±45/902/(902/:E: 
452)~/04/902/02] s 
[(±45/902)4/04/+ 
45/0~3~ 
[902/± 452/(902/± 45)2/ 
±45/04/+ 45/02]~ 
[(±45/902)4/04/902/02] s 
[904/±456/04/902/02]s 
[902/±452/(902/±45)2/ 
±45/04/902/02]s 
[±45/904/±453/904/04/ 
±45/o2]~ 
[902/±45~/904/± 45/902/ 
04/±45/02]s 
[(902/±45)2/±452/902/ 
±45/04/±45/02]s 
[±45/904/±453/904/ 
o~/9o2/o2]~ 
[9o2/±453/9o4/~ 
45/902/04/902/02]s 

Load factor I 
Genetic code Buckling F~lure 
121222222233 9910.385 10251.197 

131132222323 9803.273 10787.530 

131122322332 9803.27:10787.530 

121132323232 9803.273 10787.530 

121122323223 9803.105 11404.473 

131132323232 9801.937 10193.772 
131122222233 9801.119 11404.473 

131122323223 9799.017J10787.530 

121133222332 9795.513 10787.530 

121132332223 9795.513 10787.530 

121123222323 9792.593 11404.473 

131133222332 9791.425 10193.772 

131132332223 9791.42~ 10193.772 

1 2 0 0 0  

"~ = 1 1 0 0 0  ¢=.o 

~ 1 0 0 0 0  ~.~ 
.~.~ 
4~ 

= 9 0 0 0  

,=2 
8 o o o  

= 5  

\\\ >( Objective ............ 1 

- " \ ,7 

7 0 0 0  r i i , 
1211  2211  1221 1 2 1 2  2221  2 2 1 2  1222  2 2 2 2  

Laminate ****22323223 

Fig. 11. The effect of reducing the number of zero plies near the 
optimum laminate for load case 3 

22 11 ~ 12 12, (13) 

Now the crossover cannot eliminate both 0 ° plies, because 
some of the 0 ° plies occupy the same location in both lami- 
nates and, therefore, appear in both children. 

To ameliorate this situation, we seeded the initial popula- 
tion with "no-zero-ply" (NZP) designs. With the population 
sized fixed at 8, we tried two, four, or six initial NZP designs. 
This corresponds to 25%, 50%, or 75% of the population. 

The results obtained by this NZP seeding are shown in 
Table 6 for load case 3 both with and without the local im- 
provement and for two permutation probabilities. The per- 
formance is seen to improve both with and without local im- 
provement as the number of NZP designs increases in the 

initial population. The effect on the average of all three load 
cases is shown in Table 7. The practical reliability reached 
80% at a very small normalized price. 

Table 6. Normalized price near 0.80 practical reliability for load 
case 3 starting with seeded nonzero degree plies in initial popula- 
tion 

No local improvement (permutation probability = 0.50) 
Initial population 
Normal Nonzero 

8 0 
6 2 
4 4 
2 6 

Stopping 
criterion 

Practical 
reliability 

Normalized 
price 

56 0.80 1181 
32 0.83 566 
22 0.85 378(147)* 
16 0.80 280(104)* 

Local improvement (permutation probability = 0.50) 
8 0 63 0.30 2997 
6 2 63 0.73 1161 
4 4 16 0.81 284(131)* 
2 6 16 0.85 218(121)* 

No localimprovement (permutation probability = 1.00) 
0 38 0.81 832 
2 25 0.83 496 
4 13 0.83 249(134)* 
6 10 0.80 173(97)* 

Local improvement (permutation probability = 1.00) 
8 0 63 0.45 
6 2 56 0.83 
4 4 13 0.80 
2 6 10 0.81 

* Average number of nodes in binary tree 

2209 
943 

256(144)* 
190(109)* 

Table 7. Normalized price near 0.80 practical reliability for av- 
erage of the three load cases starting with seeded nonzero degree 
)lies in initial population 

No local improvement (permutation probability = 0.50) 
Initial population Stopping Practical Normalized 
Normal Nonzero criterion reliabihty price 

8 0 56 0.827 1034 
6 2 44 0.810 821 
4 4 32 0.820 602(250)* 
2 6 38 0.827 734(292)* 

Localimprovement (permutation probability = 0.50) 
8 0 63 0.767 968 
6 2 19 0.810 362 
4 4 13 0.820 263(135)* 
2 6 16 0.860 287(148)* 

No localimprovement (permutation probability = 1.00) 
8 0 44 0.823 836 
6 2 50 0.857 853 
4 4 38 0.833 665(365)* 
2 6 38 0.827 737(362)* 

Localimprovement (permutation probability = 1.00) 
8 0 50 0.807 813 
6 2 19 0.827 353 
4 4 16 0.817 307(179)* 
2 6 16 0.840 305(188)* 

* Average number of nodes in binary tree 
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The comparison in Table 7 shows that while the NZP 
seeding helps also without local improvement, its effect on 
the local improvement procedure is dramatic. With half of 
the initial population seeded NZP, the local improvement pro- 
cedure reduced the price of the GA by better than a factor 
of two. 

Table 8. Normalized price near 0.80 practical reliability for the 
average of the three load cases starting with 4 NZP and 4 normal 
designs in the initial population 

(a) No local improvement 

Permutation Stopping Practical 

probability criterion 

0.0 63 

0.5 32 

1.0 38 

(b) Local improvement 

0.0 25 

0.5 13 

1.0 16 

Normalized 

reliability price 

0.283 3278(115)* 

0.820 602(250)* 

0.833 665(365)* 

0.807 439(106)* 

0.820 263(135)* 

0.817 307(179)* 
Average number of nodes in binary tree 

We also checked the need for permutation when seeding 
and local improvement are used. The results for 50% NZP 
seeding and three permutation probabilities are given in Ta- 
ble 8. It is seen that without local improvement permutation 
is critical for achieving the desired reliability. However, with 
local improvement it may not be necessary. Furthermore, if 
the performance of the algorithm is based on the number of 
different designs (nodes in the binary tree), no permutation 
could be the most efficient choice. 

Finally, we checked the case where all three load cases are 
applied at once. Because the buckling load depends roughly 
on Nx + Ny, we scaled all three load eases so that Nx + Ny = 
1.125 (the value for load case 1). This resulted in scaling load 
case 2 by 0.9 and load case 3 by 0.75. 

The application of all three load cases simultaneously is 
handled by choosing the failure load to be  the minimum of 
the three individual failure loads (each of which is the mini- 
mum of the buckling loads and strength failure loads). This 
procedure leads to a compromise optimum design where sev- 
eral failure modes are critical. Table 9 shows the optimal 
and near optimal designs for this case. It is seen that while 
the buckfing load for load case 3 is the critical load, the other 
two buckling loads as well as the strength failure load for load 
case 1 are near critical and constrain the design. It is also 
seen that the number of practical optima is only four. 

The effect of the multiple constraints and the small set of 
practical optima had a dramatic effect on the performance 
of the algorithm without local improvement. To achieve 80 
percent reliability, the population size and stopping criterion 
needed to be increased substantially, as can be seen from 
Table 10. With local improvement, on the other hand, the 
effect on performance was rather small, as can be seen from 
Table 11. Comparing Tables 10 and 11, for this case, local 
improvement reduced the number of analyses by more than 
an order of magnitude. 

For the present problem, the calculations of the buckling 
load and the strength failure load involve the use of simple 

Table 9. Global optimum, practical optima, and near-optimal 
designs for multiple load case (N= = 1.0, Nu = 0.125; N= = 0.9, 
N u = 0.225; N= = 0.75, Nu = 0.375) 

Design variables Objec- Failure load/Buckling load 
Stacking Genetic tive Load L o a d  Load 
sequence code function case 1 :ase 2 case 3 
[904/± 453/ 
04 / ± 45/04 / 
902/02]s 
[(902/± 45)2/ 
±45/(04/ 
902)2/02]S 
[(902/+ 45)2/ 
4-45/0,/902/ 
0 , /+  45/0~]~ 
[904/± 453/ 
(0, /+ 45)2/ 
02]s 
[(4-45/902)2/ 
902/04//=45/ 
04/902/O2]s 
[=t:45/90,/± 
45/902/(0,/ 
±45)2/o2]~ 
+-45/90,/± 
~5/9%/od+ 
451oj9o~1 
92]s 
[(±45/902)2/ 
(902/05)2/+- 
~5/o~]s 
[9o2/± 45~/ 
9o41(o41+- 

[(+-45/902)2/ 
(9o2/o4)2/ 
9o2/o2]s 
I90,/+ 453/ 
o~19021041+ 
45/o2]s 
[902/+- 452/ 
90~/0,/:b 45/ 
0,/902/02]s 
I±45/904/+- 

45/902/04/ 12113113233212005.0812735.8014485.3818244.96 
9o~/o4/± 45/ 
02]s 12568.90 12568.90 12005.08 

[(902/4- 45)2/12112113232312001.19 13090.97 15026.57 19309.07 
902/(04/+- 
45)2/02]s 12550.52 12550.52 12001.09 

Only the top four designs are the practical optima 

13112112223312080.62 13090.97 5026.5719309.07 

12925.51 12925.51 12080.61 

131131122323 12079.8412735.80 14485.38 18244.96 

12921.8312921.83 12079.84 

12113112232312074.0713090.97 5026.5719309.07 

12947.5712947.57 12074.07 

12112112223312071.19 13363.93 15536.32 20532.05 

12951.25 2951.25 12071.19 

13112113323212059.70 12735.8014485.3818244.96 

12965.9512965.9512059.70 

12112113233212052.58 13090.9715026.5719309.07 

12793.1612793.16 12052.58 

131121132332 12047.13 12735.80 14485.38 18244.96 

12767.43 12767.43 12047.13 

12113113323212047.13 12735.80 14485.3818244.96 

12767.43 12767.43 12047.13 

121121133223 12043.24 13090.97 5026.5719309.07 

12749.0412749.04 12043.24 

13113113323212041.68 12328.82 13923.9417276.89 

12741.6912741.6912041.68 

121131122233 12038.57 13090.9715026.5719309.07 

12726.9912726.99 12038.57 

13112113322312037.79 12735.80 14485.38 18244.96 

12723.31 [2723.31 12037.79 

algebraic formulae so that it takes longer to search for the 
nearest neighbours and construct the approximation than to 
evaluate the objective function. Also, the binary tree requires 
a large amount of memory to keep track of all the designs. 
Therefore, the binary tree is not cost-effective for this prob- 
lem. Depending on the load cases, local improvement may 
or may not be worthwhile. However, these procedures have 
high potential and wide applicability to problems with a very 
expensive objective function. 
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Table 10. Effect of the population size on the multiple load case 
without local improvement from 50 optimization runs (N~ = 1.0, 
N v = 0.125; N~ = 0.9, Ny = 0.225; N~ = 0.75, N v = 0.375) 

(a) Permutation probability = 0.50 
Pop. Stoppin t Price 
size criterion 

8 500 5592.0 4- 168 
12 334 6260.4 4- 240 
16 250 5902.1 4- 228 

20 200 6050.0 4- 213 
24 167 5804.2 4- 197 

Pract. Norm. No. of 
reliability price nodes 

0.64 8732.50 2189.2 4- 73 
0.78 8026.152729.6 4- 10~ 
0.84 7026.292697.6 4- 101 

0.88 6875.002981.64- 105 
0.76 7637.052965.14- 10C 

(b) Permutation probability = 1.00 
8 500 5748.0 4- 149 0.78 7369.23 3633.0 4- 95 

12 334 6054.5 4- 238 0.70 8649.26 4226.2 4- 16: 
16 250 6345.9 4- 236 0.76 8349.89 4684.7 4- 174 

20 200 6919.6 4- 292 0.84 8237.62 5347.6 4- 214 
24 167 6795.4 4- 243 0.68 9993.18 5439.5 4- 188 

* Stopping criterion times population size was set to around 
4000 for all cases 

4 C o n c l u d i n g  r e m a r k s  

We introduced two approaches for reducing the number of 
analyses required by a genetic algorithm for the stacking se- 
quence optimization of composite plates. The binary tree 
data structure is effective for avoiding the reanalysis of de- 
signs which appeared in previous generations. A local im- 
provement scheme considered all designs that can be obtained 
by interchanging two stacks of plies in the nominal designs 
and estimated the buckling load of these designs using a linear 
approximation based on lamination parameters. This local 
improvement was found to substantially reduce the cost of 
the genetic optimization. We also found that to avoid diffi- 
culties with singular optima, the initial population needs to 
be seeded with designs containing no zero degree plies. 
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Table 11. Effect of the population size on the multiple load case 
with local improvement (N~ = 1.0, Ny = 0.125; N~ = 0.9, Nv = 
0.225; N~ = 0.75, Ny = 0.375) 

(a) Permutation probability = 0.00 
Pop. Stopping Price Prac. Norm. No. of 
size criterion reliability price nodes 

8 44 595.68 4- 14.7 0.81 735.41 164.75 4- 3.6 
12 21 437.76 + 10.6 0.85 515.01 175.38 4- 3.9 
16 10 342.08 4- 8.4 0.82 417.17 183.17 4- 3.9 
20 8 370.20 -t- 9.0 0.86 430.47 216.06 4- 4.1 
24 6 344.40 + 7.3 0.84 410.00 224.48 4- 3.9 

28 5 393.12 4- 9.0 0.83 473.64 263.67 4- 5.3 
(b) Permutation probability = 0.25 

8 38 519.36 4- 13.1 0.83 625.73 229.82 4- 5.3 
12 15 377.88 4- 9.5 0.82 460.83 211.98 4- 5.0 

16 10 368.16 ± 9.9 0.82 448.98 233.78 4- 5.7 
20 8 369.40 + 7.8 0.87 424.60 255.07 4- 4.8 
24 7 390.72 4- 9.9 0.84 465.14 280.00 4- 6.2 

(c) Permutation probability = 0.50 

8 44 596.32 4- 14.0 0.81 736.20 330.04 4- 7.2 
12 15 372.12 4- 9.0 0.80 465.15 248.42 4- 5.8 
16 11 379.204-8.4 0.82 462.44 273.924-5.3 
20 8 370.40 4- 8.3 0.82 451.71 286.47 4- 6.1 
24 8 439.92 4- 10.8 0.85 517.55 339.67 4- 7.8 

(d) Permutation probability = 0.75 

8 44 661.52 4- 18.8 0.82 806.73 424.55 4- 11,~ 
12 30 650.16 4- 17.9 0.85 764.89 454.05 4- 11.7 
16 16 507.68 4- 11.4 0.84 604.38 390.36 4- 8.5 
20 10 482.00 4- 11.3 0.85 567.06 387.24 4- 8.4 
24 9 494.16 4- 11.7 0.84 588.29 410.03 4- 9.1 

(e) Permutation probability = 1.00 

8 63 865.76 4- 23.4 0.81 1068.84 599.28 4- 15.6 
12 30 672.48 4- 18.4 0.82 820.10 516.91 4- 13.5 
16 16 546.88 4- 14.0 0.85 643.39 452.77 4- 11.1 
20 13 528.40 4- 11.5 0.80 660.50 448.48 4- 9.1 
24 11 558.00 4- 12.0 0.81 i 688.89 485.13 4- 10.0 
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