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Adaptive topology optimization 

K. M a u t e  and E. t t a m m  

Institute of Structural  Mechanics, University of Stuttgart ,  Pfaffenwaidring 7, D-70550 Stuttgart ,  Germany 

A b s t r a c t  Topology optimization of continuum structures is 
often reduced to a material distribution problem. Up to now this 
optimization problem has been solved following a rigid scheme. A 
design space is parametrized by design patches, which are fixed 
during the optimization process and are identical to the finite ele- 
ment discretization. The structural layout is determined, whether 
or not there is material in the design patches. Since many design 
patches are necessary to describe approximately the structural 
layout, this procedure leads to a large number of optimization 
variables. Furthermore, due to a lack of clearness and smooth- 
ness, the results obtained can often only be used as a conceptual 
design idea. 

To overcome these shortcomings adaptive techniques, which 
decrease the number of optimization variables and generate 
smooth results, are introduced. First, the use of pure mesh re- 
finement in topology optimization is discussed. Since this tech- 
nique still leads to unsatisfactory results, a new method is pro- 
posed that adapts the effective design space of each design cycle 
to the present material distribution. Since the effective design 
space is approximated by cubic or Bdzier splines, this procedure 
does not only decrease the number of design variables and lead to 
smooth results, but can be directly joined to conventional shape 
optimization. With examples for maximum stiffness problems of 
elastic structures the quality of the proposed techniques is demon- 
strated. 

1 I n t r o d u c t i o n  

The determination of the structural layout is the first and ba- 
sic problem in the course of a design process. This problem 
can be solved by the most universal kind of structural opti- 
mization, i.e. optimizing the topology of a structure. During 
the last years numerous methods for topology optimization of 
discrete and continuum structures have been introduced and 
applied to a broad range of design problems. An overview 
can be found in the proceedings edited by Bendsee and Mota 
Soares (1993). However, since these methods are only able 
to outline roughly the form of the body, their results must be 
processed again and improved by further design tools, such 
as shape optimization techniques. Therefore, the objective 
of the present paper is to introduce adaptive techniques into 
topology optimization of continuum structures. These tech- 
niques improve the efficiency of the conventional topology 
optimization procedure and the quality of its results. More- 
over, the proposed method provides an automatic link be- 

t w e e n  topology and shape optimization. First,  the conven- 
tional optimization procedure is shown and its shortcomings 
are discussed. An alternative design concept is presented 
which separates design and analysis models. An artificial 
orthotropic approach is introduced solving the material dis- 

tribution problem. The application of mesh refinement to 
topology optimization is explained and discussed. Finally, 
an adaptive technique is presented, which orientates the ac- 
tive optimization variables in the analysis model on the ma- 
terial distribution in the design space. The features of the 
proposed techniques are demonstrated with maximum stiff- 
ness problems of two-dimensional elastic structures solved by 
optimality criteria and mathematical  programming methods. 

2 T o p o l o g y  o p t i m i z a t i o n  

The topology of a structure is defined as a spatial arrange- 
ment of structural members and j oints or internal boundaries. 
Consequently, topology optimization means varying the con- 
nectivity between structural members of discrete structures 
or between domains of continuum structures, as can be seen 
in Fig. 1. For discrete structures, such as trusses, the varia- 
tion of connectivity means to generate or to eliminate struc- 
tural members between existing joints, but also to define new 
joints or to remove existing joints. Analogously, for contin- 
uum structures the variation of connectivity means to sepa- 
rate or to join together structural domains and to generate 
or to reduce structural domains. However, in the case of con- 
t inuum structures it is not sufficient to only indicate where 
cuts must be made to change the structural  topology. In ad- 
dition, the shapes of the cuts must be determined to define 
the new structural layout. Therefore, tb3zvany et al. (1995) 
call optimizing the topology of continuum structures general- 
ized shape optimization. Since discrete structures can be un- 
derstood as a special case of continuum structures, topology 
optimization only in the sense of general shape optimization 
is investigated in this study. 

Variation of Topology 

Discrete Structure Continuum Structure 

Fig. 1. Variation of topology 

The entire form of a structure changes by a variation of 
the topology. Therefore, the geometric model of the opti- 
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mization procedure must describe the body of the structure 
in a general way. In principle, there are two different possibili- 
ties, which are illustrated in Fig. 2. Geometrically a structure 
is defined by internal and external boundaries ("geometrical 
description"). From a material point of view the topology is 
defined by a simple 1/0 decision for each point in the design 
space 12, whether there is material (1) or not (0) ("mate- 
rial description"). It is obvious that different optimization 
problems result, depending on which possibility is chosen. 

Geometrical description 
internal 
bounda  

extcrnal 
boundary ?i!4~ {~{i 

Material description 

material :i~ii;i .................................................... ~ii~:~ ........ ~ no material 

design space 

Fig. 2. Geometrical and material description 

Up to now, only a few approaches based on a geometri- 
cal description are known in topology optimization, e.g. the 
"bubble method" by Eschenauer el el. (1993) or a heuristic 
approach by Rosen and Grosse (1992) in topology optimiza- 
tion are known. The main difficulty of these methods comes 
up when holes must be generated in a continuum structure, 
which means a violation of the continuum assumption and, 
therefore, a nondifferentiable step in the optimization proce- 
dure. Therefore, the predominant number of topology opti- 
mization methods use the material description, which will be 
also applied in the following investigations. 

3 Ma te r i a l - ba sed  t o p o l o g y  op t imiza t i on  

If only one isotropic material is used, the material description 
leads to a discrete value parameter function X (Bendsce 1989) 

0 ---* no material 
X(x) = 1 --* material x E 12. (1) 

Up to now, using this material-based design model, the op- 
timum layout of a structure is determined by a rather rigid 
procedure as shown schematically in Fig. 3. Since it is not 
possible to use each point of the design space as an optimiza- 
tion variable, first the design space must be parametrized 
by design patches. This parametrization is fixed during the 
optimization process and is identical to the finite element dis- 
cretization, which is used for structural and sensitivity anal- 
yses. In the following procedure it is determined whether or 
not there is material in a design patch by optimizing the ma- 
terial distribution in the design space. As a result of the op- 
timization process, the design space is more or less distinctly 
divided into voids (white patches) and structural elements 
(dark patches). Additionally, this optimized material distri- 
bution is lumped and smoothed in a postprocessing step to 
obtain the final layout. 

Using the parametrized indicator function X, the design 
problem yields an integer optimization problem, where the 

• Parametrized problem 
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• Final Layout " ..... 

Fig. 3. Material-based topology optimization 

indicator parameters of the parametrized problem are the 
optimization variables. The search for the optimum material 
distribution in the design space corresponds to a combinato- 
rial problem. However, Kohn and Strang (1986) stated that 
this formulation of a general shape optimization problem is 
not convex and, therefore, not well-posed. This means, on the 
one hand, that the optimization results are strongly depen- 
dent on the chosen parametrization and, on the other hand, 
that the integer formulation comprises many artificial local 
minima. Moreover, since the number of design variables is 
preferably large to describe at least approximately the ba- 
sic layout of a structure, the related integer problem is very 
costly to solve. 

These problems can be overcome by transferring the in- 
teger problem into a continuous problem using the method 
of relaxation. The discrete value parameter function X be- 
comes a continuous distribution of a new parameter ~. Two 
different types of relaxation methods can be distinguished: 
the physical and the artificial approach. In the case of phys- 
ical relaxation, intermediate values of the parameter func- 
tion ~ are admissible at the final result, because these values 
can be interpreted physically as special material described 
by certain microstructure models, e.g. the "microhole ap- 
proach" by Bendsce and Kiknchi (1988). The macroscopic 
material behaviour is derived by the method of homogeniza- 
tion (Sanchez-Palencia 1980). In contrast to this, in the case 
of artificial relaxation the intermediate values are not admis- 
sible at the optimum. Following Rozvany et el. (1992), values 
between 0 and 1 can simply be seen as an intermediate stage 
of the optimization process. Consequently, the optimization 
problem must be posed such that the final optimized design 
contains only or at least approximately 1/0 values. In this 
case artificial approaches are introduced (Rozvany et el. 1992; 
Ramm and Maute 1994). 

Based on a physical or an artificial approach numerous 
design problems have been solved. For example, BendsCe 
and Kikuchi (1988) determined the optimum layout for 
plane stress structures, maximizing the structural stiffness. 
Suzuki and Kikuchi (1991) extended this method to three- 
dimensional shell structures. Moreover, the optimum layout 
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with respect to natural frequencies was determined by Diaz 
and Kikuchi (1992) and the topology of two-dimensional elas- 
tic structures with critical load constraints was optimized 
by Neves et al. (1993). To solve diverse design problems 
material-based topology optimization was embedded in a 
mathematical programming scheme by Tenek and Hagiwara 
(1993) and Maute and Ramm (1994). 

The main advantages of material-based topology opti- 
mization methods are their simplicity and stability. Topol- 
ogy optimization can be handled as a simple sizing problem 
varying material parameters of special materials. However, 
they all have the same basic shortcomings. Since the body 
of a structure is described by a 1/0 decision in the entire de- 
sign space, a large number of optimization variables (> 100) 
is necessary to fix at least approximately the layout of the 
structure. Void areas are analysed and "op t imized" ,  since the 
number of optimization variables is constant. In domains of 
the design space, where the parametrization is too coarse, the 
structural layout cannot be clearly identified, since there in- 
termediate values o f f  still remain at the optimum. Moreover, 
since a fixed scanning is used to describe the form of the body, 
the optimization process leads to jagged boundaries, which 
must be smoothed in an additional postprocessing step. Con- 
sequently, due to the lack of clearness and smoothness, the 
results obtained by conventional topology optimization can 
often only be used as a conceptional design idea instead of 
a clearly defined structural layout. Furthermore, local quan- 
tities, such as stresses, cannot be controlled during the op- 
timization process. Olhoff et al. (1991) proposed the use of 
material-based topology optimization as a preprocessor and 
to define exactly the structural shape by conventional shape 
optimization. A similar approach was presented by Hinton 
and Sienz (1994). However, since topology and shape depend 
on each other, this procedure generally does not find the op- 
timum layout. Moreover, as the examples by Olhoff et al. 
(1991) demonstrate, due to the lack of clearness of the results 
obtained by conventional topology optimization, it can be 
very difficult to determine even interactively an initial design 
for the shape optimization step. Moreover, a simultaneous 
application of conventional topology optimization methods 
and boundary variation techniques presented by Maute and 
Ramm (1994) still leads to unsatisfactory results, since only 
boundaries present in the initial design can be smoothed by 
this method. 

4 Alternative design concepts 

In structural optimization two kinds of models can be distin- 
guished. In the design model the geometry is described and 
the design parameters, i.e. the optimization variables, are de- 
fined. The analysis model is used to determine the structural 
behaviour and its sensitivity with respect to the optimization 
variables based on a finite element analysis. The inflexibil- 
ity of the conventional procedure can be reduced to the rigid 
coupling of design model and analysis model. To obtain a 
flexible and efficient method of topology optimization, it is 
necessary to separate these models for geometry and analysis, 
as is already don e in pure shape optimization (Bletzinger et 
al. 1991). Since the pixel-like scanning of a structure is a very 
simple and flexible technique, the form of the structure is still 

parametrized by design patches in a design model as in the 
conventional procedure (Fig. 4). The material parameters of 
the design patches are the optimization variables. Depending 
on the material distribution in the design space an analysis 
model can be generated by different techniques, which will 
be discussed in the following sections. In this analysis model 
the finite element discretization is carried out. The optimiza- 
tion variables of the patches in the design model are linked to 
the material parameters of the finite elements in the analysis 
model. The material parameters of each finite element in the 
analysis model are the so-called active optimization variables, 
which are processed explicitly by the optimization algorithm. 
Since the parametrization of the design model is fixed during 
the optimization process, continuity is guaranteed. Since the 
active set of optimization variables is defined in the adapted 
analysis model, flexibility is provided. 

Design Model Analysis Model 

c5 
Fig. 4. Alternative design modelling 

At the beginning of each design cycle an analysis model 
is generated with respect to the material distribution in the 
design model. Material data are mapped from the design 
model onto the analysis model. An improved or an optimum 
material distribution in the analysis model is determined by 
conventional topology optimization. At the end of each cy- 
cle the new material distribution of the analysis model is 
remapped onto the design model. Consequently, this map- 
ping and remapping correspond to an implicit linking be- 
tween the dependent optimization variables so, i.e. the ma- 
terial parameters of the patches in the design model, and the 
independent optimization variables s, i.e. the active material 
parameters of the finite elements in the analysis model, 

s = L s 0 ,  (2) 

where L is the linking matrix. It is obvious that the number 
of design patches, which finally decides on the resolution, i.e. 
on the clearness and smoothness, of the optimization result, 
can be increased without influencing the size of the active op- 
timization problem. Consequently, the discretization in the 
design model is usually much finer than the discretization 
in the analysis model. Concerning the mapping process this 
means that the material properties sJ of a finite element in 
the analysis model at the beginning of each cycle are an av- 
erage with respect to the volume of the properties s o of the 
related patches n in the design model, 

1 
sS = V • (3) 

The remapping corresponds to a direct adoption of the im- 
proved material data of the finite elements by the design 
patches. The convergence of the optimization process is ex- 
amined by the change of the material distribution in the de- 
sign model. 
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Another consequence of the proposed modelling should 
also be pointed out. Using the conventional method all data 
are fixed with respect to a first and only discretization of the 
design space. For example, boundary conditions or loads can 
be allocated directly to the nodes of the finite element dis- 
cretization. However, this usual way of defining input data 
for the finite element code must be changed, if the proposed 
alternative design modelling is used. Since the finite element 
mesh changes in each design cycle, it is no longer possible to 
define structural data, such as loads or supports, and local op- 
timization data, such as stress limits or deflection constraints, 
in the analysis model at the beginning of the optimization 
process. All data must be defined in the design model only 
in relation to geometrical quantities, e.g. boundary condi- 
tions must be defined assigning supported domains. 

5 Orthotropic approach 

Before discussing different techniques to generate an adap- 
tive analysis model, the approach used in the present study 
to solve the material distribution problem is briefly explained, 
since some special features are required by these flexible adap- 
tive methods. Usually in topology optimization only one 
fixed parametrization of the design space is used to optimize 
the material distribution. The dependencies of the result 
on mesh refinement, distortion and orientation are not no- 
ticed. However, using the adaptive method described above 
in conjunction with a full automatic mesh generator, the fi- 
nite element mesh changes completely in each cycle. Since it 
is not desired that changes of the parametrization in the anal- 
ysis model influence the result of the optimization process, a 
mesh-independent approach is required. 

As mentioned already by Kikuchi (1992), isotropic ap- 
proaches used by Mlejnek et al. (1991), Rozvany et al. 
(1992) or Maute and Ramm (1994) sometimes show consider- 
able dependencies on meshes. Orthotropic approaches, such 
as the rectangular microhole model introduced by Bendsee 
and Kikuchi (1988) or the rank two layered model used by 
Bendsee (1989), possess better convergence properties. The 
advantageous features of the orthotropic approaches can be 
traced back to their greater adaptability concerning mesh dis- 
tortion and orientation, since these approaches have three in- 
dependent parameters defining the material properties. How- 
ever, since most orthotropic models arising from a physi- 
cal relaxation process are based on periodically structured 
micromodels, they need the method of homogenization to 
obtain the relationship between material stiffness and opti- 
mization variables. This yields complex, in general implicit 
relations between macroscopic and microscopic parameters, 
which must be approximated explicitly. A simple and clear 
method can be derived from an isotropic approach, which 
belongs to the artificial type of relaxation. BendsOe (1989) 
introduced the isotropic direct approach 

p(~) __ pO~, E(~) = E°Z/~, # = 1 , . . . ,9 ,  (4) 

where p and E are the density and Young's modulus, respec- 
tively. The corresponding values of the homogeneous basic 
material are denoted by pO and E °. The exponent # is artifi- 
cially introduced in order to obtain clearly structured results. 
This approach can be easily extended to an orthotropic ma- 
terial model to obtain results almost independent of meshes. 

The material matrix C is defined 

1 
u r ~  E2 E2 0 , 

C - 1 - v  ~ 0 0 G 

with 

(5) 

G = (I  - ~ , ) ~  X = (Xl +X2-XIX-2) p(~.) = pO~, 
2 ' 

Ei(~) = E ° ~  , # = 1 , . . . , 9 ,  

where X1, X2 define independent material parameters and the 
angle O determines the orientation of the material with re- 
spect to a frame of reference. Poisson's ratio of the homoge- 
neous material is denoted by v. The material described by 
(5) is weak in shear, since the shear modulus G vanishes, if ei- 
ther E 1 or E 2 is equal to zero. Since the relationship between 
these parameters and the material stiffness is very similar to 
the one obtained by the rectangular microhole model, this 
approach is also successful in topology optimization. More- 
over, due to its simplicity this model can be easily applied to 
other mechanical problems, such as slab and shell structures. 
The quality of the material approach chosen is verified by the 
following example. 

The design problem is to find the structural layout of 
maximum stiffness in a plane design space. The mass in the 
design space is restricted. The structural situation is shown 
in Fig. 5. At the beginning of the optimization process the 
design space consists of equally distributed material. The 
initial material data are given in Table 1. The orientation @ 
of the orthotropic material refers to the x-axis of the given 
coordinate system in Fig. 5. Firstly, a mesh I parallel to 
the edges of the design space is generated and the material 
distribution for the isotropic direct approach (4) and for the 
proposed orthotropic approach (5) is optimized. Although 
there are some differences in detail, both approaches lead to 
nearly the same result. However, the main shortcoming of 
the isotropic approach appears if another mesh is used to 
solve the design problem. In the second mesh II only the 
orientation of the elements is changed by 45 ° . In the case of 
the isotropic approach a totally different result is obtained. 
In contrast to this, the orthotropic approach essentially leads 
to the same result obtained before. 

Table 1. Initial material data for comparison between isotropic 
and orthotropic approaches 

Initial data Mesh I Mesh II 
Number of elements 216 400 
Isotropic approach 
~o 0.4375 0.229 
# 3.0 3.0 
Orthotropic approach 
~ =-oX2 0.25 0.1225 
O 0 0 
# 3.0 3.O 

6 Mesh refinement in topology optimization 

If the analysis model needs to be adapted to the present stage 
of optimization in each cycle, it is obvious to use mesh refin- 
ing techniques analogous to the methods of h-type adaptivity 
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Isotropic Approach Orthotropic Approach 

with 

Mesh I -  

Yl /< ;;>., 
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"': Mesh II ":" 
Fig. 6. Isotropic and orthotropic material approaches 

used in the finite element method to reduce the error in the 
energy norm. In topology optimization the objective of mesh 
refinement in the analysis model is to decrease altogether the 
number of finite elements in the analysis model and, there- 
fore, the number of active optimization variables, on the one 
hand, and to improve in detail the clearness of the structural 
layout, on the other hand. In the present study the proce- 
dure applied is evident. In domains of the design space, where 
there is no material and, therefore, no stiffness, i.e. Xi ~-" 0, 
a coarse parametrization is used. However, in domains of 
the design space, where the structural layout is not clear, i.e. 
0 < Xi < 1, a fine finite element mesh is generated. More- 
over, areas with Xi ~ 1 are refined, since there new holes of 
small size can emerge. 

The local refinement of the finite element mesh is con- 
trolled by the material distribution in the design model. As- 
suming that the areas of the patches in the design model are 
of equal size, the local refining indicator ~ is defined with 
respect to each design patch by 

c~(~ - ~lim) 2 + r/max V ~ < X'lim (6) 
r/max V ~ > Xlim ' 

r/max - r/min 
O z - -  - - 2  ' 

Xlim 
where r/max and r/min are upper and lower bounds of the 
refining indicator. Above the limit value Xlim the refining 
indicator is set to the upper bound ~max. With respect to 
this distribution of refining indicators a new quadrilateral 
mesh is generated by a full automatic mesh generator based 
on the advancing front method (Peraire et  al. 1987). The size 
of the finite elements in the analysis model is controlled by the 
refining indicator in conjunction with the size of the patches 
in the design model. This means that for a refining indicator 
r /=  1.0 an element is generated, whose size is equal to the size 
of the design patch. For r /> 1.0 the finite element generated 
is smaller, for r /<  1.0 larger than the corresponding design 
patch. 

The advantages and disadvantages of the proposed 
method are discussed by a simple example. The structural 
situation is shown in Fig. 6. In a plane rectangular design 
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Fig. 6. Mesh refinement in topology optimization 

space a concentrated load applied under 45 ° must be trans- 
ferred to the opposite clamped edge. The structural layout of 
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maximum stiffness must be found restricting the mass to 25 
percent of the maximum possible mass in the design space. 
The design model consists of 800 square elements. Firstly, a 
coarse uniform mesh of 32 eight-node plane stress elements is 
generated. At the beginning of the first design cycle the anal- 
ysis model consists of equally distributed material. Based on 
the orthotropic approach (# = 2.5) the optimum material 
distribution is approximately determined using an optimal- 
ity criteria method, which corresponds to the algorithm by 
Bendsee and Kikuchi (1988). Optimality criteria methods 
can be also used for several types of constraints (Rozvany el 

al. 1993). The optimization step is finished, if the difference 
between the objective values of two successive iterations is 
less than 0.1 percent. The improved material distribution 
is remapped onto the design model. Based on the present 
material values ~ of the patches in the design model local 
refining indicators 77 for each patch are determined by (6) 
with Xlim = 0.1 and ~max = 0.6. Controlled by these local 
refining indicators y a new finite element mesh is generated 
for the second cycle. As shown in Fig. 6 the void areas in the 
right lower and upper corners as well as the void area in the 
left centre of the design space are meshed coarsely. Struc- 
tural domains with Xi ~ 1 are refined. Consequently, in the 
following optimization step the number of active design vari- 
ables can be reduced in comparison to a uniform fine mesh 
and the structural layout can be determined in detail, where 
it is necessary. 

After a new mesh is generated, the optimized material 
distribution of cycle 1, which is saved in the design model, 
is mapped onto the new analysis model. The mapped ma- 
terial distribution serves as basis for the next optimization 
step. To obtain an increasingly detailed structural layout, 
the adaptive procedure is repeated, increasing gradually the 
maximum refining indicator until the size of the smallest fi- 
nite elements in the analysis model is equal to the size of 
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the design patches. In the final cycle the resolution of the 
structural layout in the analysis model corresponds to the 
resolution in the design model. The finite element mesh and 
the optimized material distribution of each analysis model 
are shown in Fig. 6. The number of finite elements in each 
mesh, the number of iterations used to optimize the material 
distribution and the maximum refining indicator as well as 
the refining limit are listed in Table 2. The minimization of 
the strain energy in the design space, i.e. the maximization 
of the structural stiffness, is shown in Fig. 7. At the end of 
the final cycle the objective, i.e. the strain energy, is reduced 
to Zopt = 1.12 percent referred to the initial design. 

Table 2. Mesh refinement in topology optimization: iteration 
data 

Cycle 1 2 3 4 
Number of elements 32 194 317 524 
Number of iterations 19 19 6 16 
Max. refinement qmax 0.6 0.8 1.0 
Refinement limit Xlim 0.1 0.25 0.25 

Refining the mesh only where it is necessary, the struc- 
tural layout can be determined efficiently and in detail. For 
comparison, if the design problem is solved in only one cy- 
cle using directly the uniform fine discretization of the de- 
sign model and the same optimization algorithm as for the 
adaptive procedure, on the one hand, almost the same result 
(Zref,op t = 1.09 percent) with the same resolution is obtained 
in 36 iterations (Fig. 6). On the other hand, the numerical 
effort is nearly twice as high in comparison to the adaptive 
method using a mesh refining technique. The numerical effort 
enum is estimated by the sum over all cycles nc of the prod- 
uct of the number of design variables ndv a and the number 
of iterations niter, 

enum = ~ ndvaniter • ( 7 )  
n¢ 

However, this example also shows important shortcom- 
ings of the applied procedure. One problem is that the con- 
vergence of the optimization process is disrupted, generating 
new meshes for the analysis model and mapping material 
data from the old mesh onto the new one as shown in Fig. 
7. In general, the number of iterations needed in each cycle 
does not considerably decrease in the course of the optimiza- 
tion process, although the optimized material distribution of 
the previous cycle is used as a basis for the next cycle. Fur- 
thermore, avoiding serious mesh distortion, the size of the 
finite elements from coarse to fine meshes should only change 
smoothly. Consequently, a local refinement yields large ar- 
eas with small finite elements, i.e. also void areas have a fine 
mesh and the number of optimization variables increases un- 
necessarily. In particular, since only the size of the finite 
elements is adapted to the material distribution, the orienta- 
tion of the elements is arbitrary. Although the optimization 
results of the orthotropic approach are almost independent of 
the element orientation, a detailed layout can only be deter- 
mined if the finite elements of the analysis model are aligned 
with respect to the material distribution as shown in Fig. 8. 
Using a material description an arbitrary material distribu- 
tion can only be described exactly, if size and oriental ion of 
the finite elements together are adapted. To overcome these 
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shortcomings the following method is introduced. 

7 ATO - A d a p t i v e  t o p o l o g y  op t i m i z a t i on  

Since optimum topology influences optimum shape and vice 
versa, it is in general important to determine the structural 
layout in detail. Therefore, size and orientation of the finite 
elements of the analysis model are adapted to the material 
distribution of the design model by the following technique, 
which will be briefly outlined. 
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Fig. 9. Adaptive approximation of • polygon 

The fundamental idea of the proposed technique is to 
align the finite elements to isolines of the material distribu- 
tion. First , based on the material distribution of the design 
model, the isolines for one or more levels are determined and 
approximated by cubic or B@zier splines. Domains with den- 
sity values below a certain threshold value are considered as 
voids and are therefore neglected in the following optimiza- 
tion step. Domains with density values above this threshold 
value are considered as potential structural areas and are car- 
ried on being analysed and optimized. In addition, the local 
mesh refinement discussed before is possible in the remaining 
domains. Before the method is illustrated and verified by a 
few examples, some aspects are discussed in more detail. 

7.1 Adaptive approximation of isolines 

Assuming an arbitrary material distribution in t'he design 
model, in a first step the elemental data of the design patches 
are transferred to nodal data by an averaging algorithm. The 
points of one isoline are determined on the edges of the de- 
sign patches by linear interpolation of the nodal density val- 
ues. To obtain the shape of the isolines these points can 
simply be connected by polygons or used as points of a cu- 
bic or B6zier approximation (Farin 1988) leading to smooth 
outlines. A cubic or a B4zier parametrization of the isolines 
is not only advantageous for the quality of the finite element 
meshes and, therefore, for the quality of the results of the 
following optimization step; it also provides the possibility to 

use the design model of this topology optimization procedure 
in conventional shape optimization. 

The parametrization of the isolines by shape functions 
leads to a quadratic optimization problem. If Pi denotes 
the points of the isolines and qi denotes the corresponding 
points of the spline, the coordinates of the control points of 
the approximation splines can be obtained as a result of the 
following minimization problem: 

[[ Pi - qi [I --* min, (8) 
i 

where II II defines the Euclidian norm. Since qi can be ex- 
pressed in terms of the control points r of the approximation 
splines, 

4 
qi = E ~n(ti)rn ' j = 1,2, 3, (9) 

n=l  

which leads to 
3i 

E ( b k  - Akr) 2 --+ min, (10) 
k=l 

where the matrix A contains the values of the shape func- 
tions ~(ti). Different shape functions ~ must be applied de- 
pending on which type of approximation is used. The local 
coordinates t i of each point i are calculated by 

i 
ti = e-~li , li = ~ [[ P j - 1  - Pj  II . (ii) 

j--I 

The solution of the quadratic minimization problem yields a 
system of linear equations 

A T A r  = A T b ,  (12) 

which can be solved very efficiently by Householder transfor- 
mation. The approximation algorithm begins with only one 
spline and determines the optimum location of the control 
points. If the approximation error, which can be calculated 
by 

1 
err -- ~n E 11 Pi - qi 11, (13) 

$ 

is larger than a given limit, the number of approximation 
splines is increased and the procedure is repeated. To obtain 
smooth isolines Cl-continuity between adjoining splines must 
be required. This results in a dependency of certain control 
points r D from independent control points ri, which can be 
expressed by a linking rule 

r re = 

where r ° denotes the constant parts of r, L is the linking ma- 
trix and ~ the unit matrix. Consequently, the approximation 
algorithm must not be changed due to C1 requirements. Only 
the composition of the matrix A in (12) must be modified. 
In Fig. 9 the result of this adaptive approximation procedure 
is shown for a closed isoline. The polygon describing a square 
with 16 points is approximated by 2 and by 4 B6zier splines. 
The more splines that are used, the more the approximation 
error decreases. 
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Material based topology optimization 

Isoline : p = const. 

0.1 

0.5 

Sizing : Thickness optimization 

Isoline:  t = const. 

0.1 

0.5 

Fig. 10. Material distribution for topology and thickness opti- 
mization 

7.2 Neglecting void domains 

An important  aspect of the proposed method is that  void 
areas can be neglected in the analysis model. In this way 
the number of optimization variables is considerably reduced, 
and it is possible to confine the optimization process to non- 
void areas. Areas with density values below a certain thresh- 
old level Plim are neglected. Since in contrast to usual sizing 
problems, such as thickness optimization, the material gra- 
dients between void and nonvoid areas are large in topology 
optimization, the determination of this threshold level Plim is 
not problematic. As shown in Fig. 10, the isolines of a mate- 
rial distribution generated by topology optimization are close 
together. Therefore, it does not matter  which level is chosen 
for the threshold value Plim, as long as it is small enough, 

Pli.___.m.m pO < 0 .1 . . .  0.5. (15) 

Fhrthermore, neglecting void areas does not lead to an ir- 
reversible optimization process within the proposed method, 
since the original optimization variables are kept in the de- 
sign model. This means that  areas that  are assumed to be 
void in one cycle are not automatically neglected in all fol- 
lowing cycles. Instead of this, an area once neglected can be 
analysed and optimized in the following cycles, if the opti- 
mum structure seems to be in the corresponding part  of the 
design space. Consequently, it is possible that  material can 
accumulate again in already void domains. This feature of 

ATO is explained in detail and verified by the example in 
Section 7.5. 

Material distribution Adapted mesh : 1 Isoline 

@/@o = 0.1 

Adapted mesh : 2 Isolines Adapted mesh : 3 Isolines 

V 
Q/Qo = 0.5 ~/Qo = 0.9 

Fig. 11. Mesh refining by multiple isolines 

In the present study the following procedure is used to se- 
lect nonvoid areas. After the isolines of one or more levels are 
approximated by cubic or B6zier splines, the design patches 
are assigned to the generated isosurfaces. Two criteria are 
available to decide whether an isosurface will be neglected or 
not. On the one hand, the decision depends on the maximum 
density value of each isosurface. If this limit is smaller than 
the threshold value, the related domain of the design space 
is assumed to be void. On the other hand, the criteria are 
directed to an average density of the isosurface. Since it is 
often not intended to generate structures with holes below 
a certain size, the minimum area of neglected domains can 
additionally be set. 

Z3 Mesh refinement and orientation 

Local mesh refinement by refining indicators is possible in 
this method as well. In addition, the present method pro- 
vides a further possibility to generate local mesh refinements 
and to improve the orientation of the finite elements inside 
the mesh. As shown in Fig. 11, due to the approximation 
of the structure by isolines, the finite element mesh is well- 
oriented in the periphery of the analysis model. If not only 
one but more isolines are used to adapt  the finite element 
mesh to the material distribution, it is possible to fit the 
size and the orientation of elements also inside the analysis 
model. Consequently, the finite element meshes are built up 
in layers, which can be processed locally by the optimization 
algorithm. However, the number and the levels of the iso- 
lines must be chosen carefully to avoid an excessive number 
of finite elements, i.e. active optimization variables. 

Mesh refinement discussed above belongs only to geomet- 
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rical criteria. However, controlling the refinement of the finite 
element discretization, local refining indicators can addition- 
ally consider mechanical aspects, e.g. based on the error in 
the energy norm. Consequently, the number of finite ele- 
ments of a certain area can be increased, if the structural 
layout must be determined in more detail or (and) the local 
error of the finite element analysis exceeds a given limit. 

+ " ' + ~  t"?,-~-~+tt 77"i 

+ti:i :::~ 

a: Design Model 

c: After R e -  Mapping 

e: Mesh r I = const. 

b: 1st Analysis Model 

i 

d: Isolines g/Qo = 0.1 

$ 
f: 2. Analysis Model 

Fig. 12 First example: steps during the 1st cycle 

7.4 A first example 
The following example is chosen to illustrate the procedure 
of the proposed method. A square wall structure, which is 
identical to the design space, is clamped on its left edge as 
shown in Fig. 12a. The structure is loaded by a vertical load 
in the lower right corner. The objective of the optimization 
problem is to find the structural layout of maximum stiffness. 
The available mass is restricted to 25 percent of the maximum 
possible mass in the design space. The corresponding design 
model is discretized by 900 square design patches. 

At the beginning of the optimization process the design 
space consists of equally distributed material using the or- 
thotropic approach discussed before (/~ = 2.0). Consequently, 
a uniform finite element mesh is generated for the first anal- 
ysis model. The optimized material distribution based on 
this discretization is shown in Fig. 12b. The material distri- 
bution problem was solved by the same optimality criteria 
method used in the example of Section 6. The optimization 
step is finished if the change of the objective is less than 0.1 

a: Cycle 2 (ATO) b: Cycle 3 (ATO) 

c: Cycle 4 (ATO) 

e: Result of conventional TO 

d: Final layout (ATO) 

Fig. 13. First example: optimized material distribution 

percent. After the material distribution is remapped onto 
the design model (Fig. 12c), the isolines for a density ratio 
p/po of 10 percent are determined allowing an interactively 
chosen approximation error eapp of 150 percent (Fig. 12d). 
Since the discretization of the analysis model in the first cycle 
is very rough, this high approximation error is necessary to 
generate smooth surfaces. Neglecting void domains, i.e. areas 
with a maximum density ratio (p/po)max below 20 percent 
are assumed to be void, the remaining effective design space 
is remeshed. A uniform refining indicator y = 0.33 is used 
(Fig. 12e). Finally, a new analysis model is built up mapping 
the material distribution from the design model onto the new 
mesh, updating load and support conditions and defining the 
new optimization problem (Fig. 12f). 

The optimized material distributions of the following cy- 
cles and the final layout, i.e. the analysis model generated 
on the basis of the result of cycle 4, are shown in Figs. 13a- 
d. The corresponding iteration data  are given in Table 3. 
The minimization of the objective, i.e. the strain energy in 
the effective design space, in the course of the optimization 
process can be seen in Fig. 14. In the final layout the objec- 
tive is reduced to 4.31 percent referred to the design space 
filled up with equally distributed material. Using ATO the 
structural layout can be found directly and efficiently. The 
number of finite elements can be reduced significantly ne- 



glecting void domains without distinctly disturbing or influ- 
encing the optimization process. The approximation of the 
effective design space leads automatically to a smooth and 
exactly defined structural layout. However, even in ATO, 
as mentioned before, the generation of new meshes slightly 
disturbs the convergence of the optimization process. 

100 % 

11 

;& 
O 

::::::::::::::::::::::::::::::::::::::::: 
I I I I 

C1 C 2  C3 C 4  

Iterations 

Fig. 14. First example: history of objective w.r.t, initial objective 
v a l u e  

To compare the result obtained by ATO the design prob- 
lem of the present example is solved by conventional topology 
optimization. The same optimality criteria method is used as 
applied in ATO before. For the conventional procedure the 
discretization of the design model is directly used to solve 
the material distribution problem (Fig. 13@ Based on this 
uniform fine diseretization, the objective can be reduced to 
6.24 percent in 13 iterations. If the numerical effort is es- 
timated by (7), it is obvious that by using ATO, not only 
the quality of the optimization result can be improved, but 
also the numerical efficiency is increased considerably. In the 
present example, the numerical effort is decreased by more 
than 50 percent using ATO in comparison to the conventional 
procedure with the same resolution. 

Table 3. First example: iteration data 

Cycle 
Number of elements 
Number of iterations 
Isoline: p/po 
Approx. error eapp % 
Void domain (p/po)max 
Refining indicator r/ 

1 2 3 4 FL 
36 85 197 225 
14 12 12 8 
- 0.1 0 .2  0 .3  0 .4  

- 150  100  75 50  

- 0 .2  0 .4  0 .6  0 .8  

0.33 0.67 0.83 1.00 

7.5 Punched plate 
The development of the structural layout in the previous ex= 
ample is straightforward. The accumulation of mass in the 
design space converges directly to the final layout. Once a do- 
main is neglected, it never again becomes part of the effective 
design space in the following cycles. Neglected domains only 
expand in the course of the optimization procedure. There- 
fore, the present example is chosen to discuss qualitatively, 
how once neglected areas are again rematerialized in follow- 
ing cycles. 

The design space is a rectangular plate, which is partly 
clamped on its left edge and partly loaded on its right edge 
(Fig. 15a). A design model consisting of 2 x 960 design 
patches is chosen. Due to symmetry of the problem only one 
half of the structure is analysed and optimized. The objective 
of the design problem is to find the structural layout of max- 
imum stiffness, while the available mass in the design space 

b: Cycle 1 

c: Cycle 2 I I. 

d: Cycle 3 

a: Initial design 
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c:Cyc,e4 

f: Final layout | 

Fig. 15. Punched plate: effective design spaces in the course of 
the optimization process 

is restricted. In contrast to the examples presented earlier, 
at the beginning of the optimization process the design space 
is not filled up with equally distributed material. Instead, a 
punched plate is chosen as the initial design. The hole in- 
side the plate, as well as the areas along the upper and lower 
edges are firstly neglected. Since the punched plate consists 
of a material of maximum density, the first optimization step 
is skipped. Consequently, the material distribution of the 
initial analysis model is directly transferred into the design 
model. To introduce some kind of fuzziness, and, therefore, 
the possibility for variation in the following cycle, the mate- 
rial distribution in the design model is smoothed averaging 
elemental data of the design patches to nodal data and back 
to elemental data. The smoothing factor Smat indicates how 
often this smoothing loop is passed. The degree of smooth- 
ing can be chosen according to how much the effective design 
space should be enlarged. The more the material distribution 
is smoothed, the larger the effective design space becomes, 
assuming that the density ratio (P/Po) of the isolines is suf- 
ficiently small. Another technique to modify the effective 
design space is to allow larger errors for the approximation 
of the isolines. 

Both techniques are used to generate a new design model. 
The effective design space of each cycle, the final layout and 
the iteration data are given in Figs. 15b-f and Table 4. In 
the course of the optimization process the structural layout 
converges more and more. Consequently, the fuzziness deter- 
mining the effective design space can be gradually reduced 
and, therefore, the numerical efficiency can be increased. In 
the final cycle no smoothing is necessary and the approxima- 
tion error for the isolines is small. A clearly defined structural 
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layout with smooth boundaries is generated. 

7.6 Beam-like structure 

Up to now ATO seems "only" to provide the possibility to 
generate structures with smooth boundaries and to decrease 
the numerical effort. However, the following example shows 
that ATO is able to include additionally the interaction be- 
tween optimum topology and the corresponding shape of a 
structure and vice versa. In an extended but still conven- 
tional version of topology optimization (e.g. Olhoff et al. 
1991; ttinton and Sienz 1994), first the optimum material 
distribution in a design space for a certain design problem 
is found. This result is transferred interactively into a basic 
design for a following shape optimization step. The opti- 
mum shape is determined by traditional boundary variation 
techniques. Consequently, once the conceptual design is de- 
termined, variation of topology is no longer possible in the 
final shape optimization step, even if a modified shape neces- 
sitates a change of topology to obtain the optimum structural 
layout. As the following example shows, this shortcoming can 
be overcome using ATO. 

b: Design model 
a: 30 
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~ ! ~ i ~ i ~ i ~ i ~ ! ~ ! ~  ~. ===================================================== 
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1 
Optimized analysis models 

c: Cycle : 1 d: Cycle : 2 

e :Cyc le :3  f :Cyc le :4  

g: Cycle : 5 h: Final layout 

Fig. 16. Topology optimization of a beam-like structure 

A rectangular wall structure, which is identical to the 
design space, is fixed on the lower left corner and vertically 
supported on the lower right corner, as shown in Fig. 16a. 
The structure is loaded by a vertical load in the centre of 
the lower edge. The objective of the optimization problem 
is to find the structural layout of maximum stiffness. The 
available mass is restricted to 40 percent of the maximum 
possible mass in the design space. Due to symmetry of the 

Table 4. Punched plate: iteration data 

Cycle 1 2 3 4 F L  
Number of elements 133 288 220 257 
Number of iterations 13 17 13 17 - 
Isoline: P/Po 0.1 0.2 0.3 0.4 0.5 
Approx. error eapp % 100 100 100 75 50 
Smoothing factor Smat 3 2 1 0 0 

problem, only one half must be analysed and optimized. At 
the beginning of the optimization process the design space 
consists of equally distributed material using the orthotropic 
approach discussed before (# = 2.0): The design model of 
the design space is discretized by 2 x 900 square patches (Fig. 
16b). The linear finite element analysis is carried out by 2 x 
2 reduced integrated, eight-node, isoparametric plane stress 
elements. The material distribution problem is solved by 
the optimality criteria method used in the examples before. 
The optimized material distribution of each cycle is shown in 
Figs. 16e-g. The iteration data are listed in Table 5, where 
the number of finite elements of one half of the structure 
is denoted by nele, the values of the objective with respect 
to the initial design at the end of each optimization step by 
Zopt, the required accuracy by acc and the needed number of 
iterations by niter. 

Table 5. Beam-like structure: iteration data 

Cycle 1 2 3 4 5 
nel e 100 202 291 402 365 
niter 24 17 12 10 29 
Zopt % 12.0 10.4 9.9 10.2 9.6 
acc 10 -3  10 -3  10 - 4  10 - 4  10 -5  

Based on a first indistinct result of cycle 1, the analysis 
model is adapted to the optimized material distribution. In 
the following optimization cycles the contours of the structure 
become increasingly clear. Until cycle 4 the topology of the 
structure does not change and only the shape of external 
and internal boundaries is determined in detail. However, 
since topology and shape depend on each other, the topology 
of the structure changes in cycle 5, improving the objective 
of the design problem. This would not be possible if the 
conventional procedure were used. In contrast, using ATO 
a variation of topology and shape can be carried out during 
the entire optimization process. 

7.7 Slab structure 

In a last example, it is shown that ATO can not only be ap- 
plied to plane stress problems, but also to slab structures 
in its present stage of development. For a square design 
space clamped on two opposite edges and loaded in its centre, 
the structure of minimum weight must be found (Fig. 17a). 
The maximum displacement of the loaded node is restricted. 
Since only the displacement of the loaded node is constrained, 
i.e. the minimum stiffness of the structure is given, this design 
problem corresponds to a maximum stiffness problem where 
the mass for the structure is restricted. Due to symmetry 
of the problem, only one quarter of the design space must 
be analysed and optimized. The linear finite element anal- 
ysis is carried out by 2 x 2 reduced integrated, eight-node, 
isoparametric plate elements. 
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a :  

Fully Clamped 

b: C1 c: C2 d: C3 e: C4 f: 
Fig. 17. Topology optimization of a slab structure 

At the beginning of the optimization process, the design 
space consists of equally distributed material of maximum 
density. For the analysis model in the first cycle, a coarse 
uniform mesh is generated and the material distribution is 
optimized. Analogously to the examples discussed previously, 
the structural layout is determined in detail during the fol- 
lowing cycles. The optimized material distribution of each 
cycle is shown in Figs. 17b-e, the final layout in Fig. 17f. The 
iteration data are given in Fig. 18 and Table 6. In this op- 
timization procedure the maximum number of iterations in 
each optimization step is set to 20. 

100% 
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ID 

© 
50 % 

C1 C 2  C3  C 4  

Iterations 

Fig. 18. Slab structure: history of objective w.r.t, initial objective 
value 

Table 6. Slab structure: iteration data 

Cycle 1 2 3 4 FL 
Number of elements 49 94 127 139 
Number of iterations 20 20 20 20 
Isoline: p/Po 0.1 0.2 0.3 0.4 
Approx. error eapp % 150 100 50 50 
Void domaiu(p/po)max 0.2 0.4 0.5 0.5 

Finally, this example is used to present an overview of 
different optimization methods to solve a design problem. 
Firstly, a pure boundary variation technique is applied based 
on the design element concept introduced in structural op- 
timization by Braibant and Fleury (1986). The free edge of 
a quarter of the design space is parametrized by a four-node 
B@zier spline. Considering the continuity of the symmetric 
problem only 3 design nodes can be varied independently 
during the optimization process. The result of the shape op- 
timization is shown in Fig. 19a. Only the shape of the struc- 

ture has changed, but not its topology. To provide the pos- 
sibility for a change of topology as well, the design problem 
is solved by conventional topology optimization. However, 
the result shown in Fig. 19b contains a not clearly defined 
structural layout with jagged boundaries. Combining both 
previous techniques it is possible to obtain results with a new 
topology and, at least, smooth boundaries, which are present 
in the initial structural layout. For this a variable shape 
and a variable density distribution are introduced. However, 
the result of the combined optimization method shown in 
Fig. 19c still contains not clearly defined structural domains 
around the additionally inserted holes. This problem can be 
overcome using ATO. The final result of the adaptive opti- 
mization process discussed before is shown in Fig. 19d. Con- 
sequently, concerning the quality of the optimization results 
and the numerical effort ATO is an efficient method for op- 
timizing the topology and shape of structures. In contrast 
to the previous examples, these optimization problems were 
solved by an SQP method (Schittkowski 1981). 

a: Shape Optimization b: Conventional TO 

c: Shape & Conventional TO d: Adaptive TO 

Fig. 19. Comparison of optimization methods 

8 C o n c l u s i o n  

Material-based topology optimization provides a general tool 
in structural design. However, since its results are usually 
lacking in clearness and smoothness, the optimized layouts 
can often only be used as conceptual design idea instead of 
a clearly defined form of the structure. Therefore, the ap- 
plication of adaptive techniques in topology optimization is 
discussed and a method to generate smooth and well-defined 
two-dimensional structures is introduced. 

The proposed methods are based on a division of design 
and analysis model. In the design model the structural lay- 
out is described by a pixel-like scanning, as usually used in 
material-based topology optimization. These design patches 
are linked to the finite elements of the analysis model. Their 
material parameters are the active optimization variables of 
the corresponding cycle. The parametrization of the analysis 
model is adapted to the material distribution of each design 
cycle. Applying a simple mesh refining technique as used in 
h-type adaptive finite element analysis, on the one hand, the 
number of optimization variables can be reduced, since void 
domains of the design space are meshed coarser than non- 
void domains. On the other hand, the optimization results 
still contain jagged boundaries. Therefore, a method is pro- 
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posed that  adapts size and orientation of the finite elements in 
the analysis model to the material distribution in the design 
model. Consequently, a smooth and clearly defined struc- 
tural layout can be generated by topology optimization. In 
addition, since in this method void areas are neglected dur- 
ing the optimization step, the number of active optimization 
variables is considerably reduced. 

The features of the proposed method are demonstrated by 
optimizing the layout of two-dimensional elastic structures 
with respect to maximum stiffness by an optimality crite- 
ria method. However, since adaptive topology optimization 
is also embedded in a mathematical  programming scheme, 
a broad range of design problems can be solved efficiently. 
Moreover, the applied approximation technique of isolines 
allows one to include conventional boundary variation tech- 
niques to improve once more the quality of the optimization 
results and the numerical efficiency of the optimization pro- 
cedure. Material-based topology optimization and shape op- 
timization can be used sequentially or simultaneously. The 
implementation of shape optimization into this concept is 
currently underway. 
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