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Minimum cost design of RC frames using the DCOC method 
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A b s t r a c t  The paper solves the minimum-cost design prob- 
lem of RC plane frames. The cost to be minimized includes those 
of concrete, reinforcing steel and formwork, whereas the design 
constraints include limits on maximum deflection at a specified 
node, on bending and shear strengths of beams and on combined 
axial and bending strength of columns, in accordance with the 
limit state design (LSD) requirements. The algorithms developed 
in this work can handle columns under uniaxial bending actions. 
In the companion paper the numerical procedure is generalized to 
include columns subjected to biaxial bending. On the basis of dis- 
cretized continuum-type optimality criteria (DCOC), the design 
problem is systematically formulated, followed by explicit mathe- 
matical derivation of optimality criteria upon which iterative pro- 
cedures are developed for the solution of design problems when 
the design variables are the cross-sectional parameters and steel 
ratios. For practical reasons, the cross-sectional parameters are 
chosen to be either uniform per member or uniform for several 
members at a given floor level. The procedure is illustrated on 
several test examples. It is shown that the DCOC-based methods 
are particularly efficient for the design of large RC frames. 

1 I n t r o d u c t i o n  

The fundamental features of the methods based on COC 
(Rozvany 1989; Rozvany et al. 1990; Rozvany and Zhou 
1993a, b) to obtain the minimum-cost design of RC beams 
subject to strength and deflection constraints, in addition to 
side constraints, were explained by Adamu et al. (1994), and 
Adamu and Karihaloo (1995) using several test examples of 
single-span beams. These methods were generalized in their 
discretized version (Zhou and Rozvany 1992, 1993) to multi- 
span beams with freely varying design variables or uniform 
cross-section per span by Adamu and Karihaloo (1994a, b). 
Whenever possible the solutions obtained by COC and/or  
DCOC methods were compared with those obtained by NLP 
methods (Kanagasundaram and Karihaloo 1990; Karihaloo 
1993). 

This paper is devoted to obtaining the minimum-cost de- 
sign of RC frames. As the design problem involves complex 
behavioural constraints, it is reformulated to include the con- 
straints on both beams and columns. Optimality criteria are 
derived and used as a basis for the development of algorithms 
suitable for solving the optimization problem of these struc- 
tures. 

In the first stage, only beams with uniform cross-sectional 
parameters per span are considered. However, the steel ra- 
tio is allowed to vary freely. The cross-sectional parameters 
and steel ratio in each column are assumed to be uniform 

for practical reasons. As indicated by Adamu and Karihaloo 
(1995), the formwork cost constitutes the major cost of RC 
construction. In RC multibay and multistorey frames the 
beam formwork is re-used from floor to floor if the column 
sizes are kept constant (Ferguson 1979). Hence, it is econom- 
ical to keep the cross-sectional parameter  of the columns in 
each storey uniform and only vary the amount of steel among 
them. Y~rther, to facilitate supervision of construction and 
for economical reasons, it is customary to keep the beam 
depth and width uniform in a given storey. In the second 
stage of this study, these observations are exploited in the 
reformulation of the design problem and derivation of opti- 
mality criteria for regular multibay and multistorey frames. 

The design constraints include limits on maximum de- 
flection at a prescribed node, bending and shear strengths of 
beams and uniaxial or biaxial bending strength of columns 
according to design codes (CEB/FIP  1990; SAA 1988; 
Warner et al. 1988; Ferguson 1979). In Par t  I of this pa- 
per, columns under uniaxial bending actions are considered. 
However, many columns, especially the corner ones, are sub- 
jected to simultaneous moments about both principal axes 
of the cross-section. In Part  II of this paper, columns under 
biaxial bending actions will be considered. Several examples 
are solved to demonstrate the versatility of the DCOC-based 
technique for large RC frames. 

2 T h e  des ign  p r o b l e m  

2.1 Problem formulat ion using an augmented Lagrangian 

Consider an RC plane frame consisting of N b beams and Nc 
columns. Each beam is further subdivided into Ne elements 
to account for the variable bending moment, but each column 
is treated as a single unit and designed for the end moments 
and axial load. 

The beams are assumed to be rectangular in cross-section 
with width Zlb , effective depth z~ n, and tensile steel ratio z~ m 
(e = 1 , . . .  ,Ne;  m = 1 , . . .  ,Nb); the distance from the centre 
of tension steel to nearby extreme concrete fibre is d~. In this 

study Zlb and d~ are given, whereas z~ n and z~ m are design 
variables. The depth z~ n is kept constant along the length 
of a beam member while the steel ratio in each element of 
the member is permitted to vary. Thus, we have Ne plus one 
variable per beam member. 

In the case of the concrete column section, the steel rein- 
forcement is placed symmetrically with respect to the princi- 
pal axis of bending (Fig. 1). The width Zlc, and the distance 
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from the extreme fibre to the nearby centroid of reinforcement 
area dtc are assumed to be given, whereas the effective depth 
z~ and gross steel ratio z~ [c = 1 , . . . ,  Nc; As  = Zlc(z~+d~c)Z~] 
are design variables. The normal procedure for designing re- 
inforced concrete columns involves end conditions and effec- 
tive length concepts. To simplify this procedure, the depth 
z~ and the steel ratio z~ are kept uniform in each column 
(with no curtailment of reinforcement) giving two unknowns 
per column. 

Thus, an RC frame structure with N b beams and Nc 
columns will involve [(1 + N e ) N  b + 2Nc] design variables. 
Note that  the superscript m or em indicates that  the item 
in question is related to the beam of span m or element e of 
span m, respectively, whereas the superscript c alone refers 
to a column. 

P ~  

d ~  • • • 
~d 

z c 

nnc~pal ax~s 
- -  of bending 

• • • - _ 

Zlc 

Fig. 1. Column section with symmetric steel reinforcement 

The axial stiffness is given by: 
for a beam E A  e m =  E A m  -~ kbZlbZ ~ = -£2bZ~, 
for a column E A  c = kcZlcZ ~ = ~2cZ~, 
in which k b and kc are constants that  account for d~ and dtc . 

In most cases they range between 1.05 to 1.10, and ~2b = 
EcZlbkb, £2c = EcZlckc.  

The flexural rigidity E I  is: 
a beam E I  e m =  E I m  = O.045Eczlb(z~n) 3 = £2b(zm) 3, for 

and 
for a column E I  c O.045EcZlc(Z~) 3 e ¢z c~3 = = 2cl. 2) " 

The objective function is the cost of construction which 
includes the costs of concrete, reinforcing steel and formwork, 
and is 

Nb Ne N'c 
¢:  F, ~ ,~g"(zr,z~ m) + F_, ¢~(z~,z~), (1) 

m = l  e=l  c=l  
where 

c e m z z m  [z 2 (z 3 m2b q- mlb  ) + , b ~ 2 , ~ m ) =  m . m  elb]L.m 

c Z c ¢~(~2, 3) = [~(z~m2c  + ml~)  + z3m2c~ , + e2c]L ~ ' 

with 

"~lb = (z~b + 2ey~)c~, m ~  = ~ ( e ~  -- 1)e~, 

-Clb :- [Zlbdb q- (Zlb + 2d~b)Cfc]Cc, m l c  = (Zlc J- 2Cfc)Cc, 

~ = z ~ ( c ~  - 1)cc, ~2~ = [z~d" + ~c~(z~c  + d')]e~. 

As the flexibility relationships are used to express the be- 
havioural constraints, the statically determinate and stable 
frame element chosen is the one with joint B [right-end (see 
Fig. A.1 of Appendix A)] built-in. 

w h e r e  

The displacement at a specified node using the notation 
described in Appendix A is computed using 

Nb We 
-~m T ~ . ~  ~ . ~  {F /A}  { U / A } ] +  Um = E E [ { F f  A}  [ f ]  ]{F.fA} + -~m T ^~m 

m = l  e=l  

N~ 
E [{'FCfA}T[f~4]{FCfA } + {Fcf A}T{ f i~A}]  ' (2) 
c~1  

which is identical to 

m = l  e=l  = 

6 

Here, the superscript i becomes em for beam elements and 
c when the unit is a column. If there is no distributed load 
within the element or the unit considered, pi or qi or both are 
set equal to zero. Moreover, if there are other types of load, 
their effect can be included through the so-called equivalent 
load system. 

The strength constraints for a beam element are as fol- 
lows: 
(a) the flexural strength constraint 

em 
]M~ax[ - 1.0 _< O, (4) 

q~m = z i z m ~ 2 z e m f ' ~ - - c 3 z  3 ) lbt  2 J 3 ~z  em 
(b) the shear strength constraint against web crushing 

q~r. IYm~ ~%1 
- g4z ~ 1.0_< O, (5) 

e 2 = 0.S7fy, c 3 = 0 .667S f2 / f c ,  £4 = c4zxb, c4 = 0.2fc ,  
where em em M ~ a  x and respectively, the maximum mo- Vr~ax are, 
ment and maximum shear force in the e-th element. 

The uniaxial bending strength constraint for a column in 
accordance with the LSD of CEB/FIP  is 

c IP~,,.xl 1.0 < 0 (6) 
q3 -- P~r - ' 

where 

p ~ r =  Pcr e~ ( P. ) '  (7) 
1 +  eb \ Pnb - 1  

if failure at ULS of collapse is init iated by the crushing of 
concrete (compression failure), and 

P~r = gl (z2 q- dtc) -- ~ z~ q_ dtc l + z~ -t- 

l+z~ +2~ 2 1 ~ + e , } +  1} 
1 - 0.5z , (8) 
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if primary failure at ULS is initiated by the yielding of tensile 
steel followed by the crushing of concrete. 

The section capacity for uniaxial load Per, the section 
capacity for balanced failure Pnb and its eccentricity e b in 
(7) are given as 

Per = Zlc(Z~ + dc)[O.S5 fcd - 0.85fcdZ~ + fydZ~], (9) 

P,b = 0.42£dz~zi + 0.sdzl~(Z~ + d ' ) ( f  - o.ss/~d- fyd), 

(10) 

e b = (0.5ZXcZ~[(z~) 2 -- (dlc)2](fyd + ]Is - 0.85fed ) "4- 

0.42fcdZlcZ~(O.37z ~ + de) } / (2Pub  ) . (11) 

I of the compressive steel in a col- The stress fs I and strain ¢s 
umn are 

f '  : E / _ <  fyd, (12) 

, 0.63~ - d' 
0.63z~ ¢cu, (13) 

where ecu = 0.0035 is the strain in concrete at ULS and, 

gl = 0.425zlcfcd, (14) 

~ 2 = 2 \ ~  0.5 , (15) 

fed = 0.667fc, fyd = 0.87fy are the design compressive 
strength of concrete and design yield strength of reinforc- 
ing steel. The eccentricities e b and e d (design eccentricity) 
are measured from the plastic centroid of the cross-section to 
the location of the axial force in question, and for symmetric 
steel reinforcement these coincide with the principal axis of 
bending (Fig. 1); PCax is the maximum compressive force in 
the column due to the design action. 

If the design action in the column results in axial tension, 
then 

Pdr = ZlcZ~fYd[(Z~)2 -- (d~c)2] 
2e d + z~ - 2d~c (16) 

Recalling the notations used by Adamu and Karihaloo 
o f M ~ a  x and em (1994a) to denote the location ern Vr~ax for a beam 
em and ern respectively, element from the left end as x m x v , 
~em[_em~2 

em em ern P kXm ) 
Mmax M~4m - 2 ' = v ~  ~m + (1~) 

and 
v ~  = v~ ~ - ; e , % ~ ,  (18) 
For a vertical or inclined column the maximum compressive 
force is always at its lower end and is given by (including 
selfweight) 

pCma x = P~ .  (19) 

The strength constraints may now be rewritten as follows: 
for a beam section 

= sgn(Memx) lime4 m _v~4em xmem + q~m 
m 2 ern c ema Zlb(Z2 ) z 3 (C2- -3z3  ) 

pem(2emm)2] - l.O <_ O , (20) 

~m sgn(Vm~*) [V~ '~ - ~ ]  - 1.0 < 0, (21) 
q2 = Z4(z~n) 

and for a column 
sgn(pCax) 

q.~ ~ - [P~] - 1.0 < 0 
p c  - • 

dr 
These constraints may be expressed in a matrix form 

q~m = { R i m } T  v ~ m  + 

M~ m 

02) 

{0} 
{ R ~ m } T  - p e m x e m  - 1.0 < 0 (23) 

e ~  l X  e ~  x2  - -  

P t2m ) { o } 
sgn(M~ax) 

Zib(Z~)2z~m(e2 -- c3z~ m)  

{ 0 } 0 
{l&~ m } sgn (Mr~mx) , 

m 2 em zern~ Zlb(Z2 ) z3 ( c 2 - c 3  3 ) 

q~m = { R ~ m } T  v ~ m  + 
Me4rn { o } 

_pe m x gm 
{ I tem}  T Pem(xgm)  2 , (24) 

2 

~ e m  T sgn (Vmem x) ~,em sgn (Vmemx) { } 
= e 4 ( z ~ )  ' t 4 ( z ~ )  

0 0 

and 

q~ = {R~} T V~ , (25) 
M~ 

{ R ~ }  = Pdr  . 
0 
0 

The minimum cost design problem of an l~C frame struc- 
ture including the constraints and bounds may be mathemat- 
ically stated using the augmented Lagrangian as follows: 

minimize • = 

¢(~) + ,  [{~s}T[f]{rj} + {~s}T{ai} - Z~ + ~] + 

Nb Ne Je 

E E + 
m = l e = l j = l  

^ e m  T ^ c m  m j  } ( r j  } - 1 . o + ~ ]  + 

Nc 
E 1.0 + + 
c=1 
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N~ N~ 3 
E E E r,~m, z~m e~ t i x-- i +Zilb+S-ib ) + 

m=l e=l i=2 
~ m z  e m  

N¢ 3 

i , -  i + z i e ~ + - 4 ) + ~ i ( ~ i  z i ~ e + ~ ) ] .  
c=l i=2 

(26) 

3 Opt imal i ty  cr i ter ia  

3.1 Mathematical derivation 

Based on (1), (3), (23), (24) and (25) the optimality criteria 
flowing from the variation o f ~  with respect to the depth [z~ n 
or z~] and the steel ratio [z~ m or z~] given by a r e  

r o T  3o~ m ~} 
Lh~7-@= + £2b(Z~n)4] 4- 

Ne 
E I~ m [-+{R~rn] T{F~Im} - +.{~{~m}T{~e~m]] _.}_ 
e=l 

N~ 
e~l {A~ m [_+{l%~m}T{Fe4m} __ +{ f {~m}T{F~m}]  }__ 
(f12 e m _  7~m) + {c~r]T 0P 

o r  

+ + (z~m2c + mlc) Lc -- # [~2c(Z~) 2 t2c(Z2)C 4] 

~ -PL Oz~ {as} {~A} +{~r}T ~ _ 

( f l ~ - 7 ~ ) = O ,  c = 1  . . . .  ,No,  
and 

{ ( ~ m ~ S  era) + 

)~m [ (c2-2c3z~ m) {R 1 } {F A }_ 

(28) 

(c2 -- 2c3z~m) ]} 
zU(~ ~.) iN-}r{~i} _ (z~m _~.) : o, 

e = 1 . . . .  ,Ne; m = 1 , . . . ,Nb ,  (29) 
o r  

m2cLC(z~ -I-tic) -I- A~ ---~rdr Oz~ {R~}T {F~} - -  

( ~  - ~ )  = o. (30) 
Note that /3~ m and 7~ rn in (27) could be simply rewritten 
as tim and m 2 72 , respectively, in view of the fact that z~ n 
is uniform in the span m. The terms {~r}T{00z-~P } and 

{ar}T{~0-=Pe-P~] appear in (27) and (28) due to the inclusion 0z 2 
of selfweight in the equilibrium equation of the real system. 
As discussed in the works of Zhou and Rozvany (1992), and 
Adamu and Karihaloo (1994a), {a r } is a scaled adjoint dis- 
placement vector given by 

{~r]T = ~{~]T.  (31) 

As the partial derivatives of the augmented Lagrangian are 
considered until now at the beam element/or column level, 
these terms may be written explicitly as follows: 
(a) for beams 

{ } ~z~ = E#{~em}T[~ , (32) 
e=l 

(b) for columns 

{-r}T{~} :.{~}TL oz~ J (33) 
Alternatively, if one uses (4), (5) and (6) instead of (23), (24) 
and (25), then (27) or (28), and (29) or (30) may be rewritten 
a s  

E (Z~ mm2b +mlb)  Lem -- # ~ "~-~ 2 + e~2m~4 
e=l 

z l b ( z ~ ) 3 z ~ ( ~  - c3z~ ~)  

IV~em I ~ } hem I ~ I n a , x l  
2 q (z~ )~  + ~e~ _ ( Z ~ _  ~$)  = o, 

m = 1 , . . . ,Nb ,  (34) 
o r  

(z~m2c 4" rnlc)L c - t z IF {zC~ 2 + 
L 2e, 2] eMz~)4] 

3 ~ o 4  + - - ~  - (~2 - ~2) = 0 t~ dr g2c ' 

= <..., . ,re, (35) 
and 

{ z~m2b Lem - A~ m _ 2c3 z~m ) ] Mmax l 
z-. (zemz m~2 [-^ c3z~m)2 Its', 3 2 ) Lcz-- 

(ym ~)} 3 -- 73 = 0, e = 1 , . . . ,Ne;  m = 1 , . . . ,Nb ,  (36) 

o r  

I P & ~ x l  bP~r e 
m2cLe(z~ + tic) - I~ (pc ~2 0z~ (fi~ - 73) = 0, (37) 

dr; 
where 

g2bZlbWcL em ~em ( 6 ~  m sin 0 + 6~A m cos 0 + 
36 

~Ts~-~ cos0 + 6~p sin0 + 6vp cos0_ ~p r,e~ cos0), 

(38) 

~c__ g2eZleWc Le (6~q~Cl.sinO+6ue cosOW-5.Le 
COS 0 --t- 36 \ - A  A %a 

6~-~ sin o + 6 ~  ~os o - -O~L e cos 0 ) ,  (39) 
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in which ~em and ~c are related to the effect of selfweight 
resulting from the equilibrium equation. Details of their cal- 
culation are given in Appendix B. Other details are available 
in the thesis by Adamu (1995). 

For the satisfaction of the compatibility condition of the 
adjoint system, the adjoint initial displacements may be ob- 
tained from (23), (24) or (25). In the notation of Adamu and 
Karihaloo (1994a) these are: 

for beams 
= 

sgn(M~max) 
m 2 em em Zlb(Z2 ) z 3 @ 2 - c 3 z  3 ) o} 

1 , 

0 

Of A 

and for columns 

_ o 

Of A Pdr 0 

{o} 
1 

(40) 

(4~) 

The fixed-end forces corresponding to these adjoint displace- 
ments are computed using standard formulae. 

3.2 Iterative procedure 

The procedure for solving the minimum cost design problem 
of an RC frame structure using the DCOC-based method im 
volves the analysis of the real and adjoint structures followed 
by the updating of the design variables and Lagrange multi- 
pliers, as appropriate, and finally a check on the convergence 
based on changes in cost of construction and cross-sectional 
parameters (design variables) in successive iterations. These 
three major steps are repeated until the convergence criteria 
are satisfied. The analysis of both structural systems is car- 
ried out using the standard stiffness method. The updating 
part of the computations is described below. 

3.2.1 Updating lhe design variables 

Details of the possible combinations of the behavioural con- 
straints controlling the distribution of the design variables - 
the depth and the steel ratio for the beams and columns of 
an RC frame structure are given by Adamu (1995). 

For instance, in beams consider elements controlled by 
deflection and flexural strength constraints. If the depth z~ n 
is governed by the deflection constraint, whereas the steel 
ratio of each of the elements in span m is controlled by the 
flexural strength constraint, (34) becomes 

( ~  + ~ ) ~ e ~  _ .  + e~_~_~ 4 
e=l 

A~ m 21M~I 3 .  -em'l 
z /zm'~3z emr-  c3z3 )"4- = 0  (42) lbk 2 ~ 3 ~.c2__ em ~2b u ; " 

Following the same notation as Adamu and Karihaloo 
(1994b), let ~ denote the element in span m with absolute 

gm maximum bending moment IM~axh and assume that the 

depth of this element satisfies the flexural strength (4), so 
that 

z r :  . 

_ c3z3 ) (43) 

Substituting (43) in the third and fifth terms of (42) and 
extracting the highest power of z~ n from the fourth term gives 

(z~n) 4 = 

Ne 
~Qem E 2 

e=l 

Ne f z e m  = L em L e m - ? ( L A M L ) -  ~ - ~ ( L A M ] ~ '  
1. 3 'n2b + mlb ~ J J 

e=l 

(44) 

where 

- -  e3z3 )Q1 _ ~ e m ,  (45) L A M  L ~2bZlbZ~m(e2 -~m em 

3~2~lM~xl 

e~ ~ c3z~m)]~ L A M  = 2 zv/5~-IM~axl[Z3 (e2 - , (46) 
z em[ c zern~l 'M "~m '~Y 3 kc2-- 3 3 )U maxl) 

and 
3# m2b 

The steel ratio for each element e of span m may be obtained 
from (4) 

1{(. / 
= -~ ~ -- \ c 3 ]  Zlb(Z~n)2c3 " 

The Lagrange multipliers A~rn for elements satisfying the flex- 
ural strength constraint are obtained from (36) as 

m L e m z  ,zrn~3r em~2~ c _em~2 A~m= 2b lb I, 2 ) I.z3 ) [ c 2 -  3z3 ) 
i M , 1 , ~ l ( c  2 _ 2c3z~m ) , (48) 

o r  

~ m  ~ L e m z  fzmX31zem~2rc2 _ ~em~2 2b lb (- 2 ) ~. 3 ) k --c3z3 ) (49) 
ml b - ]M~mxi(e2 - 2eaz~ m) 

Note that the Lagrange multiplier )~rn for each element with 
active flexural strength constraint is affected by all other ele- 
ments of this span with uniform z~ n through the summation 
in (44). 

On the other hand, as the deflection constraint is always 
active (# > 0), consider a column in which the design is 
controlled by deflection and uniaxial bending strength con- 
straints. For this column, the OC (35) and (37) become 

[ 3Q 1 
(z~m2c + m l c ) L  c - # [~2c(Z~)2 -[- g2c(Z~)4J - 

IP~ , : I  a f a r  3p - c  
~ (p~,)2 Oz~ + ~2c--~ = o, (50) 

m2cLC(z~ + d') - ~c IP~xI  afar 3 ~  Oz~ = 0 "  (51) 
(Pdr '  

From (51) 
pc  ~2 m LClz c d~ 2~ ~ 2 + d') (52) 

~ =  IP~,~xI(OP~/Oz~) 
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Substituting (52) into (50) and simplfying further, one ob- 
tains 

[ 
- 

z~m2c Lc + LC - ~ 2 r n  [3~2c(Z~)2 + (z2) 

-~2cLC(z~ d I p c  z c + c)(O e,/o 2) + ~ 2 ~ =  0, (53) 
(OPc /Oz  c) 

Ct~" ,J 

where 
m2c 

m2c - 
m l c  

and 

~2m -- Z2bml--b 
~2cmlc " 

Further, the uniaxial bending strength constraint (22) re- 
quires that 

P,~, = IP~xl = 

1 + ~ ( e _ 1 ) ,  if compression failure governs 

gl (z~ + d/c) I - B +  

Bx/~--A-C] , if tension failure governs ' 
c c 2  t 2 ~ 3 / ~ [ ( z 2 )  -(a~) ] 
2ed+Z~_2dl c , if axial tensile force prevails 

(54) 

where 
2e d B-z~+a, 1+4, 

z~ +d~c] + 1 

where Per, Pnb, eb, gl ,  and g2 are defined in (9), (10), (11), 
(14) and (15), respectively, with e d the design eccentricity. 
The two design variables (depth z~ and steel ratio z~) for 
this case are computed from (53) and (54), using an iterative 
procedure. 

In a similar manner, the other possible combinations gov- 
erning the design are considered. Again the Lagrange mul- 
tipliers corresponding to the strength-controlled elements in 
a span will be influenced by all the elements of this span 
because of uniform depth z~ n. 

Finally, designating the depths z~ n computed from the 
deflection and flexural strength constraints, the shear and 
flexural strength constraints, the ftexural strength and upper 
bound on the steel ratio, and a lower bound on depth combi- 
nations as z ~ ,  z m 2v, Z~m and z2lb, respectively, the resizing 
rule for beam depth is 

z~ n = m a x {  z~d, zm2v' Z~m, z2i b } ,  (55) 

whereas that of the steel ratio z~ m is 

Z (~/ l t  em if < < Z3m ' Z3gb 3m Z3ub 
z~ m Z31b, if  z em = 3 m  -< z 3 ~  , (56) 

Z3ub, if z em > 3m Z3ub 
where zem is computed using (47). 3m 

Likewise, designating z~ computed from the deflection 
and flexural strength constraints, the deflection constraint 
and lower bound on the steel ratio, the combined axial and 
bending strength with an upper bound on the steel ratio and 
a lower bound on both combinations of variables as z c z c 2a' 2d' 

Z~a u and z2& , respectively, the resizing rule for column depth 
is 

z~ = ma~{ ~ ~d' } (57) 2a' Z~au' Z2~c 

and the gross steel ratio z~ is 

i c z 2 -  2ad >z2£c Z3ad, if z3g c < Z~a d < Z3u c and c _ z c 
z C  if z3& < z ~  a < Z3uc and z~ = z2s c 

z~ = 3~a' .~ z c - z c - 
Z3uc, lI 2 -- 2£u 

• C _ _  C C _ _  
z3g.c , if z 2 -- Z2d ~ or z 2 -- z2g c 

(58) 
where Z~a d and z ~  a are computed using (53) and (54), re- 
spectively, with the latter computed for z~ = z2i c. If the 
former governs the design, the latter is omitted. Note that 
for each of the cases delineated above the two basic design 
variables must be computed iteratively. 

3.2.2 Computation of Lagrange multipliers and fixed-end 
forces 

As discussed above in the updating part, suitable expressions 
of the Lagrange multipliers are needed for strength controlled 
elements in order to calculate the fixed-end forces resulting 
from the prestrains. 

For instance, in beams consider elements whose depth i s  
controlled by the deflection constraint and steel ratio by the 
fiexural strength constraint. Equation (it8) yields 

3m2bL Zlb(Z 2) (z 3 )(e2 (59) A~m = - -  em m 3 em 2 _ c3z3em)2 

It t 2 b ~ l M ~ m m l ( e 2  -- 2c3z~ m)  ' 

so that the fixed-end forces due to the prestrains are 

p r }  = 

)t~ m t2bz~sgn(  Memax) 

It ZlbZ~m(c2 em era 3 × -- c3z 3 ) (n  ) 

(60) 
12x e m -  6Lem I 

- 6 L ~ m ~  m + 2(L~m) 2 J 

Note that A~ m is influenced by all elements of the span m 
through the summation involved in the determination of z~  
[see (44)]. 

Likewise for columns whose design is controlled by deflec- 
tion and a uniaxial bending strength constraints combination, 
(52) yields 

A c 3(P3r)2~2cLC(z~ + die) 
3 = , (61) 

g2J~e2mlP~l( a P~r/ az ~) 
so that the fixed-end forces due to the prestrains are {11 _ 0 

c} = e2c4sgn(    ) _ °  . 
It L C PGr 0 

0 

The Lagrange multiplier ~ is computed from the deflec- 
tion constraint. For beams, let us denote the spans whose de- 
sign is controlled by the deflection constraint, i.e. by (44) as 
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N D and the remaining spans by N L so that NLm+N D = N b. 
The contribution from beams to the deflection is 

~ b r r t - - ~ - - -  7 " - " - 1  ÷ -~'-- 3 ÷ 

E E - -  + Q2 (63) 
N L e=l L-g2bZP e2b(Z2n)3 ' 

where 

Z2m = 
N~ 
E Q~rn 

e = l  

N~ ~ a 2b*'rern + Lera--fi(LAML) - ~-~(LAM)} 
e= l  

(64) 
with LAML and LAM given by (45) and (46), respectively. 

As regards the columns, the design is said to be controlled 
by the deflection constraint, if the pair of design variables is 
obtained from (53) and (54), or from the deflection constraint 
and lower bound on the steel ratio combination. To simplify 
the computation of the Lagrange multiplier ~, the depths 
given by these two sets of combinations may be written as 
(~i)~ = 

F~ ~C~zC~2 ] 
P£2m / 2c~4"!k 2) c 

L 3e.~ + Q2 

m2~L~(~+~,)(opL/a~) ] , 
(z~m2c + 1)L c + ~-g2m ~c - a e g / a , D  J 

(65) 
and 

c c 2 "1 ff~_~,~- + Q~ 
~ 2 r n  [ 392c J 

~'~z2~ = [(z~m2~ + 1)r~ + ~ m ~ ]  (66) 

respectively. Denoting the columns whose design is controlled 
by the deflection constraint in combination with uniaxial 

N D and those in combination with the bending strength by 

lower bound on steel ratio by N D and the remaining by N L, e2, 
(Nc = Ne D + N;D22 + NL), the contribution at the specified 
degree of freedom from the columns is 

n ~ =  E _ . , + 2 + 
' e ~ ( ~ m ~ ) ~  ~ N D 

Le2c(__2m2) • + ^ 3" + N~ 

E [-< + ] (< z c 3 ' 

where 

Z2ml ~ 

r~, f~e~zC~2 ] 
g2m I 2 ~ z ~ t  ~ QC 

t 392c ÷ 2 

[ ( z ~ 2  c + 1)LC +-~2m~C ~ L o ( ~ + d ' ) ( o % / a ~ ) ]  ' 
-- (Op~rlOz~) J 

(68) 

~:m2 = [(z~m2c + 1)Lc + ~ 2 . ~ c ]  " (69) 

Finally, the deflection constraint (3) may be rewritten as 

E E  __ --~--- 1 ÷ -7----- 3 + 
N~ ~=1 [e2b(~2.~) ~ e2b(~2.~)~ 

E [  < + ]+ 

- ^ 1 ÷ E 

E L~2bz~ " ,e~b--~-~Vj L~e2~z~ 2~, 2, i m  L e= ]  

A ~  = 0, (7O) 

where ~ is computed from (70) using an iterative procedure. 
Details of the computational procedure including the evalua- 
tion of the approximate ~int, are described by Adamu (1995). 

The computational aspects of the iterative procedure for 
obtaining the optimum design of an RC frame structure using 
DCOC are summarized below. 

1. Analysis. The procedure commences with an analysis 
of the real and adjoint systems for a known material dis- 
tribution. The selfweight effect in the real system and the 
prestrain effect in the adjoint system are included in this 
analysis. During the first iteration, the design values are 
arbitrarily chosen. In the subsequent iterations they are sup- 
plied from the design part  of the procedure. Any prestrain 
effect in the analysis of the adjoint system is disregarded dur- 
ing the first iteration because the controlling constraints are 
not yet identified. However, in the subsequent iterations, the 
adjoint load vector includes, in addition to the virtual load 
vector, the equivalent nodal loads caused by adjoint initial 
displacements of a beam element or column whose design is 
controlled by the strength constraints. 

2. Updating of the design variables and Lagrange multipli- 
ers. The design variables are up dated in accordance with (55) 
and (56) for beam elements, and (57) and (58) for columns. 
The Lagrange multipliers AS. (j = 1,2,3 and i stands for 
em or c) are updated according to the type of the strength 
constraint controlling the design, as discussed above. The 
Lagrange multiplier ~ is evaluated using (70) in each itera- 
tion. 

3. Check change in the design domain. Step (2) alone is 
repeated if there is a change in the beam element or column 
domain controlled by displacement and strength constraints. 

4. Convergence criteria. Convergence on the change in 
the cost of construction and design variables is checked using 

I¢new - ¢oldl < Scost, (71) 
~new 

and 
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{Z~,ne w - Zk,oldl 
zi < ~cros, (72) 

k,new 

where ~cost and Vcros are set equal to 10 - 4  and 10 -3 ,  re- 
spectively. 

5. Steps 1 through 4 are repeated until the convergence 
criteria (step 4) are simultaneously satisfied. 

3.3 Numerical example 

To illustrate the above procedure, several examples are con- 
sidered. The material data and design constants used are as 
follows. 
t. Material 

concrete 
fe = 25 MPa, 
Ec = 26,000 MPa. 
we = 24.5 kN/m 3 

reinforcing steel 
fy  = 400 MPa, 
Es = 200,000 MPa 

2. Relative cost (with cc = 1305/m 3, Cs = 95905/m 3 and 
cf = 555/m 3) 

Csc = 66 
Cfc = 0.42. 

3.3.1 Example 1. A portal frame 

It is required to obtain the minimum cost design of the portal 
frame shown in Fig. 2a. The factored design load due to 
selfweight is included during the design process. The flexural 
and shear strength constraints (with the shear only against 
web crushing) for beams, and the uniaxial bending strength 
constraint for columns have been considered in accordance 
with the CEB/FIP  model code requirements. The maximum 
deflection at the midpoint of the beam due to the design loads 
must be less than or equal to 20 mm (i.e. the allowable span 
to deflection ratio is 300). The additional data regarding 
beam and column dimensions are: z2z b = z2e c = 200 mm, 
z3£ b = 0.0015, Z3u b = 0.2605fc/ fy ,  z3e c = 0.01, z3u c = 0.020 
[a reduced value has been adopted, as recommended in the 
code, and by Ferguson (1979) to provide adequate spacing 
between bars], d~ = 50 mm and dtc = 40 mm. 

The width of the beam was prescribed to be 250 mm, 
and that of the columns was 200 mm. The initial steel ratios 
for the beam and columns were chosen to be 0.01 and 0.012, 
respectively. The optimum design is summarized in Table 1, 
and the AF,  S F  and B M  diagrams are shown in Figs. 2b, c 
and d, respectively. The elevation and transverse sections of 
the frame indicating the optimum distribution of the design 
variables are shown in Fig. 3. 

The optimum design of the beam was governed by a 
combination of deflection and flexural strength constraints, 
whereas that of the left column was controlled by a lower 
bound on the depth and a uniaxial bending strength con- 
straint on the steel ratio, and that of the right column was 
controlled by a uniaxial bending strength constraint on the 
depth and an upper bound on the steel ratio. The mode of 
failure marked by T in Table 1 is to show that the design 
is governed by tension failure, i.e. failure is initiated by the 
yielding of tensile steel followed by the crushing of concrete. 

The initial design cost of 11.2252 converged to an opti- 
mum cost of 9.2474. These values must be multiplied by Cc 
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174566 1812381 
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4167 / ~  16.549× t0e~ / 
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H / /  11 i I 172'797X 106 / 

!j£]566 5!J7 0 1!8X106 90 l~05X 106 

(c) (d) 
Fig. 2. A portM frame: (a) geometry and loading; (b) AFD (g); 
(c) SFD (N); (d) B M D  (N-mm) for optimum design 

Table 1. Minimum cost design of a portM frame 

Column Initial Optimum Gross stee.1 Selfweight 
m m  m m  area load k N / m  

A. L 1 01 
DC 500 351 1562 T 2.58_] 

Beam Initial Optimum As1 As2 As3~ As4 Selfweight 
z~ mm z~ mm mm 2 mm 2 mm 2 mm 2 load kN/m 

B C  { 5001 4701 9441 12091 1209 849{ 4.30} 

to obtain the actual cost of construction. The CPU time 
used on a micro VAX/VMS was 3.86 seconds. The Lagrange 
multiplier ~ converged to 0.5161. The AF,  S F  and B M  di- 
agrams in Fig. 2 are for the optimum frame and include the 
effect of the factored selfweight loads shown in Table 1. 

3.3.2 Example 2. One-bay, two-storey frame 

The one-bay, two-storey frame shown in Fig. 4a is subjected 
to the factored design loads in addition to selfweight. The 
strength constraints are the same as for Example 1. The 
maximum deflection at the midpoint of the top beam must be 
less than or equal to 10 mm. The bounds on design variables 
and other pertinent data remain the same as for Example 1, 
except that Z2c £ = 210 ram, Zlb = Zlc = 250 ram. 

The initial steel ratio for the beams was chosen to be 
0.01 and that for the columns was 0.015. The results are 
summarized in Table 2. The end forces of each member and 
the midspan bending moment of the beams, as obtained from 
the analysis part of the solution are given in Table 3 in which 
AM1,  AM2,  and A M 3  represent the axial force, shear force 
and bending moment at the left end for a beam or the lower 
end for a column, and AM4,  A M 5  and A M 6  at the right or 
upper end, respectively. The midspan bending moment for 
each beam is given in the last column of Table 3. The (+) and 



24 

I ~ t d 

BII] I~ Id 

A-- 
t2~5 5667 

95 

A_40 

t 2 0 0 t  

section a - a 

I C 

3_ __3 740 

D-- 

_-40 

311 

_-40 
t 200 

section b - b 

A,.I =944 

250 

, e c l i o n  c - -  

~_~0 

A,,2 = 120 c 

250 

• • @ 

A~4 =849 

250 

section b - et section e - e 

520 

Fig. 3. Elevation and cross-sections of minimum cost RC portal 
frame 

Table 2. Minimum cost design of a one-bay, two-storey frame 

~ Gross steel ~ Selfweight 
area mm2l failure Iload kN/m 

AC 300 210 625 C 2.07 
BD 300 210 1082 T 2.07 
CE 300 306 1131 T 2.07 
DF 300 325 1115 T 2.07 

Beam Initial Optimum A~I As2 A~s A~ Selfweight 
z~ mm z~ mm mm 2 mm 2 mm 2 mm 2 load kN/m 

CD I 400 325 964 936 936 1322 3.10 
EF I 400 366 544 558 558 652 3.44 

( - )  signs of the end forces correspond to the sign convention 
adopted in Fig. 1. The AF, SF and BM diagrams are shown 
in Figs. 4b, c and d, respectively with the cross-sections of 
the members of the optimum frame shown in Fig. 5. 

The design of the top beam is governed by the combina- 
tion of deflection and flexural strength constraints, whereas 
that of the lower beam is governed by the flexural strength 
constraint and upper bound on the steel ratio, or by the flex- 
ural strength constraint alone. The design of the two top 
columns is controlled by the combination of deflection and 
uniaxial bending strength constraints, whereas that  of the 
two lower columns is governed by the the lower bound on the 
depth and the uniaxiM bending strength constraint on the 
steel ratio. 

The initial design cost of 15.2302 converged to the opti- 
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Fig. 4, A one-bay, two-storey frame: (a) geometry and loading; 
(b) AFD (N); (c) SFD (N); (d) BMD (N-ram) for optimum 
design 

mum cost of 13.8066. These values must be multiplied by 
Cc to obtain the actuM cost of construction. The CPU time 
used on a micro VAX/VMS was 5.05 seconds. The Lagrange 
multiplier ~ converged to 0.9029. 

3.4 Regular multibay and mullislorey frames 

As indicated in the previous sections, the formwork cost con- 
stitutes the major cost of RC construction. In RC multibay 
and multistorey frames, the beam formwork is re-used from 
floor to floor, if column sizes are kept constant. In other 
words, it is common practice to keep the column size constant 
over each floor or several floors and to make adjustment for 
the differing loads in each storey with reinforcing steel. More- 
over, this facilitates supervision of construction. For the same 
reasons, it is normal to keep the beam depth and width uni- 
form in a given storey or several storeys. These observations 
will be exploited in the formulation of the optimization prob- 
lem, in which it will be assumed that  Ml beams at a given 
floor level have the same cross-section and al l  columns in a 
given storey have the same cross-section. 

Let us designate the number of storeys by Ns, so that  the 
total  number of beams is 

N, 
gb = E y k '  (73) 

k=l  

where Nb k is the number of bays in the floor, and the total 
number of columns is 
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Fig. 5. Optimum distribution of the design variables at various 
sections of the one-bay, two-st0rey frame of Fig. 4 

N, 
Nc : E (Nb k + 1 ) .  (74) 

k=l 

In this section, the effective depth Zk2b , (k = 1 , . . . ,  Ns), of the 
beam group in each storey is the unknown design variable. 
However, the steel ratio is allowed to vary along the span of 
each beam in the storey. If a beam is discretized into Ne 
beam elements, the steel ratio may be designated by z ~  k 

(e= l , . . . , N e ;  m =  l , . . . , N k ,  k = l , . . . , N s ) .  

Table 3. End forces (N) and midspan moment (N-mm) of the 
members of the one-bay, two-storey frame 

em- AM1 AM2 AM3 AM4 AM5 AM6 MSM 

AC 354944 -3837 864083-348743 3837 -1237604{] 
BD 290718 18837 23576153-284517-18837 32935803 
CD -27574152448 93106316 27574 [63050-11961092790827691 
CE 14629~!-41412 -80730276-136289 41412 -6421054{] 
DE 121467 46411 86675124-110911-46412 75765692 
EF 4641210628~ 64210541 -4641~ [10911 -7576569255762138 

The effective depth Zk2c (k = 1 , . . . ,Ns ) ,  of the col- 
umn group in each floor is also an unknown design vari- 
able, whereas the gross steel ratio z~c k, (n = 1 , . . . ,  ~V k + 1; 
k = 1 , . . . , N s )  in each of the columns of the given floor is 
permitted to vary freely. 

25 

Hence, an RC frame structure of Ns storeys with 
Nb k bays in each storey will involve a total of 2Ns + 

~k=lNS [Nk(Ne + 1) + 1] unknown design variables. 

The objective function for multibay and multistorey RC 
frame may then be written as 

Ns N~ Ne 
¢ =  E E E [zk2b ~{zemkab m2b + m l b )  +clb] Lemk+ 

k=l m=l  e=l 

N, Nbk+ 1 

E E  
k=l n=l  

3c 2c 

(75) 

where mlb , m2b , -51b , mlc , m2c , "52c remain the same as given 
in (1). 

The listing of the design constraints and problem formu- 
lation also remain unchanged from those in the previous sec- 
tion, with superscripts or subscripts appropriately modified 
to reflect the new groupings of design variables. 

The optimality criteria (34)-(37) for the variation of the 
depth zk2b or Zk2c in each floor and the steel ratio z emk nk 3b or z3c 
in each beam element or column become 

_,vo mlb] s ' ' " :  [ 
E t 3b - ,  LG 4)2 + 

m=l e=l 

Q2emk ] emk . / -  ,~mk 2 lM~ax I _ 
~2b(Zk2b)4 J ± z (z k )3zemk(c 2 c _emk, lb 2b 3b - 3Z3b ) 

~mk IV~ax____J + 
2 t4(z2b)2 t2b J 

k = 1 , . . . , N s ,  (76) 

o r  

,,Z3c m2c + 
n=l  

nk 

~3 ( ~  Ozkc + ~2c J -~" 2 -- = dr 

k = 1 , . . . , N s ,  (77) 

and 
, zemk~t.,emk, 

zk-m2b n e m k 2 b  - Aemkl (c2 - ~c3 3b )l mfiiax I 
z rzemkzk ~21_ _ zemk'~2 lb( 3b 2b) W 2 - v 3  3b J 

-3 = o, (78) 
o r  

~ dr m2cLnk(zke + tic) - A ~  k iP~kxl .~pnk 
[ r)nk'~2 0z~k c 
~" dr ,' 

(.) 
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in which -ffemk and 5 nk are identical to .~em and ~c of (38) 
and (39), respectively, with em replaced by emk and c re- 
placed by nk. Note that flemk and -emk in (76) are inde- 2 72 
pendent of em because the depth Zk2b does not vary with e 
(element) or m (span) at a given floor level (k). Likewise, 
flnk and nk in (77) are independent of n. 2 72 

As in the previous section, the procedure for updating 
commences with the development of explicit expressions for 
the evaluation of design variables as controlled by various 
design constraint combinations. Some of the basic changes 
are listed below. 

If the design of the beam is governed by deflection and 
flexural strength constraints, the expression of the depth for 
the beam group in a storey equivalent to (44) is given by 

k 4 : 

~Qemk 
E E - 2  

m=l  e=l 

Nk Nec , ~t erak ~ 
E )~(  zem~-~ 1)L cmk - -~(LAML) - 2z----(LAM~ 

m=le='l ~ . 3b 2b ÷ mlb ~ ~j 

(80) 

(81) 
L A M  L : ~2bZlbzk3-b(C2 -- c3z~ "~Qemk 3hi 1 _'~emk , 

3~2b IMkm~x[ 

3 
emk 

z emk" c zemk'~(~M "~ ~ 3 , 3 (.c2- 3 3b )El maxl) 

where Mkmax is the maximum bending moment among the 

beams in the considered storey and zk b~ is the corresponding 

desired steel ratio. The steel ratio z emk the Lagrange mul- 3b , 

tipliers )~mk and ~ are computed using (47), (48) and 
m l b  

(49), respectively, with an appropriate change in notation. 
If the steel ratio in any of the elements of a beam group is 

smaller than the lower bound Z3b~, the ~ in (80) is set 
m l b  

equal to zero during the computation of zkb. Otherwise, the 
evaluation of the design variable when the other constraint 
combinations govern remains the same, as given in Section 
3.2. 

Regarding a column group in a floor, if the deflection and 
uniaxial bending strength constraints govern the design, then 
the depth is given 

| ± - 
z2~c ' (83) 

in which 

Nb~+l 

= ~ 3c m2c + + "fi~2m ~nk 
n=l 

_ _  z a l :  2c t 2c ÷ (85) 
opnk /oznk dr t 3b 

N t + l  _.~nk 
, (86) z-b ~-- 

n=l  2c 

Nbk+l 
z-'-d E ~- nk = - ~ 2 , ~ Q 2  • (87) 

n--1 
The steel ratio for each column in this floor is evaluated using 
(54). If the steel ratio for any column is smaller than Z3c~, it 
assumes its lower bound, and during the computation of zk c 
from (83), zal becomes zero, because the uniaxial bending 
strength constraint is not active for that column. 

If the depth Zk2c using (83) is smaller than its lower bound, 
the steel ratio is assigned its upper bound and the depth 
is computed for one or more columns with critical load to 
satisfy the uniaxial bending strength constraint. The depth 
of the column group in this case is the largest among those 
computed for the respective critical forces. The steel ratio 
for the remaining columns in this group is determined as per 
the uniaxial bending strength requirement of each column. 
If the steel ratio for any of the columns in the same group 
is smaller than the lower bound, it is set equal to its lower 
bound. 

The computation of the Lagrange multipliers and the cor- 
responding fixed end actions for analysis of the adjoint sys- 
tem is identical to the one given in Section 3.2, but with 
one significant difference. The Lagrange multipliers of the 
strength-controlled elements at a given floor level are now in- 
fluenced by all the elements at this level because the depth 
of all beams (all columns) is the same. 

The Lagrange multiplier ~ is computed from the deflec- 
tion constraint in the same manner as the previous section 

~-~ = ~-,N D Q~a + E N  D Qkca (88) 

in which 1 / 
N~ N~ ~zo~mk  o ~ k  

qb= 

"Z2m = 

N~.+Iz ~ _ - - - ~ _ 1 ÷ - - ' - - - 5 ~  f "~lQnk o~k ) , 

m = l  e = l  

N~+I [ Q~k Qnk2 3 

Z L 2c(Z o)÷ ' n----1 

N~ Ne 
E E Qi, k 

m=l  e=l 
k N e t  , ),ernk .~ Nb 

1)L emk - -fi( L A M  L ) - ::a----( L A M ~  z e m ~  - E E 3b m 2 b + _  - - m l b ,  
m=le=i 
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Fig. 6. Two-bay, two-storey RC frame: (a) geometry and loading; (b) 

nk k 2 ] V',N~ +1 [£2cQ1_ (z2¢) 
g2m z--n=1 [ 3g2¢ + Q~k / 

-52m 1 X-.,Nk ÷ I f zznkm 1)nnk + ~?2m ~-nk ~ }  Z_~n= 1 ~t 3c 2c -I- -t- 

where zal is given in (85). It beomes zero whenever the steel 
ratio in a column of a group assumes its lower bound. 

Table 4. Minimum cost design of a two-bay, two-storey RC frame 

Column I Initial l Optimum [Gross steel] Mode of[ Selfweight 
] z~e mm I z~c mm ] area mm 2 [ failure l load kN/m 

AD 400 265 763 T 2.52 
BE 400i 265 1537 C 2.52 
CF 400 265 763 T 2.52 
DG 400 250 725 T 2.40 
EH 400 250 725 C 2.40 
FI 400 250 725 T 2.40 

Beam Initi )timum[ A~I [ As2 [ A~3 ] A~4 [ Selfweight 
Z~b n Z~b mm [mm 2 I mm 2 [mm 2 I mm 2 [load kN/m 

DE I 50o 478 415 434 43411242 4137 
EF 500 478 1179 706 706 637 4.37 

GH I 500 382 402 467 46711406 3.58 
HI 500 382 1558 859 859 584 3.58 

3.~.1 Ezample 3. Multibay, multistorey frame 
The two-bay, two-storey frame shown in Fig. 6a is subjected 
to the factored design loads in addition to selfweight. The 
strength constraints are the same as in the previous two ex- 

!0641 

145573 

40168 

~62203 

17527 

129273 

5854 9804 20342 
(C) 

153.579X 1 ~  ~66.121X 106 

32 956X 10 6 67.330x 10 6 

t 68"972× 10 ~ '  108'908X 1 0 6 ~  

16.099 X 10 ~ 21.369X 106 • 35.443 X 10 ~ 
(d) 

AFD (N); (c) SFD (N); (d) BMD (N-mm) 

amples. The maximum deflection at midpoint of beam EF 
must be less than or equal to 10 ram. The design data in- 
cluding the bounds and initial steel ratios remain the same 
as for Example 2, except that  z2d = 250 mm. 

The results are summarized in Table 4. The end forces 
of each member and the midspan bending moments of the 
beams, as obtained from the analysis part  of the solution 
are given in Table 5 in the notation of Example 2. The AF, 
SF and BM diagrams are shown in Figs. 6b, c and d, respec- 
tively, with the cross-sections of the members of the optimum 
frame shown in Fig. 7. 

The design of the top beams (GH and HI) in the upper 
floor is governed by the flexural strength constraint and upper 
bound on steel ratio, or by the flexural strength constraint 
alone, whereas those in the lower floor (DE and EF) are con- 
trolled by the combination of deflection and flexural strength 
constraints. The design of the columns in the top floor are 
governed by a lower bound on both design variables, whereas 
those in the ground floor are controlled by a uniaxial bending 
strength constraint on the depth and an upper bound on the 
steel ratio, or by a uniaxial bending strength constraint and 
a lower bound on the steel ratio, or by a uniaxial bending 
strength constraint alone. Further, the results show that the 
interior columns of both storeys are governed by the com- 
pression mode of failure, whereas all exterior columns are 
governed by the tension mode of failure. This is the most 
likely phenomenon to occur for such a geometry and loading 
combination, due to the fact that  interior columns are sub- 
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Table  5. End forces (N) and midspan moment (N-mm) of the members of the two-bay, two-storey frame 

Member I. A M I  I A M 2  I A M 3  [ A M 4  I A M 5 I  A M 6  

AD 218818 5854 16098535 -208725 -5854 
B E  668002 9804 21368740 -657909 -9804 
C F  297444 20342 35443284 -287352 -20342 
D E  -2495 104208 21651384 2495 167625 
E F  -19826 175314 172384380 19826 150885 

DG 104518 -20641 -28967950 -97324 20641 
E H  314970 -7527 -10038437 -307776 7526 
F I  136467 40168 53174092 -129273 -40168 
GH 32641 97324 32956076 -32641 145573 
H I  40168 162203 166120820 -40168 129273 

M S M  

7316566 
17849160 
45923712 

-180195100 68972192 
-99097808 108908340 

-32956076 
-12541389 
67329760 

-153579440 58542636 
-67329760 101881670 

jected to a smaller bending moment  and a larger axial force 
than the exterior columns. 

• = 05 ~s~°=76e9 5 ° ° 38e2 5 

t 250 ~ 250 ~ 1 250  1 
Column AD Column BE ' Column CP 

t 15o 1 
Column FI '  

T 
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Uso 

78 

/ 
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• • • ~ 0  
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Mid-EF 

o •  58~ Ast  = 

82 

AS0 
250 t 

Right-HI 

Fig. 7. Optimum distribution of the design variables at various 
sections of the two-bay, two-storey frame 

The initial design cost of 34.0204 converged to the opti- 
m u m  cost of 27.4168. These values must  be multiplied by 
Ce to obtain  the actual  cost of construction. The  CPU t ime 
used on a micro V A X / V M S  was 7.08 seconds. The  Lagrange 
multiplier ~ converged to 1.9633. 

3.4.2 Example ,4. Seven-storey R C  frame 

A seven-storey R,C frame is subjected to the factored design 
loads shown in Fig. 8 in addit ion to the selfweight. The  

Table  6. Minimum cost design of the seven-storey RC frame 

Column Initial Optimum Gross steel Mode of Selfweight 
[z~ mml z~ ram] area mm 2 f~lure load kN/m [ 

AE 500 490 1324 C 4.38 
BF 500 490 2610 C 4.38 
CG 500 490 2651 C 4.38 
DH 500 490 1324 C 4.38 
EI  500 390 1075 C 3.55 
FJ  500 390 1659 C 3.55 
GK 500 390 2152 C 3.55 
HL 500 390 1075 C 3.55 
I M  500 344 961 C 3.18 
JN 500 344 1265 C 3.18 
KO 500! 344 1924 C 3.18 
LP 500 344 961 C 3.18 
MQ 500 287 817 T 2.70 
NR 500 287 1635 C 2.70 
OS 500 287 1571 C 2.70 
PT 500! 287 817 T 2.70 
RU 500 279 1397 C 2.64 
SV 500! 279 1583 C 2.64 
UW 500 254 1209 C 2.43 
V X  500 254 1469 C 2.43 
W Y  500 250 1056 T 2.40 
X Z  500 250 1165 T 2.40 

Beam Initial Optimum A~I As~ A~3 A84 Selfwe~ht 
z~ mm z~ mm mm 2 mm z mm 2 mm 2 load kN/m 

EF 500 521 667 699! 699 1852 4.72 
FG 500 521~1679 908 908 2020 4.72 
GH 500 521 1103 540 540 986 4.72 
I J  500 433 ~ 684 569 569 1478 3.99 
J K  500 433 1404 761 761 1763 3.99 
KL 500 433 818 448' 448 972 3.99 
M N  500 423 675 580 580 1570i 3.92 
NO 500 423 1457 815 815 1724 3.92 
OP 500 423 952 442 442 923 3.92 
QR 500 446 743 1015'1015 1814 4.10 
RS 500 446 1597 613 613 1762 4.10 
ST 500 446 1176 850 850 602 4.10 
UV 500 409 1110 1400 1400 1667 3.80 
W X  500 409 1334 1293 1293 1663 3.79 
YZ 500 500 1219 2034! 2034 1182 4.55 

maximum deflection at midpoint  of  beam FG in the bo t tom 
floor must be less than or equal to 14 mm.  The strength 
constraints and other  design information remain the same as 
for Example  3. 

The  op t imum distr ibution of the design variables is sum- 
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Fig. 8. The seven-storey RC frame 
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marized in Table 6. The end forces of each member and 
midspan bending moments of the beams as obtained from 
the analysis part  of the solution are given in Table 7. 

The designs of the bot tom floor beams are controlled 
by the combination of deflection and flexural strength con- 
strMnts, whereas all the other beams are governed by the flex- 
ural strength constraint and an upper bound on the steel ra- 
tio, or by the flexural strength constraint alone. The designs 
of the columns are governed by a uniaxial bending strength 
constraint and a lower bound on the steel ratio, a uniaxial 
bending strength constraint and an upper bound on the steel 
ratio, a lower bound on the depth and a uniaxial bending 
strength constraint on the steel ratio, or the uniaxial strength 
constraint alone. 

The initiM design cost of 139.7619 converged to the opti- 
mum cost of 120.2252. These values must be multiplied by 
Cc to obtain the actual cost of construction. The CPU time 
used on a micro VAX/VMS was only 3 minutes and 36.58 
seconds. The Lagrange multiplier ~ converged to 2.4628. 

4 C o n c l u s i o n  

The minimum cost designs of RC frame structures are ob- 
tained using methods based on DCOC. As the design problem 
involves more complex behavioural constraints, the study in 
this paper commenced with the reformulation of the design 
problem, followed by a derivation of OC. The design problem 
was solved in a systematic manner  by taking into account cus- 
toms followed in the actual construction of these structures. 

Algorithms were developed and numerical procedures coded 
to obtain the solution to the minimum cost design problem 
of these structures whose cross-sectional parameters are uni- 
form member-wise or uniform per storey. The variation of 
the force resultants in the beams was accounted for by al- 
lowing the steel ratio to vary freely along the spans, whereas 
the variation of the force resultants in the columns per storey 
was accounted for by using a different, but constant steel ra- 
tio in each column. In this part of the two-part paper, the 
columns of the frame are assumed to be subjected to uniax- 
ial bending action. However, some of the columns, especially 
those of an edge frame, can be subjected to bending in both 
major axes of the cross-section. Hence, in Part  II, columns 
under biaxial bending are considered. Several examples were 
chosen to demonstrate the usefulness of the algorithms devel- 
oped. It was shown that  the algorithms based on DCOC are 
extremely efficient as judged by the small amount of CPU 
time necessary even for reasonably large frame structures. 
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Table 7. End forces (N or N-mm) 

Member AM1 I A M2  I 

A E  806922 -14552 
B F  2278733 11422 
CG 2209631 29676 
D H  819706 38454 
E F  -12885 181854 
FG -19438 238264 
GH -12261 194841 
E1 607548 -37438 
F J  1786464 4869 
GK 1747472 36853 
HL 613551 50715 
I J  20116 131919 
J K  15210 166528 
K L  12046 131375 
I M  464967 -27322 
J N  1447225 -37 
KO 1428999 33690 
LP 464793 38669 

M N  -3027 130477 
NO 10603 167653 
OP -11012 135139 
M Q  324959 -40349 
N R  1107026 13593 
OS 1109576 12076 
P T  321367 49680 
QR 50349 166856 
R S  14446 169553 
S T  49680 189272 
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U W  522994 -48834 
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and midspan moment (N-mm) of the members of 

A M3 A M4 
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A p p e n d i x  A.  T h e  f o r c e - d i s p l a c e m e n t  r e l a t i o n s h i p s  

In the notation of Zhou and Rozvany (1992, 1993), the force- 
displacement relationships for the frame element (McGuire and 
Gallagher 1979; Weaver and Gere 1965) shown in Fig. A.la  are 

{F ~} = [s~]{u¢}, (89) 
where 

E 
[s ~] = (L~)3" 



Ae(L~) 2 0 0 -A¢(L~) 2 
0 121 ~ 6I*L ~ 0 
0 6I*L ~ 4I~(L¢) 2 0 

-A~(L~) 2 0 0 A*(L*) 2 
0 - 1 2 1  ~ -6I~L ¢ 0 
0 6I~L ¢ 2I~(L~) 2 0 

0 0 ] 
- 1 2 I  ~ 61 L ~ 

-6I%~2U(L~)21 
0 0 

12I ¢ -6I~L ~ 
-6I~L ~ 41*(L*)2J 

(90) 

{ F ~ } = {  P,~ V 2 M~ P~ V~ M~ }T, (91) 

{ U * } = {  w~ v~ 0~ w~ v~ 0~ }T. (92) 

Since the global coordinate system may be different from the ele- 
ment coordinate system, the orthogonal transformation matrix is 
introduced 

COS 0 

- s in  0 

0 
[T~] = 0 

o 

o 

sin O 0 0 0 0 
cos O 0 0 0 0 

0 1 0 0 0 
0 0 cos 8 sin O ' (93) 
0 0 - s i n O  cosO 
0 0 0 0 1 

where 8 is the angle measured from the global x-axis Xg, to the 
longitudinal axis of the element, denoted X.  

The element displacements and forces in the local coordinates 
a r e  

{u ¢} = [T~]{u;},  (94) 

{F ~} = [T¢]{F~}, (95) 

where {u~) and {F~} are, respectively, element displacement and 
force vectors in the global coordinate system. 

For the flexibility formulation, the stable statically determinate 
frame element chosen is the one supported as a cantilever beam 
with the built-in end at B. The force-displaeement relationships 
for this element are given by 

{u}.} ~ .  =[fll  u~ , (96) 
o}~ M1 

with 

I t Le X~ 0 0 
[ f l ] = y  0 (~°):~. - ~ °  (97) 

0 L* 
21  ~ /~g 

The transformation matr ix for the degree of freedom can be writ- 
ten as 

I1°°°°°] [V~]---- 0 1 0 0 0 0 . (98) 
0 0 1 0 0 0 

If there are loads applied on the frame element, as in Fig. A.lb,  
the fixed-end forces are 

P~A qe Le 
2 

peLe 
V~A  2 

{F,%} = M} A = "~( L~)212 
P~B qeLe 

2 
VI~B POLe 

2 

M}B - v~(L~)2 
' 12 

(99) 

pc where the equivalent nodal loads { ~} are the fixed-end forces 
with the signs reversed. These can be transformed to the equiva- 
lent nodal loads {P}g} in the global coordinate system as follows: 

{P}g} = [T*]T{P~} = -[T~]T{F}} • (100) 

In this case (89) becomes 

{F ~} = [s~]{u ~} + {F~}. (101) 
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The initial relative displacements {fl~A} caused by loads within 
an element may be computed using standard formulae, and (96) 
rewritten to read 

{U~A} -- [f~]iF}A} + {fi}A}, (102) 

where 
e T {FfA} =[ P.~ V~ M~ }. 

A p p e n d i x  B .  I n c l u s i o n  o f  s e l f w e i g h t  

The selfweight of a rectangular cross-section per unit length is 

W~ = z~x(z~ + d ' )wc,  (103) 

in which i stands for a beam element em or column c, and x for 
beam b or column c. 

For a general frame element, such as the one shown in Fig. 
A.lb,  the selfweight may be resolved into two components 

W,~ = pi = W~cosO, (104) 

W= = q~ = W~sin 0. (105) 

The vector of nodal forces {P} due to the selfweight in the real 
system may be included in its equilibrium equation through equiv- 
alent nodal loads 

L / T sin 0 

~ cos e 

{r w} ' ' (106) = l=(*2+d=)wc ~eos0 
L / ~- sin O 

cos 0 

12 . . . .  

If the unit considered is a horizontal be am element, (106) simplifies 
to 

e r n  
{P~w} = 

o 
L~'~/2 

-{F~%} = -zlb(z~ + d'b)wc. ( /era)2/12 (107) 
0 

L~m/2 
-(L°~)U12 

On the other hand, if the unit is a vertical column, it simplifies to 

L~/20 [ 

p~ ~ ~ 0 
{ EW} = --{FEw} = --zlo(z2 + ¢o)w~ . (108) 

Lc/2 
0 
o 

The partial derivatives of (106) with respect to the design variables 
z ~  a r e  

L I  . 
2T sm 0 

@ cos 0 

0 i [ cose (109) 
[. Oz~ j=-z l :~w~ ~ s i n 0  

~1 cos 8 

- ~ c o s 8  

The adjoint nodal displacement vector due to selfweight is 
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X 

. x~ ~ z / C / /  

"~A 

Fig. A.1 A frame element showing: (a) nodal force-displacement relationships; (b) fixed-end actions due to distributed loads between 
nodes 

' ' - - i  " " ' l ~ ' ~ = {  ~,.., ~,,, oA ~.~ ~,~ ~'~ } ,  /110) ,,,,~,~ 0,:,~,,,,,~ 3,,_, (112) 
az~ j = &--~u , 

so that for beam elements or columns gives 

a~, j = - '  ~ ~ = (6~ sin e + 6 ~  cos e + YAZ, ° cos e + 
36 

~ALiCOSe+6~iBsinO+6~iBcosO--YBLicosO) . (111) 6 ~ s i n O + 6 ~ c o s O _ Y s L i c o s O ) .  (113) 

Denoting Equations (112) represent the additional terms in OC (32) and 
(33), from selfweight. 
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