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Minimum cost design of RC frames using the DCOC method
Part I: columns under uniaxial bending actions

A. Adamu and B.L. Karihaloo

School of Civil & Mining Engineering, The University of Sydney, NSW 2006, Australia

Abstract  The paper solves the minimum-cost design prob-
lem of RC plane frames. The cost to be minimized includes those
of concrete, reinforcing steel and formwork, whereas the design
constraints include limits on maximum deflection at a specified
node, on bending and shear strengths of beams and on combined
axial and bending strength of columns, in accordance with the
limit state design (LSD) requirements. The algorithms developed
in this work can handle columns under uniaxial bending actions.
In the companion paper the numerical procedure is generalized to
include columns subjected to biaxial bending. On the basis of dis-
cretized continuum-type optimality criteria (DCOC), the design
problem is systematically formulated, followed by explicit mathe-
matical derivation of optimality criteria upon which iterative pro-
cedures are developed for the solution of design problems when
the design variables are the cross-sectional parameters and steel
ratios. For practical reasons, the cross-sectional parameters are
chosen to be ecither uniform per member or uniform for several
members at a given floor level. The procedure is illustrated on
several test examples. It is shown that the DCOC-based methods
are particularly efficient for the design of large RC frames.

1 Introduction

The fundamental features of the methods based on COC
(Rozvany 1989; Rozvany et al. 1990; Rozvany and Zhou
1993a, b) to obtain the minimum-cost design of RC beams
subject to strength and deflection constraints, in addition to
side constraints, were explained by Adamu et al. (1994), and
Adamu and Karihaloo (1995) using several test examples of
single-span beams. These methods were generalized in their
discretized version (Zhou and Rozvany 1992, 1993) to multi-
span beams with freely varying design variables or uniform
cross-section per span by Adamu and Karihaloo (1994a, b).
Whenever possible the solutions obtained by COC and/or
DCOC methods were compared with those obtained by NLP
methods (Kanagasundaram and Karihaloo 1990; Karihaloo
1993).

This paper is devoted to obtaining the minimum-cost de-
sign of RC frames. As the design problem involves complex
behavioural constraints, it is reformulated to include the con-
straints on both beams and columns. Optimality criteria are
derived and used as a basis for the development of algorithms
suitable for solving the optimization problem of these struc-
tures.

In the first stage, only beams with uniform cross-sectional
parameters per span are considered. However, the steel ra-
tio is allowed to vary freely. The cross-sectional parameters
and steel ratio in each column are assumed to be uniform

for practical reasons. As indicated by Adamu and Karihaloo
(1995), the formwork cost constitutes the major cost of RC
construction. In RC multibay and multistorey frames the
beam formwork is re-used from floor to floor if the column
sizes are kept constant (Ferguson 1979). Hence, it is econom-
ical to keep the cross-sectional parameter of the columns in
each storey uniform and only vary the amount of steel among
them. Further, to facilitate supervision of construction and
for economical reasons, it is customary to keep the beam
depth and width uniform in a given storey. In the second
stage of this study, these observations are exploited in the
reformulation of the design problem and derivation of opti-
mality criteria for regular multibay and multistorey frames.

The design constraints include limits on maximum de-
flection at a prescribed node, bending and shear strengths of
beams and uniaxial or biaxial bending strength of columns
according to design codes (CEB/FIP 1990; SAA 1988,
Warner et al. 1988; Ferguson 1979). In Part I of this pa-
per, columns under uniaxial bending actions are considered.
However, many columns, especially the corner ones, are sub-
jected to simultaneous moments about both principal axes
of the cross-section. In Part II of this paper, columns under
biaxial bending actions will be considered. Several examples
are solved to demonstrate the versatility of the DCOC-based
technique for large RC frames.

2 The design problem

2.1 Problem formulation using an augmented Lagrangian

Consider an RC plane frame consisting of N beams and N,
columns. Each beam is further subdivided into N elements
to account for the variable bending moment, but each column
is treated as a single unit and designed for the end moments
and axial load.

The beams are assumed to be rectangular in cross-section
with width zy;, effective depth 257, and tensile steel ratio z5™
(e=1,...,Ne; m=1,...,Np); the distance from the centre

of tension steel to nearby extreme concrete fibre is d;}. In this

study z1p and d;J are given, whereas 25 and 2§™ are design

variables. The depth 23 is kept constant along the length
of a beam member while the steel ratio in each element of
the member is permitted to vary. Thus, we have Ne plus one
variable per beam member.

In the case of the concrete column section, the steel rein-
forcement is placed symmetrically with respect to the princi-
pal axis of bending (Fig. 1). The width z;., and the distance



from the extreme fibre to the nearby centroid of reinforcement
area d), are assumed to be given, whereas the effective depth
z§ and gross steel ratio z§ [c = 1,..., Ng; As = 21(25+d) 7§
are design variables. The normal procedure for designing re-
inforced concrete columns involves end conditions and effec-
tive length concepts. To simplify this procedure, the depth
z§ and the steel ratio z§ are kept uniform in each column
(with no curtailment of reinforcement) giving two unknowns
per column.

Thus, an RC frame structure with N beams and N,
columns will involve [(1+ Ng)Np + 2N¢] design variables.
Note that the superscript m or em indicates that the item
in question is related to the beam of span m or element e of
span m, respectively, whereas the superscript ¢ alone refers
to a column.
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Fig. 1. Column section with symmetric steel reinforcement

The axial stiffness is given by:
for a beam EA®™ = EA™ = kbzlbzz = Ezbzz ,
for a column EA® = kezyc25 = chzz,
in which kj and k¢ are constants that account for d' and di,.
In most cases they range between 1.05 to 1.10, and lyp =
Eczipky, £2c = Bz che.

The flexural rigidity ET is:
forda beam EI¢™ = EI™ = 0.045Ecz1;,(z§")3 = Zzb(zén)3,
an
for a column EI¢ = 0.045Eczlc(z§)3 = ch(zg)?’.

The objective function is the cost of construction which
mcludes the costs of concrete, reinforcing steel and formwork,
and 1s

b Ne N'c

6= > Zw:”‘(zz 5™+ D e, 45), (1
m=1e=1 c=1

where

vy (25", 28™) = [of

1,bc(z§, zg) = [Z§(Z§m2c +myc) + Z§m2cd’c + ] L°,
with

(287 map + myp) + )L™,

myp = (213 + 2¢5c)ce , mop = z1p(csc — Lec,
Ty = [Zlbdi + (213 + 2d;,)Cfc]cc, mye = (21 + 2¢5c)ce

mye = 21c(csc — L)ce, Ta0 = [z1de + 2cfc(zlc + dg)]ec -
As the flexibility relationships are used to express the be-
havioural constraints, the statically determinate and stable

frame element chosen is the one with joint B [right-end (see
Fig. A.1 of Appendix A)] built-in
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The displacement at a specified node using the notation
described in Appendix A is computed using

b N,
um= Y 3 [FFRTIEHESDY + (F7A (a5 +

m=1e=1

N,
S (A T EUFS ) + (Frad 543 (2)
c=1

which is identical to

Nb em
Q™ @5 Q5
tm = Z (AmE EIm) + Z (ACE' EIC> ()

=le=1
Where
. e 1+ iio—i
Q) = PAPAL' - 5¢'(1)?Py,
) Vi Li 2, .
Q= —A(_ﬁ—)— (2VaL? — 337) +

17 . . 213
MgL (27 - V') + —(L—) (47tly ~ 373427 .
Here, the superscript ¢ becomes em for beam elements and
¢ when the unit is a column. If there is no distributed load
within the element or the unit considered, p* or ¢* or both are
set equal to zero. Moreover, if there are other types of load,
their effect can be included through the so-called equivalent
load system.

The strength constraints for a beam element are as fol-
lows:
(a) the flexural strength constraint

qi,m - IMe axl
21p(25)2 2§ (cg — c325™)
(b) the shear strength constraint against web crushing

~1.0<0, (4)

ggm = Vmaxl g (5)
2 342‘5” T

ey = 0.87fy, c3 = 0.6678f2/fc, £y = cazyy, ca = 0.2fc,
where M0y and VETY are, respectively, the maximum mo-
ment and maximum shear force in the e-th element.

The uniaxial bending strength constraint for a column in
accordance with the LSD of CEB/FIP is

Cc __ |P§13Xl

g3 = P -10<0, (6)
T
where
P
[ cr
Pdr_1+—e‘d_(& 1)’ (7)
ey \Fup

if failure at ULS of collapse is initiated by the crushing of
concrete (compression failure), and

2e
P —91(z2+d){ (z§+dd,c_1+z§) +

2
2egq _ 2d!
-1 ¢ 9228 — Zfc
(z§+d'c “3) e (1 z5+d’c>+

L

- o.5z§” i : ®)
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if primary failure at ULS is initiated by the yielding of tensile
steel followed by the crushing of concrete.

The section capacity for uniaxial load Py, the section
capacity for balanced failure P,; and its eccentricity ej in
(7) are given as

Per = 210(25 + dg)[0.85 foq — 0.85f,475 + fya#3], (9)
Ppp = 0. 42fcd21022 +0. 5Z3Z10(z2 +d, )(fs 0.85fcq— fyd);
(10)

{o 5210251(25)% — (&) 2)(Fya + f1 — 0.850.) +

0.42f,q71.25(0.3725 + dl,) } /(2Pnp) - (11)

The stress f} and strain /s of the compressive steel in a col-
umn are

fo=Eses < fya, (12)
0.6328 — d!
I 2 c
Eg = WECU y (13)
where ¢4 = 0.0035 is the strain in concrete at ULS and,
91 = 042521, f g, (14)
fyd
Fa=2 ¥ 05, 15
7 (0.85de > (15

fed = 0.667fc, fyq = 0.87fy are the design compressive
strength of concrete and design yield strength of reinforc-
ing steel. The eccentricities ej and ey (design eccentricity)
are measured from the plastic centroid of the cross-section to
the location of the axial force in question, and for symmetric
steel reinforcement these coincide with the principal axis of
bending (Fig. 1); Pfax is the maximum compressive force in
the column due to the design action.
If the design action in the column results in axial tension,

then

2167 yal(25)* = (de)?] (16)
T 2eq + 2§ — 2d,

Recalling the notations used by Adamu and Karihaloo
(1994a) to denote the location of Mg’;}x and Viéay for a beam

Fg

element from the left end as z&™ and 2™, respectively,
em(x )2

MED, = A Vem en o~ mJs 5 (17)

and

VEm, = VM - g (18)

For a vertical or inclined column the maximum compressive

force is always at its lower end and is given by (including

selfweight)

Pgax = P& (19)
The strength constraints may now be rewritten as follows:

for a beam section

em _ sgn(Mpl) em

= MG — VMl 4
(2™ — e A AT
2
”—%ﬂl] -1.0<0, (20)
em
em _ sen(ViEay) [Vim _ pemx%m] ~1.0<0, (21)

AN D

and for a column

c _ s80(Phax) [Pc]

= ""p 1.0<0. (22)

These constraints may be expressed in a matrix form

pem
m _ {Rem}T Vém +
1 A

My
0
Re™yT ¢ —p Mo 4 _1.0<0, (23)
%L
0
o sgn(Mpa )
R§™ =1 (e m)2 §™(cy —e328™) o,

sgn Mmrgx)
215(25)225™ (cp — e325™)

0
0
sgn(Mmax) ’

213 (20)22§™ (cg — c325™)

pem
m _ {Rem}T Vém +
- 2 A

(R =

Mem
0
. T —ptMgem
{R;m} em(xem)z ’ (24)
2
0 0
em T__ Sgn(VIﬁTx) 5 EmMY _ Sgn(anlle)
R =) Taep (BT Tuep
0 0
and
PC
¢ = {R§}T ; (25)
MA
sgn(P, Icnax)
mgy={ i
3 0
0

The minimum cost design problem of an RC frame struc-
ture including the constraints and bounds may be mathemat-
ically stated using the augmented Lagrangian as follows:

minimize ® =
8(2) + 1 [F TR} + F T {ag) = A +] +
Nb Ne Je

S e Ry HE +

m=1le=1j=1

{ﬁ;m}T{ﬁ‘ﬁm} —1.0+ w?m] +

Ne o _,
> [{RaY {Fp) - 10+ u§] +
c=1



(" [{P} - BUF )] + {a*}T [(P"} - (BIF})] +

Ny N. 3

Yo NS B (=™ + iy + 55T +

m=1e=11=2
7fm(zfm ~ Zigh + sem)]

N: 3
S5 T IBH (=58 + zige + L)+ AE(F — ziwe +39)] . (26)

c=11=2

3 Optimality criteria

3.1 Mathematical derivation

Based on (1), (3), (23), (24) and (25) the optimality criteria
flowing from the variation of ® with respect to the depth [27*
or z5] and the steel ratio [25"™ or z§] are given by

Ne

Z{ [2§™map + myp) L6 —

e=1

Qem 3Qem
A wrovhawrori b
Lop(230)e  Lop(2)

N,

Z/\em [__{Rim}T{F }__ m{Rim}T{ﬁim}]‘}'
e=1 %2 )

3 |- Ry ) - R e |-

e=1

opP
or

Qf 3Q3
z§mg, + my,) L° —l‘{ 7t +
(25mac o) £2c(zz fac(25)*
5 |5 s {R3}T{FA}] )T { 2} -
(65-15) =0, e=1,..Ne, )
and
{ (z%"mszem) +

(e2 26323 ) T

em B e em em
" [ e R -

(ca ~ 253:,/5'”) em T gem _ em
zgm(cz~63z§m){R AR }]} G )=0,
e=1,...,Ne; m=1,...,Ny, (29)
or

1 aP
mchc<z§+d'c>+Ag[ P iy

()7 (03 -

(85 ~5) = 0. (30)
Note that A5 and 75™ in (27) could be simply rewritten
as B3 and 5 respectlvely, in view of the fact that zq

is uniform in the span m. The terms {a’}T{ 5w} and
2
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{a’}T{ } appear in (27) and (28) due to the inclusion

of selfwelght in the equilibrium equation of the real system.
As discussed in the works of Zhou and Rozvany {1992), and
Adamu and Karihaloo (1994a), {a"} is a scaled adjoint dis-
placement vector given by

{a"} = p(@". (31)
As the partial derivatives of the augmented Lagrangian are
considered until now at the beam element/or column level,
these terms may be written explicitly as follows:

(a) for beams

ey { aiP }
(b) for colurmns
@ {55} =ma {5} (59)

Alternatively, if one uses (4), (5) and (6) instead of (23), (24)
and (25), then (27) or (28), and (29) or (30) may be rewritten
as

Ne

% {memy’ {851: Z,T } : (32)

e=1

S it e [ S 10T
23 mop +myp —H +

e=1 Zzb(zzm)2 Ezb(zén)‘i
em 2| Mgkl

213 (25)3 5™ (cp — €325™)

em | Vinaxl 3 _em m m
max | Jgem (65— ) =0,

24Py (8" =)
m:l,...,Nb, (34)
or ’

Q1 3Q5

(2§mge +m1)L° — p -

3T ¢ £2c(22) £2c(z5)4

clea.xlanr 3/‘ &©
S(Pc )2 32 (132 ) 0,
C:1,...,Nc, (35)
and
z1p(2§™ Z?)Z(Cz — c3z§™)?

(ﬁgm—'ygm)}:o, e=1,...,Ne; m=1,...,Ny, (36)
or

P oP
mZCLC(Zg + dlc) c| nax| dr _ (ﬂg _75) =0, (37)

SR
where
£ Lem

ﬂem_—.——z—bzl%i—(ﬁ i sin 8 4 679" cosf +

TA"LE™ cos 0 + 6T sin 6 + 675" cos§ — 5" L™ cosf) ,
(38)

_ Loz cwelL® . _ -

u’ = ——0—306———(6@3451119 + 679 cosf + 60 4L cos b +

6wy sinf + 6v%, cos 6 — 0B LE cos 0) , (39)
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in which @™ and u° are related to the effect of selfweight
resulting from the equilibrium equation. Details of their cal-
culation are given in Appendix B. Other details are available
in the thesis by Adamu (1995).

For the satisfaction of the compatibility condition of the
adjoint system, the adjoint initial displacements may be ob-
tained from (23), (24) or (25). In the notation of Adamu and
Karihaloo (1994a) these are:

for beams
{_A_em
WA 0
g | A" sl g 4
bt o zyp(25)225™ (cp — c325™) "
HfA 1
A" sgn(VEm) )
TR Y !
and for columns
ﬁfA
AS sgn(PE
~C =€ Sgn(P )
{8faf =4 tja p=2Emad L 0 (41)
oc /‘L ar
04 0

The fixed-end forces corresponding to these adjoint displace-
ments are computed using standard formulae.

3.2  Herative procedure

The procedure for solving the minimum cost design problem
of an RC frame structure using the DCOC-based method in-
volves the analysis of the real and adjoint structures followed
by the updating of the design variables and Lagrange multi-
pliers, as appropriate, and finally a check on the convergence
based on changes in cost of construction and cross-sectional
parameters (design variables) in successive iterations. These
three major steps are repeated until the convergence criteria
are satisfied. The analysis of both structural systems is car-
ried out using the standard stiffness method. The updating
part of the computations is described below.

3.2.1 Updating the design variables

Details of the possible combinations of the behavioural con-
straints controlling the distribution of the design variables -
the depth and the steel ratio for the beams and columns of
an RC frame structure are given by Adamu (1995).

For instance, in beams consider elements controlled by
deflection and flexural strength constraints. If the depth 237
is governed by the deflection constraint, whereas the steel
ratio of each of the elements in span m is controlled by the
flexural strength constraint, (34) becomes
Ne em €Mm

Q 3Q
LEm ma ) LEM _ _ 1 2 _
> {( 3 ™mop + myp) p [%b(%")z + £2b(z12n)4}

e=1

21p(2)328™ (cg — e32§™) Loy

Following the same notation as Adamu and Karihaloo
(1994b), let € denote the element in span m with absolute
maximum bending moment |MfT |, and assume that the

depth of this element satisfies the flexural strength (4), so
that

m | MER|

= =, (43)
2152§"" (g — c32§™)

Substituting (43) in the third and fifth terms of (42) and
extracting the highest power of 2 from the fourth term gives

(" =

Ne .
> g™
e=1

3

e em— em em _ 7 ii"l
g:jl{z3 Mgy LM + Lem — F(LAML) — Zh—(LAM)

(44)
where
o f em _ emyyem
LAMI = 26%1h%3 _(02 6‘223 Q5 —gtm (45)
3£2b|Mmax|
_ _ .3
2 /25| MET 128 (co — c325™)]2
LAM = 1b| maxl[ 3 ( 2 _3 3 3)] (46)
2§™ (e — c32§™ )| Miax )2
and
- 3p — mop
=", Tg=—2,
(Lapmyp) %7 gy

The steel ratio for each element e of span m may be obtained
from (4)

2 em
2 3 c3 zlb(z2 Yeeg

The Lagrange multipliers A{™ for elements satisfying the flex-
ural strength constraint are obtained from (36) as

AT = mgp L™ 213, (5)3 (2§™)2 (g — c32§™)? , (18)
|METR|(cq — 2¢32§™)

or

AS™ gy LMy (27)3(25™)% (cg — cazg™)? (49)

myy, | M2k |(c2 — 2c32§™)

Note that the Lagrange multiplier A{™ for each element with
active flexural strength constraint is affected by all other ele-
ments of this span with uniform zJ* through the summation
in (44).

On the other hand, as the deflection constraint is always
active (4 > 0), consider a column in which the design is
controlled by deflection and uniaxial bending strength con-
straints. For this column, the OC (35) and (37) become

Q5 3Q5

(2§mae +my)Le —p | = ~

3T e byo(2§)? " Lge(2)*

|Poaxl 9P4, | 3u_

¢ i max T ey, . 50
3(P§T)2 325 +£2CU 0, ( )

c |1 OPS

mocLO(25 + dl) — agPmaxl %dr _ (51)

3(PS )2 075
From (51)
(P§,)PmocLE(25 + db)

AS = 52)
8= T Penl (9F5 /625 (




Substituting (52) into (50) and simplfying further, one ob-
tains

. £9,Q¢ Qs
2§Tige LC + L€ — filom [————% 1 21

3loc(25)2  (#5)*
g L5+ d)(OPS /625) ..
= 53

where
— m2c
M2e = mye’
and
7 Lop™ip
ly = -2 .

" fycmic

Further, the uniaxial bending strength constraint (22) re-
quires that

Pé:r:lpxglaxl:'
Py
ed(Per 4}’
1458 (pﬁ"; 1)
91(25 + dg) [-B+
VB C],

z1025fy al(25)? ~(dc)”)
Zed+z§—2d'c

if compression failure governs

if tension failure governs

,if axial tensile force prevails

(54)
where
_ 2y
- zg + dé

——1+z§,

2d,
BAC = B + 25 [52 (1 % +Cd,c) +1- 0.5z§} ,

where Per, Ppy, €p, 91, and go are defined in (9), (10), (11),
(14) and (15), respectively, with e the design eccentricity.
The two design variables (depth z§ and steel ratio 25) for
this case are computed from (53) and (54), using an iterative
procedure.

In a similar manner, the other possible combinations gov-
erning the design are considered. Again the Lagrange mul-
tipliers corresponding to the strength-controlled elements in
a span will be influenced by all the elements of this span
because of uniform depth z3®.

Finally, designating the depths zJ" computed from the
deflection and flexural strength constraints, the shear and
flexural strength constraints, the flexural strength and upper
bound on the steel ratio, and a lower bound on depth combi-
nations as 23y, 25y, 25, and 294y, respectively, the resizing
rule for beam depth is

2t =max{ 23y, 2, L, zm ), (55)
whereas that of the steel ratio zgm is
zgr, if zggp < 2§00 < 234

= 236 if 2377 <z ; (56)
23up, If Zg,',': > Z3ub

2™

where 257 is computed using (47).

Likewise, designating z§ computed from the deflection
and flexural strength constraints, the deflection constraint
and lower bound on the steel ratio, the combined axial and
bending strength with an upper bound on the steel ratio and
a lower bound on both combinations of variables as 2§, 25 &

21

zg 2u 30d Zog,, respectively, the resizing rule for column depth
18

Z5=max{ 25, 255, 5. Z2c ) (57)
and the gross steel ratio z§ is

250> ?f z3¢c < Z:gad < 23y and z?‘: =250 > %26c
Zapar i 230 < 255, < 234 and 2§ = 294,

Z3uc, if 25 = 254,

2340, 1 2§ = 255, O 2§ = 299,

(58)
where 2§ . and 2§, are computed using (53) and (54), re-
spectively, with the latter computed for 2§ = zg4,. If the
former governs the design, the latter is omitted. Note that
for each of the cases delineated above the two basic design
variables must be computed iteratively.

3.2.2 Computation of Lagrange multipliers and fized-end
forces
As discussed above in the updating part, suitable expressions
of the Lagrange multipliers are needed for strength controlled
elements in order to calculate the fixed-end forces resulting
from the prestrains.

For instance, in beams consider elements whose depth is .
controlled by the deflection constraint and steel ratio by the
flexural strength constraint. Equation (48) yields

A 37y L™ 21 (257)3 (28™)%(cg — c325™)? (59)
I Loy | MER (g — 2¢325™ ’

so that the fixed-end forces due to the prestrains are

{FF} =

AT ertsen(Miax)
pooz1p2§™ (g — c32§™)(LE™)3
0
~1228" + 6Le™
—6LEMm g 4 4(Le™)?

12z8" — gLE™
___6Lemz.$nm + Q(Lem)Z
Note that A{™ is influenced by all elements of the span m
through the summation involved in the determination of 23
[see (44)].
Likewise for columns whose design is controlled by deflec-

tion and a uniaxial bending strength constraints combination,
(52) yields

2§ _ _3(Pg,) e (25 + de)
# [2cl_1£2mipl%axl(ap(fr/azg)
so that the fixed-end forces due to the prestrains are

(61)

1

0

= - XS 2o 28sgn( P ax) 0
dr

0

0

The Lagrange multiplier % is computed from the deflec-
tion constraint. For beams, let us denote the spans whose de-
sign is controlled by the deflection constraint, i.e. by (44) as
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N,l,z and the remaining spans by N,l,—; so that N7%+N£ = Np.
The contribution from beams to the deflection is

Ne Qem em
=20 [ Tt % 7|t
NB e=1 Llgy(#Zam)?  Lop(HZam)?
2 Z e, 9% (63)
NI =1 Lf2?7" b (+5")’
where
Zom =
Ne
621 ng
N, . Aem ’
D {zgm;ﬁ%Lem + L™ —u(LAML) — _]E(LAM)}
e=1
(64)

with LAM L and LAM given by (45) and (46), respectively.
As regards the columns, the design is said to be controlled
by the deflection constraint, if the pair of design variables is
obtained from (53) and (54), or from the deflection constraint
and lower bound on the steel ratio combination. To simplify
the computation of the Lagrange multiplier 7, the depths
given by these two sets of combinations may be written as

(:5)* =

= ¢ o Cr. cN\2
lom [Z—%g—i + Qg]
[ o - g Le(z5+dL)(9PC /8
[(z;ﬁmzc + 1)LC + iy, — T2 (gch /)8(z3) oL Zz)]
(65)
and
- y) . er.cN\2
o |25+ g
(5t = : (66)

[(2§79c + 1)L + Hilypmu®]
respectively. Denoting the columns whose design is controlled
by the deflection constralnt in combination with uniaxial
bending strength by ND .1 @nd those in combination with the
lower bound on steel ratio by ND -5, and the remaining by Ne ,
(Ne = N2 ot Neg + NL), the contribution at the specified
degree of freedom from the columns is

QC [
U$n=2[_ —1l—+ AQ2 7|+
ND Loc(iZ2m1)?  foc(BZom1)d
QC [+
Z[— —b—+ fz 3|+
ND2 boc(BZomg)? Loc(HZom2)4

) (—Qg +—£'5—] : (67)
L

Loz £a0(25)3
where
Zom1 =
_ Y] C( 6)2
eZm [ chgzzz +Q§]
c

Tz Lo(#5+de)(0P5 [825) ] °
(0P, [02)

[(257”_% + 1)L + Jilyy W —

(68)
— 7, c\2
Lom [———L(—ZLZECQ- 20 4 QE]
{ 3fa,
[(ng% + 1)Le + ﬁz2mﬂcl '

Finally, the deflection constraint (3) may be rewritten as

Ne em em
St

(69)

Zoma =

o 1 3
NR e=1 Lep(HZam)?  Lop(HZ2m)t
QC [+
—L AQZ 5|+
ND Lloc(pZam1)?  £2c(PZ2m1)*
QC QC
—— 2,
ND fzc(/ﬂzmz)? £9c(BZ2m2)?
SOD 3] I i S S S
P V5 4 H2NCE b7 Uao(25)
Ay =0, (70)

where 71 is computed from (70) using an iterative procedure.
Details of the computatlonal procedure including the evalua-
tion of the approximate [ij,¢, are described by Adamu (1995).

The computational aspects of the iterative procedure for
obtaining the optimurm design of an RC frame structure using
DCOC are summarized below.

1. Analysis. The procedure commences with an analysis
of the real and adjoint systems for a known material dis-
tribution. The selfweight effect in the real system and the
prestrain effect in the adjoint system are included in this
analysis. During the first iteration, the design values are
arbitrarily chosen. In the subsequent iterations they are sup-
plied from the design part of the procedure. Any prestrain
effect in the analysis of the adjoint system is disregarded dur-
ing the first iteration because the controlling constraints are
not yet identified. However, in the subsequent iterations, the
adjoint load vector includes, in addition to the virtual load
vector, the equivalent nodal loads caused by adjoint initial
displacements of a beam element or column whose design is
controlled by the strength constraints.

2. Updating of the design variables and Lagrange multipli-
ers. The design variables are updated in accordance with (55)
and (56) for beam elements, and (57) and (58) for columns.
The Lagrange multipliers /\;- (7 = 1,2,3 and ¢ stands for
em or ¢) are updated according to the type of the strength
constraint controlling the design, as discussed above. The
Lagrange multiplier 7 is evaluated using (70) in each itera-
tion.

3. Check change in the design domain. Step (2) alone is
repeated if there is a change in the beam element or column
domain controlled by displacement and strength constraints.

4. Convergence criteria. Convergence on the change in
the cost of construction and design variables is checked using

[$new — $oldl < Ecost (1)

new
and



Izir new %k Oldl
— 5 X Ecros; (72)
z
k,new

where £qogt and ecros are set equal to 1074 and 1073, re-
spectively.

5. Steps 1 through 4 are repeated until the convergence
criteria (step 4) are simultaneously satisfied.

3.8 Numerical example

To illustrate the above procedure, several examples are con-
sidered. The material data and design constants used are as
follows.
1. Material
concrete
fc = 25 MPa,
E; = 26,000 MPa.
we = 24.5 kN/m?
reinforcing steel
fy = 400 MPa,
Eg = 200,000 MPa
2. Relative cost (with ¢, = 1303/m3, ¢ = 9590$/m® and

cf = 558/m3)
Cgec = 66
Cfe =042,

3.3.1 Ezample 1. A portal frame

It is required to obtain the minimum cost design of the portal
frame shown in Fig. 2a. The factored design load due to
selfweight is included during the design process. The flexural
and shear strength constraints (with the shear only against
web crushing) for beams, and the uniaxial bending strength
constraint for columns have been considered in accordance
with the CEB/FIP model code requirements. The maximum
deflection at the midpoint of the beam due to the design loads
must be less than or equal to 20 mm (i.e. the allowable span
to deflection ratio is 300). The additional data regarding
beam and column dimensions are: z9p, = z9g, = 200 mm,
235 = 0.0015, 23, = 0.2605fc/ fy, 235, = 0.01, 234, = 0.020
[a reduced value has been adopted, as recommended in the
code, and by Ferguson (1979) to provide adequate spacing
between bars], dj = 50 mm and df, = 40 mm.

The width of the beam was prescribed to be 250 mm,
and that of the columns was 200 mm. The initial steel ratios
for the beam and columns were chosen to be 0.01 and 0.012,
respectively. The optimum design is summarized in Table 1,
and the AF, SF and BM diagrams are shown in Figs. 2b, ¢
and d, respectively. The elevation and transverse sections of
the frame indicating the optimum distribution of the design
variables are shown in Fig. 3.

The optimum design of the beam was governed by a
combination of deflection and flexural strength constraints,
whereas that of the left column was controlled by a lower
bound on the depth and a uniaxial bending strength con-
straint on the steel ratio, and that of the right column was
controlled by a uniaxial bending strength constraint on the
depth and an upper bound on the steel ratio. The mode of
failure marked by T in Table 1 is to show that the design
is governed by tension failure, i.e. failure is initiated by the
yielding of tensile steel followed by the crushing of concrete.

The initial design cost of 11.2252 converged to an opti-
mum cost of 9.2474. These values must be multiplied by c,
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Fig. 2. A portal frame: (a) geometry and loading; (b) AFD (N);
{c) SFD (N); (d) BMD (N-mm) for optimum design

Table 1. Minimum cost design of a portal frame

Column | Initial |Optimum|Gross steel | Mode of| Selfweight
z5 mm| 2§ mm| area mm?| failure (load kN/m

AB 500 235 1101} T 1.82
DC 500 351 1562 T 2.58
Beam| Initial |Optimum| Agy | Ago | Agg | Asq | Selfweight
26 mm| 2§ mm{mm?|mm?|mm?|mm?[load kN/m

I BC| 500] 470 944[1209] 1209] 849] 4.30]

to obtain the actual cost of construction. The CPU time
used on a micro VAX/VMS was 3.86 seconds. The Lagrange
multiplier Jz converged to 0.5161. The AF, SF and BM di-
agrams in Fig. 2 are for the optimum frame and include the
effect of the factored selfweight loads shown in Table 1.

3.3.2 Ezample 2. One-bay, two-storey frame

The one-bay, two-storey frame shown in Fig. 4a is subjected
to the factored design loads in addition to selfweight. The
strength constraints are the same as for Example 1. The
maximum deflection at the midpoint of the top beam must be
less than or equal to 10 mm. The bounds on design variables
and other pertinent data remain the same as for Example 1,
except that z9.p = 210 mm, 213 = 21, = 250 mm.

The initial steel ratio for the beams was chosen to be
0.01 and that for the columns was 0.015. The results are
summarized in Table 2. The end forces of each member and
the midspan bending moment of the beams, as obtained from
the analysis part of the solution are given in Table 3 in which
AM1, AM2, and AMS3 represent the axial force, shear force
and bending moment at the left end for a beam or the lower
end for a column, and AM4, AM5 and AMG6 at the right or
upper end, respectively. The midspan bending moment for
each beam is given in the last column of Table 3. The (+) and
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Fig. 3. Elevation and cross-sections of minimum cost RC portal
frame

Table 2. Minimum cost design of a one-bay, two-storey frame

Column | Initial |Optimum | Gross steel |Mode of | Selfweight
zfmm| 2§ mm| area mm?| failure |load kN/m

AC 3060 210 625 (& 2.07
BD 300 210 1082 T 2.07
CE 300 306 1131 T 2.07
DF 300 325 1115 T 2.07
Beam | Initial {Optimum| As | Asz | Ass | Ass | Selfweight
25 mm| 25 mmimm?|mm?|mm?|mm?|load kN/m

CD 400 325| 964 936| 9361322 3.10
EF 400 366| 544 558| 558 652 3.44

(—) signs of the end forces correspond to the sign convention
adopted in Fig. 1. The AF, SF and BM diagrams are shown
in Figs. 4b, ¢ and d, respectively with the cross-sections of
the members of the optimum frame shown in Fig. 5.

The design of the top beam is governed by the combina-
tion of deflection and flexural strength constraints, whereas
that of the lower beam is governed by the flexural strength
constraint and upper bound on the steel ratio, or by the flex-
ural strength constraint alone. The design of the two top
columns is controlled by the combination of deflection and
uniaxial bending strength constraints, whereas that of the
two lower columns is governed by the the lower bound on the
depth and the uniaxial bending strength constraint on the
steel ratio.

The initial design cost of 15.2302 converged to the opti-
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CskNI TR T T T 1777 136289 46412
T 7E F 110911
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mm
50 kN 60 kN/m
JroNCTTTTTTTT] 146295 | 27574 121467
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A B
% 5000 mm %
(@) )
110911
41412 ) 64.211 x 104 75.766% 10°
- 16412
e 65.762x 10°
‘ 106280 163050
' // 119.611x10°
_|a1412 32.936x 105
! P 1 /
// 90.828x 106
52448
3837 18837
0.864x 109 23.576x10°

() (d)
Fig. 4. A one-bay, two-storey frame: (a) geometry and loading;
(b) AFD (N); (¢) SFD (N); (d) BMD (N-mm) for optimum

design

mum cost of 13.8066. These values must be multiplied by
¢¢ to obtain the actual cost of construction. The CPU time
used on a micro VAX/VMS was 5.05 seconds. The Lagrange
multiplier 7 converged to 0.9029.

3.4 Regular multibay and multistorey frames

As indicated in the previous sections, the formwork cost con-
stitutes the major cost of RC construction. In RC multibay
and multistorey frames, the beam formwork is re-used from
floor to floor, if column sizes are kept constant. In other
words, it is common practice to keep the column size constant
over each floor or several floors and to make adjustment for
the differing loads in each storey with reinforcing steel. More-
over, this facilitates supervision of construction. For the same
reasons, it is normal to keep the beam depth and width uni-
form in a given storey or several storeys. These observations
will be exploited in the formulation of the optimization prob-
lem, in which it will be assumed that all beams at a given
floor level have the same cross-section and .all columns in a
given storey have the same cross-section.

Let us designate the number of storeys by N, so that the
total number of beams is

Ny=Y_ NF, (73)

where Nf is the number of bays in the floor, and the total
number of columns is
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Fig. 5. Optimum distribution of the design variables at various
sections of the one-bay, two-storey frame of Fig. 4

N,
Ne=3 (Mf+1). (74)
k=1
In this section, the effective depth zé“b, (k=1,...,Ng), of the
beam group in each storey is the unknown design variable.
However, the steel ratio is allowed to vary along the span of
each beam in the storey. If a beam is discretized into N,
beam elements, the steel ratio may be designated by zemlC

(C_l,...,Nc, ——1,..-,Nb,k-—1,...,N3).

Table 3. End forces (N) and midspan moment (N-mm) of the
members of the one-bay, two-storey frame

Mem-| AM1|AM2| AM3 | AM4 |AMS5
ber
AC [354944] -3837] 864083(-348743{ 3837[ -12376040
BD 290718| 18837 235761531-284517[-18837] 32935803
CD |-27574[152448| 93106316( 27574]163050(119610927B0827691
CE [146295(-414121-80730276[-136289| 41412| -64210540]
DF [121467( 46412 86675124}-110911(-46412f 75765692
EF ) 46412106289 64210541} -46412{110911] -757656926 5762138

AMS MSM

The effective depth z2 ( = 1,...,N;), of the col-
umn group in each floor is also an unknown des1gn vari-
able, whereas the gross steel ratio 23, (n =1,. N +1;
k =1,...,Ng) in each of the columns of the glven ﬂoor is
permitted to vary freely.
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Hence an RC frame structure of Ng storeys with
Nb bays in each storey will involve a total of 2N; +
Zk:l [N b (Ne+ 1)+ 1] unknown design variables.

The objective function for multibay and multistorey RC
frame may then be written as

Ny N X E k E
6= 20 2 [y (55 may +muy) +20p) 2 +
k=1 m=1 €=1
Ny Nf+1

k /= k
S>> [z%c (chkmzc + mlc) + 25 mo.d. + ch] L™,
k=1 n=1

(75)

where myy, map, C1p, M1, MY, Coc Temain the same as given
in (1).

The listing of the design constraints and problem formu-
lation also remain unchanged from those in the previous sec-
tion, with superscripts or subscripts appropriately modified
to reflect the new groupings of design variables.

The optimality criteria (34)-(37) for the variation of the

depth z;‘b or zgc in each floor and the steel ratio zgz"k or z:,’fck
in each beam element or column become
Nb Ne & & Qemk
> 2 {[Z:%n m2b+m1b] LMY —p [——-—2 +
m=1e=1 Ezb(zzb)
3Qemk :l _ imk ’Mr?{g)ﬂ _
ZZb(zzb)4 Zlb(ng):;zg,b (e = 63Z§§,"k)
yemk 3/“—
emkl! maxl2 + emk \ _ (ﬂgmk _7§mk) =0,
4(223)
k=1,...,Ng, (76)
or
NE41
Z 23 M2c + My
n=1
Q an
H [‘ VI kvt |
'620(220) ezc(‘ch)
k (9
nk IPI?laxl 3/‘ "k ( nk nk
+ - - =0
3 (puky2 Bzz fe gt -at) =0,
k=1,...,Ng, (77)
and
E no. pemk _ yemk (c2 - 2C3zemk)er?172)f|
Z26™2b 1 2 (zemk k )2( _ emk)Z -
1b\Zgp " Zgp)"\C2 — €323y
(ﬂﬁmk—vé""’“)} =0, ©
or
L™ (5 (Pnk)2 az

(a5t - 7;}")} =0, (79)
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in which 7™* and @* are identical to W™ and @ of (38)
and (39), respectively, with em replaced by emk and ¢ re-
placed by nk. Note that ,Bemk and 7emk in (76) are inde-

pendent of em because the depth ng does not vary with e
(element) or m (span) at a given floor level (k). Likewise,
,6’ and vy kin (77) are independent of n.

As in the previous section, the procedure for updating
commences with the development of explicit expressions for
the evaluation of design variables as controlled by various
design constraint combinations. Some of the basic changes
are listed below.

If the design of the beam is governed by deflection and
flexural strength constraints, the expression of the depth for
the beam group in a storey equivalent to (44) is given by

(5t =

Z i HQg™k

m=1e=

)

b & R /\emk
Efetpma + Dot A - 50w

'ITL‘— e=1

(80)
oy 212, (cg — c32F,)QEmb
LAML = 2271t 3b_( 2 FS )91 _gemk (81)
3€2p| Mmax|
ElE % %
2./715| METE| | 2k (g — c32k)
LAM = =— = [3bk 3bl, (82)
25K (cy — c32§F)(|MEax) 2

where MI’me is the maximum bending moment among the

beams in the considered storey and zé“b is the corresponding
desired steel ratio. The steel ratio zg{,nk

emk
tipliers A‘l”mk and —]—b are computed using (47), (48) and
(49), respectively, with an appropriate change in notation.
If the steel ratio in any of the elements of a beam group is

emk
smaller than the lower bound z3z, the A"lbl—b in (80) is set

equal to zero during the computation of zkb. Otherwise, the
evaluation of the design variable when the other constraint
combinations govern remains the same, as given in Section
3.2.

Regarding a column group in a floor, if the deflection and
uniaxial bending strength constraints govern the design, then
the depth is given

—zb 2b)2 — 4(7a)(z¢
. b/ (2b)* — 4(za)(77) (83)

#2e = 2(za) J
in which
NE+1

the Lagrange mul-

{(zgckmh + 1) L™ 4 iy + m} . (84)

e Lrk(E 4+ dl )3Pnk/6zzc
zZal =

k

Py /8231)

) (85)

NE+1

- % - - (80
N§+1

Z —ﬂ£2mQ2 . (87)

The steel ratio for each column in this floor is evaluated using
(54). If the steel ratio for any column is smaller than z3,, it
assumes its lower bound, and during the computation of 25,
from (83), zal becomes zero, because the uniaxial bending
strength constraint is not active for that column.

If the depth z§ . using (83) is smaller than its lower bound,
the steel ratio is assigned its upper bound and the depth
is computed for one or more columns with critical load to
satisfly the uniaxial bending strength constraint. The depth
of the column group in this case is the largest among those
computed for the respective critical forces. The steel ratio
for the remaining columns in this group is determined as per
the uniaxial bending strength requirement of each column.
If the steel ratio for any of the columns in the same group
is smaller than the lower bound, it is set equal to its lower
bound.

The computation of the Lagrange multipliers and the cor-
responding fixed end actions for analysis of the adjoint sys-
tem is identical to the one given in Section 3.2, but with
one significant difference. The Lagrange multipliers of the
strength-controlled elements at a given floor level are now in-
fluenced by all the elements at this level because the depth
of all beams (all columns) is the same.

The Lagrange multiplier i is computed from the deflec-
tion constraint in the same manner as the previous section

EN,Q Q{fa + ZNﬁ Qlcca (88)
=[Sz @, + Lz @)

3
1

B

in which

m=1e=1 bezz EZbiélm
' N;’E—*’l ;% nk nk
1iQ Q
Qlcca= Z - _1_1 + 2§ ,
n=1 \ D23 1 flacZam
" le: Ne Qizmk ngk
Qb = {
» S Ry o (e)?
T I G
Qk = [ |
P Bk ()3
Ezm:
g%k %Qemk
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35 T2b
m— 6‘—‘
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Fig. 6. Two-bay, two-storey RC frame: (a) geometry and loading; (b) AFD (N); (¢) SFD (N); (d) BMD (N-mm)

nk k 2
sz ZNI: +1 [ ZcQ] ! 23.) +Q722k]

72m1 = — N8
{(zg‘f_n'iZC + l)L”k + Jilyuk + zal}

where zal is given in (85). It beomes zero whenever the steel
ratio in a column of a group assumes its lower bound.

Table 4. Minimum cost design of a two-bay, two-storey RC frame

Column | Initial | Optimum | Gross steel | Mode of | Selfweight
Z5, mm| 25 mm| area mm?| failure {load kN/m

AD 400 265 763 T 2.52
BE 400 265 1537 C 2.52
CF 400 265 763 T 2.52
DG 400 250 725 T 2.40
EH 400 250 725 C 2.40
FI 400 250 725 T 2.40
Beam | Initial [Optimum| A | As2 | Asz | Ase | Selfweight
25, mm| 25, mm|mm?|{mm? |mm? |mm? |{load kN/m

DE 500 478 415| 434 434(1242 4.37
EF 500 4781179 706| 706| 637 4.37
GH 500 3821 402| 467 467|1406 3.58
HI 500 382] 1558 859| 859| 584 3.58

3.4.1 Ezample 8. Multibay, multistorey frame

The two-bay, two-storey frame shown in Fig. 6a is subjected
to the factored design loads in addition to selfweight. The
strength constraints are the same as in the previous two ex-

amples. The maximum deflection at midpoint of beam FF
must be less than or equal to 10 mm. The design data in-
cluding the bounds and initial steel ratios remain the same
as for Example 2, except that 29,y = 250 mm.

The results are summarized in Table 4. The end forces
of each member and the midspan bending moments of the
beams, as obtained from the analysis part of the solution
are given in Table 5 in the notation of Example 2. The AF,
SF and BM diagrams are shown in Figs. 6b, ¢ and d, respec-
tively, with the cross-sections of the members of the optimum
frame shown in Fig. 7.

The design of the top beams (GH and HI) in the upper
floor is governed by the flexural strength constraint and upper
bound on steel ratio, or by the flexural strength constraint
alone, whereas those in the lower floor (DE and EF') are con-
trolled by the combination of deflection and flexural strength
constraints. The design of the columns in the top floor are
governed by a lower bound on both design variables, whereas
those in the ground floor are controlled by a uniaxial bending
strength constraint on the depth and an upper bound on the
steel ratio, or by a uniaxial bending strength constraint and
a lower bound on the steel ratio, or by a uniaxial bending
strength constraint alone. Further, the results show that the
interior columns of both storeys are governed by the com-
pression mode of failure, whereas all exterior columns are
governed by the tension mode of failure. This is the most
likely phenomenon to occur for such a geometry and loading
combination, due to the fact that interior columns are sub-
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Table 5. End forces (N) and midspan moment (N-mm) of the members of the two-bay, two-storey frame

[Member | AM1 | AM2 | AM3 | AM4 | AM5 | AM6 | MSM |
AD | 218818 | 5854 | 16098535 | -208725 | -5854 | 7316566
BE | 668002 | 9804 | 21368740 | -657909 | -9804 | 17849160
CF | 297444 | 20342 | 35443284 | 287352 | 20342 | 45923712
DE -2405 | 104208 | 21651384 | 2495 | 167625 | -180195100 | 68972192
EF | -10826 | 175314 | 172384380 | 19826 | 150885 | -99097808 | 108908340
DG | 104518 | -20641 | -28967950 | -97324 | 20641 | -32956076
EH | 314970 | -7527 | -10038437 | -307776 | 7526 | -12541389
FI | 136467 | 40168 | 53174092 | -120273 | -40168 | 67329760
GH 32641 | 97324 | 32056076 | -32641 | 145573 | -153579440 | 58542636
I 40168 | 162203 | 166120820 | -40168 | 129273 | -67329760 | 101881670

jected to a smaller bending moment and a larger axial force
than the exterior columns.
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Fig. 7. Optimum distribution of the design variables at various
sections of the two-bay, two-storey frame

The initial design cost of 34.0204 converged to the opti-
mum cost of 27.4168. These values must be multiplied by
c¢ to obtain the actual cost of construction. The CPU time
used on a micro VAX/VMS was 7.08 seconds. The Lagrange
multiplier Iz converged to 1.9633.

3.4.2 Ezample 4. Seven-storey RC frame

A seven-storey RC frame is subjected to the factored design
loads shown in Fig. 8 in addition to the selfweight. The

Table 6. Minimum cost design of the seven-storey RC frame

Column | Initial | Optimum | Gross steel [ Mode of | Selfweight
z5mm| 25 mm| area mm?| failure |load kN/m

AFE 500 490 1324 C 4.38
BF 500 490 2610 (o) 4.38
caq 500 490 2651 C 4.38
DH 500 490 1324 C 4.38
EI ~ 500 390 1075| C 3.55
FJ 500 390 1659 C 3.55
GK 500 390 2152 C 3.55
HL 500 390 1075 C 3.55
M 500 344 961 C 3.18
JN 500 344 1265 C 3.18
KO 500 344 1924 C 3.18
LP 500 344 961 C 3.18
MQ 500 287 817 T 2.70
NR 500 287 1635 C 2.70
oS 500 287 1571 C 2.70
PT 500 287 817 T 2.70
RU 500 279 1397 C 2.64
N 500 279 1583 C 2.64
Uw 500 254 1209 C 2.43
VX 500 254 1469 C 2.43
wYy 500 250 1056 T 2.40
X7 500 250 1165 T 2.40
Beam | Initial |Optimum | As1 | Asz | Aes | Asa | Selfweight
Z mm| 2§ mm|mm?|mm?|mm?|mm?|load kN/m

EF 500 521| 667| 699 6991852 4.72
FG 500 521]1679) 908 908(2020 4.72
GH 500 521(1103| 540| 540| 986 4.72
1J 500 433} 684} 569{ 5691478 3.99
JK 500 4331404 761| 76111763 3.99
KL 500 433 818 448 448 972 3.99
MN 500 423| 675| 580| 58041570 3.92
NO 500 42311457 815| 8151724 3.92
OP 500 423 952| 442| 442| 923 3.92
QR 500 4461 74311015|1015]|1814 4.10
RS 500 4461597 613| 613;1762 4.10
ST 500 446(1176| 850( 850| 602 4.10
uv 500 409(1110| 1400 1400|1667 3.80
wXx 500 409(1334| 12931293 1663 3.79
YZ 500 50001219 2034|2034 (1182 4.55

maximum deflection at midpoint of beam FG in the bottom
floor must be less than or equal to 14 mm. The strength
constraints and other design information remain the same as
for Example 3.

The optimum distribution of the design variables is sum-
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Fig. 8. The seven-storey RC frame

marized in Table 6. The end forces of each member and
midspan bending moments of the beams as obtained from
the analysis part of the solution are given in Table 7.

The designs of the bottom floor beams are controlled
by the combination of deflection and flexural strength con-
straints, whereas all the other beams are governed by the flex-
ural strength constraint and an upper bound on the steel ra-
tio, or by the flexural strength constraint alone. The designs
of the columns are governed by a uniaxial bending strength
constraint and a lower bound on the steel ratio, a uniaxial
bending strength constraint and an upper bound on the steel
ratio, a lower bound on the depth and a uniaxial bending
strength constraint on the steel ratio, or the uniaxial strength
constraint alone.

The initial design cost of 139.7619 converged to the opti-
mum cost of 120.2252. These values must be multiplied by
¢c to obtain the actual cost of construction. The CPU time
used on a micro VAX/VMS was only 3 minutes and 36.58
seconds. The Lagrange multiplier i converged to 2.4628.

4 Conclusion

The minimum cost designs of RC frame structures are ob-
tained using methods based on DCOC. As the design problem
involves more complex behavioural constraints, the study in
this paper commenced with the reformulation of the design
problem, followed by a derivation of OC. The design problem
was solved in a systematic manner by taking into account cus-
toms followed in the actual construction of these structures.
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Algorithms were developed and numerical procedures coded
to obtain the solution to the minimmum cost design problem
of these structures whose cross-sectional parameters are uni-
form member-wise or uniform per storey. The variation of
the force resultants in the beams was accounted for by al-
lowing the steel ratio to vary freely along the spans, whereas
the variation of the force resultants in the columns per storey
was accounted for by using a different, but constant steel ra-
tio in each column. In this part of the two-part paper, the
columns of the frame are assumed to be subjected to uniax-
ial bending action. However, some of the columns, especially
those of an edge frame, can be subjected to bending in both
major axes of the cross-section. Hence, in Part II, columns
under biaxial bending are considered. Several examples were
chosen to demonstrate the usefulness of the algorithms devel-
oped. It was shown that the algorithms based on DCOC are
extremely efficient as judged by the small amount of CPU
time necessary even for reasonably large frame structures.

References

Adamu, A. 1995: Minimum cost design of RC structures using
methods based on optimality criteria. Ph.D. Thesis, University of
Sydney

Adamu, A.; Karihaloo, B.L. 1994a: Minimum cost design of RC
beams using DCOC. Parts I: beams with freely-varying cross-
sections. Struct. Optim. 7, 237-251

Adamu, A.; Karihaloo, B.L. 1994b: Minimum cost design of RC
beams using DCOC. Parts II: beams with uniform cross-sections.
Struct. Optim. 7, 252-259

Adamu, A.; Karihaloo, B.L. 1995: Minimum cost design of RC
beams with segmentation using continuum-type optimality crite-
ria. Struct. Optim. (in press)

Adamu, A.; Karihaloo, B.L.; Rozvany, G.I.N. 1994: Minimum
cost design of reinforced concrete beams using continuum-type
optimality criteria. Struct. Optim. 7, 91-102

Comité Euro-International du Béton (CEB) 1990: CEB-FIB
Model Code. Paris: Bulletin d’information Nos. 195 and 196

Ferguson, P.M. 1979: Reinforced concrete fundamentals. New
York: John Wiley & Sons

Grierson, D.E.; Moharrami, H. 1993: Design optimization of re-
inforced concrete building frameworks. In: Rozvany, G.L.N. (ed.)
Optimization of large structural systems (Proc. NATO/DFG ASI,
held in Berchtesgaden, Germany, 1991), pp. 883-896. Dordrecht:
Kluwer

Kanagasundaram, S.; Karihaloo, B.L. 1990: Minimum cost design
of reinforced concrete structures. Struct. Optim. 2, 173-184

Karihaloo, B.L. 1993: Minimum cost design of reinforced concrete
members by nonlinear programming. In: Rozvany, G.LN. (ed.)
Optimization of large structurdal systems (Proc. NATO/DFG ASI,
held in Berchtesgaden, Germany, 1991), pp. 927-950. Dordrecht:
Kluwer

McGuire, W.; Gallagher, R.H. 1979: Matriz structural analysis.
New York: John Wiley & Sons

Moharrami, H.; Grierson, D.E. 1993: Computer-automated design
of reinforced concrete frameworks. J. Struct. Eng. ASCE 119,
2036-2058



30

Table 7. End forces (N or N-mm) and midspan moment (N-mm) of the members of the seven-storey frame

[ Member | AM1 | AM2 | AM3 | AM4 | AM5 | AM6 | MSM |
AE 806922 | -14552 -1092805 | -789402 14552 | -57116956
BF 2278733 | 11422 | 33633612 | -2261213 | -11422 12055904
CcG 2209631 | 29676 | 58136640 | -2192111 | -29676 60569200
DH 819706 | 38454 | 69920896 | -802186 | -38454 83893504
EF -12885 | 181854 | 113382160 12885 | 236484 | -277272420 | 118426400
FG -19438 | 238264 | 256249660 19438 | 249797 | -296615390 | 150621090
GH -12261 | 194841 | 179233710 12261 | 188636 | -162169070 | 92938856
EI 607548 | -37438 | -56265200 | -596886 | 3I7438 | -56047652
FJ 1786464 4869 8966834 | -1775802 -4869 5641041
GK 1747472 | 36853 | 56812472 | -1736810 | -36853 53747844
HL 613551 | 50715 | 78275568 | -602888 | -50715 73869088
1J 20116 | 131919 | 95060232 -20116 | 162049 | -185451600 | 80220248
JK 15210 | 166528 | 177900880 -15210 | 176435 | -212577680 | 104853280
KL 12046 | 131375 | 111866230 -12046 | 138096 | -130346610 | 64154800
IM 464967 | -27322 | -39012584 | -455435 | 27322 | -42951984
JN 1447225 -37 1909679 | -1437694 37 -2020678
KO 1428999 | 33690 | 46963604 | -1419468 | -33690 54106396
LP 464793 | 38669 | 56477516 | -455261 | -38669 59528048
MN -3027 | 130477 | 91645712 3027 | 163014 | -189257440 | 79666512
NO 10603 | 167653 | 178387260 -10603 | 174753 | -203234640 | 108794220
orP -11012 | 135139 | 124851620 11012 | 133894 | -121428920 | 61820064
MQ 324959 | -40349 | -48693732 | -316856 | 40349 | -72351848
NR 1107026 | 13593 | 12890845 | -1098924 | -13592 27886728
oS 1109576 12076 | 24276618 | -1101474 | -12076 11950724
PT 321367 | 49680 | 61900872 | -313265 | -49680 87139784
QR 50349 | 166856 | 72351848 -50349 | 217730 | -224971550 | 139777660
RS 14446 | 169553 | 204070110 -14446 | 174130 | -220089360 88643288
ST 49680 | 189272 | 158660340 -49680 | 163265 | -87139784 | 119469130
RU 711641 | -22310 -6985283 | -703733 | 22310 | -59944380
SV 738072 | 47310 | 49478296 | -730163 | -47310 92451360
Uv -16524 | 180739 | 137102220 16524 | 195857 | -190015790 | 165961940
Uw 522994 | -48834 | -77157840 | -515715 | 48834 | -69344632
VX 534306 | 63834 | 97564424 | -527028 | -63834 93938056
WX -6984 | 183999 | 159234530 6984 | 192542 | -189137170 | 155287100
wy 331717 | -65818 | -89889888 | -324523 | 65818 | -107564600
XZ 334486 | 70818 | 95199112 | -327292 | -70818 | 117255380
YZ 70818 | 224523 | 107564610 -70818 | 227292 | -117255380 | 282928260
Park, R.; Paulay, T. 1975: Reinforced concrete structures. New Warner, R.F.; Rangan, B.V.; Hall, A.S. 1988: Reinforced concrete

York: John Wiley & Sons

Rice, P.F.; Hoffman, E.S. 1972: Structural design guide to the ACI
building code. New York: Litton Educational Publishing Inc.

Rozvany, G.I.N. 1989: Structural design via optimality criteria.
Dordrecht: Kluwer

Rozvany, G.I.N.; Zhou, M.; Gollub, W. 1990: Continuum-type
optimality criteria methods for large finite element systems with
a displacement constraint. Part II. Struct. Optim. 2, 77-104

Rozvany, G.I.N.; Zhou, M. 1993a: Continuum-based optimality
criteria (COC) methods: an introduction. In: Rozvany, G.LN.
(ed.) Optimization of large structural systems (Proc. NATO/DFG
ASI, held in Berchtesgaden, Germany, 1991), pp. 1-26. Dordrecht:
Kluwer

Rozvany, G.I.N.; Zhou, M. 1993b: Optimality criteria methods for
large structural systems. A Research Project Report (Ro 7T44/1)
58, Essen, Germany

Standards Association of Australia. AS 3600 1988: Concrete

structures. Sydney: SAA

(third edition). Longman Australia

Weaver, W.; Gere, J.M. 1965: Analysis of framed structures. New
York: Van Nostrand

Zhou, M.; Rozvany, G.I.N. 1992: DCOC: an optimality criteria
method for large systems. Part I: theory. Struct. Optim. 5, 12-25

Zhou, M.; Rozvany, G.I.N. 1993: DCOC: an optimality criteria
method for large systems. Part II: algorithm. Struct. Optim. 6,
250-262

Appendix A. The force-displacement relationships

In the notation of Zhou and Rozvany (1992, 1993), the force-
displacement relationships for the frame element (McGuire and
Gallagher 1979; Weaver and Gere 1965) shown in Fig. A.la are

{F} =[sH{u’}, (89)
where

e _E .
[s]—(Le)s



AS(L9? 0 0 —A%IL?)?® o0 0

0 121 6I°L® 0 —121° 6I°L®

0 BI°LC4aI®(L®)* 0  —6I°L°2I%(L°)?
—A%(L*)® o 0 AYI% o0 0 ’

0 —127° —6I°L® 0 121 —6I°L®

0 6I¢Lc 21¢(L*)? 0 —6I°L° 41¢(L°)?

(90)

{F}y={P; Vi M5 Pg V§ Mz}, (91)
{y={wi v 6% wh o5 6%} (92)

Since the global coordinate system may be different from the ele-
ment coordinate system, the orthogonal transformation matrix is
introduced

cos® sinfd O 0 0 0
—sind cosf O 0 0 0
S 0o 1 0 0 0
[T = 0 0 0 «cosfl sind ’ (93)
0 0 0 —sinf cosé
0 0 0 0 0 1

where 6 is the angle measured from the global z-axis X, to the
longitudinal axis of the element, denoted X.

The element displacements and forces in the local coordinates
are

{u} =[TNug}, (94)

{F°} = [T°{Fg}, (95)
where {ug} and {Fg} are, respectively, element displacement and
force vectors in the global coordinate system.

For the flexibility formulation, the stable statically determinate
frame element chosen is the one supported as a cantilever beam
with the built-in end at B. The force-displacement relationships
for this element are given by

w;A P3
{ufa}y opa p =[0I Vi ¢, (96)
054 M3
with
Ie 4= 0 0
ey2 e
CARE IS (o7
0 L L
2le Te
The transformation matrix for the degree of freedom can be writ-
ten as
1 0 0 0 0 0
[Y3l=10 1 0 0 0 o |. (98)
0 01 0 0 0

If there are loads applied on the frame element, as in Fig. A.1b,
the fixed-end forces are

o e
Pg, LL°
eLe
Via B
e c(Le)2
€ MFA z 12
{Fri=§ .~ = cre (o (99)
Pip L
Vg p°L®
2
oA 2
Msp ) Lty

where the equivalent nodal loads {P%} are the fixed-end forces
with the signs reversed. These can be transformed to the equiva-
lent nodal loads {P%,} in the global coordinate system as follows:

{Pge} = [T {P5} = —[T"{F5}. (100)
In this case (89) becomes
{F°} = [s"Hu"} + {F7} . (101)
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The initial relative displacements {174} caused by loads within
an element may be computed using standard formulae, and (96)
rewritten to read

{ufa} = £2{F7a} + {854}, (102)
where

(Fs.)"={ Ps Vi M5}.

Appendix B. Inclusion of selfweight

The selfweight of a rectangular cross-section per unit length is
We = z12(25 + df_,)wc, (103)
in which s stands for a beam element em or column ¢, and z for
beam b or column c.

For a general frame element, such as the one shown in Fig.
A.1b, the selfweight may be resolved into two components

W, =p' = W.cos8, (104)
W, = q" = W,.sinf. (105)
The vector of nodal forces {P} due to the selfweight in the real

system may be included in its equilibrium equation through equiv-
alent nodal loads

(Fin} -

L_i .
%~ sin §

i
% cos@

. . (zhH? cos b
- {F’pw} =za( +do)wey % . (106)
-sind

i
5 cos @

iy2
(B2 00 )

12

If the unit considered is a horizontal beam element, (106) simplifies
to

{PEw} =
0
Lem/2
St R E N (107)
Lem /2
(L2 /12
On the other hand, if the unit is a vertical column, it simplifies to
Le/2 )
0
< c < ' 0
{Pow} = —{Frw} = —zc(2 +dc)we /2 (108)
0
0 J

The partial derivatives of (106) with respect to the design variables
z5 are

: 3
( %‘—sin()

i
%cos@
\2
U—“ﬁ)—cosa

i
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f
%cosﬂ

iy2
—%LCOSH
J

The adjoint nodal displacement vector due to selfweight is

{&} = .

57 (109)
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Fig. A.1 A frame element showing: (a) nodal force-displacement relationships; (b) fixed-end actions due to distributed loads between
nodes

=T . — ot — i - . t .
@ ={w % 7 oW W ) 0y { e} - (112)
so that for beam elements or columns gives 2 2=
=i T 3P"EW} rowel’ (o _ )
a = — 6w’y sin @ + 6v'4 cos 6 + . - oLt . . —
w{m) { 8z 1 ( 4 A 7= -@—Zg—“g-"i(smsinueﬁ; cos8 +84L° cos 8 +
Tl cos8 + 6w sin 6 + 655 cos § — Bip L) cos ) . (1) o cind + 6% cos - Tl cosf). (113)
Denoting Equations (112) represent the additional terms in OC (32) and

(33), from selfweight.
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