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A b s t r a c t  Material based models for topology optimization of 
linear elastic solids with a low volume constraint generate very 
slender structures composed mainly of bars and beam elements. 
For this type of structure the value of the buckling critical load 
becomes one of the most important design criteria and so its con- 
trol is very important for meaningful practical designs. This paper 
tries to address this problem, presenting an approach to introduce 
the possibility of critical load control into the topology optimiza- 
tion model. 

Using the material based formulation for topology design of 
structures, the problem of optimal structural reinforcement for 
a critical load criterion is formulated. The stability problem is 
conveniently reduced to a linearized eigenvalue problem assum- 
ing only material effective properties and macroscopic instability 
modes. The respective optimality criteria are presented by intro- 
ducing the Lagrangian associated with the optimization problem. 
Based on this Lagrangian a first-order method is used as a ba- 
sis for the numerical update scheme. Two numerical examples to 

validate the developments are presented and analysed. 

1 I n t r o d u c t i o n  

This work is concerned with the development of an analytical 
model and a procedure for the computational solution of the 
topology design problem of a two-dimensional structure with 
a buckling load criterion. 

Recently, the material  model for topology optimization 
of structures using homogenization techniques (Bendsee and 
Kikuchi 1988) has been extended to different criteria required 
by structural design applications (e.g. Bendsee and Mota 
Soares 1993). 

From these works it has been observed that  as the admis- 
sible material  volume decreases, the method tends to gener- 
ate very slender structures composed mainly of thin bars and 
beam type elements. For these structural components the 
value of the buckling load becomes one of the most impor- 
tant  design criteria and so its control is very important  for 
meaningful practical designs. We try to address this problem 
by presenting an approach to introducing the possibility of 
buckling load control into the material based topology opti- 
mization model. 

This article is organized as follows. Section 2 describes the 
mechanical model, which is a linearized buckling model where 
the displacement before buckling is assumed to be small and 
linear elastic. This simple model, although with limited prac- 
tical applicability in structural  analysis, originates a rela- 
tively simple structural  optimization problem, which can be 
used as a basis for the development of new topology opti- 

mization methods assuming more elaborate mechanical mod- 
els. This section ends with a description of the finite element 
model used to solve the problem computationally. In its dis- 
crete version the stabili ty problem reduces to a generalized 
eigenvalue problem whose eigenvalues are the finite element 
approximations of the buckling loads of the structure. 

In Sections 3 and 4 the optimal design problem is stated 
and the respective optimality conditions presented. General- 
ized gradients are used to deal with the nonsmooth character 
of the optimization problem if repeated eigenvalues (buckling 
loads) occur. 

Finally, in Sections 5 and 6 the computational model is 
described and its validity is assessed in two numerical ex- 
amples. From these examples it is observed that  the final 
topology obtained can be used to identify practical frame 
type structures with much higher buckling loads. 

2 T h e  s t a b i l i t y  p r o b l e m  

To introduce the material  based formulation consider an elas- 
tic structure made of a porous material  obtained from the 
introduction of very small voids (square holes in our case) 
in an isotropic base material. This will permit  a continuous 
variation of material "density", with high density values rep- 
resenting solid material and low density values representing 
the existence of voids. The interested reader is referred to 
the paper by Bendsee et al. (1993) for a complete description 
of this model applied to compliance optimization of linear 
elastic structures. Also the work of Rozvany el al. (1993) 
and Mlejnek (1993) present alternative models, not based on 
porous materials, for compliance optimization problems. 

Assuming this type of material, the structure is fixed in 
the boundary Fu and subject to a proportional surface load- 
ing in boundary F t (see Fig. 1). By proportional loading it is 
meant that  the applied load is a function of one parameter, 
i.e. t = P t  where P is the load factor parameter.  

Let us increase gradually the load factor P.  The dis- 
placement remains unique as long as P is below a certain 
value. When it reaches this value (denoted by Pcr, critical 
load factor) the displacement solution is no longer unique. 
For P = Per we will look for the possibility of a bifurcation 
in the solution where two neighbouring equilibrium positions 
exist corresponding to an infinitesimal increment in the load 
factor value. 

Let P < P c r ,  in this situation we will assume that  the 
structure exhibits linear elastic behaviour with a unique small 
displacement u ~0. In the previous definition the superscript 
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Fig. 1. Nomenclature 
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(: = diD is the microstrueture size parameter) identifies 
the displacement dependence on the material microstrueture. 

Now let P = Per. At this point there are two possible 
infinitely close equilibrium positions: the initial, with dis- 
placement u e0 and a secondary, with displacements u s. For 
the latter let us denote the displacement by 
U s = U s0 + a U  s l  , (1) 
where c~ is an infinitesimal real parameter and u el identifies 
the displacement in the structure when it shifts from the 
initial to the secondary equilibrium positions. 

These equilibrium positions are characterized by the sta- 
tionary conditions of the total potential energy functional, 
H (u  s) = A(u s) - R(uS), (2) 

where A(u e) is the elastic energy, 
1 i crij(uS)eij(ue)df2 (3) A(uS) = 7 

De 

and R(u e) is the force potential, 

R(u s) = P/t~u~dr. (4) 
- I t  

G 
Assuming a linear elastic material, we have 

@ij(u e) = Eijkteki(Ue), (5) 

and substituting the constitutive equation (5) in expression 
(3) we obtain the elastic energy defined as i: 
A(u ~) = ~ Eijk~eki(uS)eij(uS)df2, (6) 

with 
1 (Ou e Ou~'~ 1 (Ou~k Ou~) 

~;(~) = : \0~j + ~ )  + : \0~.  0x~ ' (7) 
Until now no assumptions were made about the depen- 

dence of displacement fields on the material microstructure. 
Obviously to tackle the problem directly, without simplifying 
assumptions, would be impossible due to the complex shape 
of the microstructure. 

Following the homogenization method hypotheses, based 
on the local periodicity of the material mierostructnre, we 
assume that the displacement fields can be represented as 
asymptotic expansions in terms of the cell size parameter E, 

x ,(s) u e0 (x) = u00 (x )+¢u01(x ,y )+c2u02(x ,y )+ . . .  ,y  ---- 7 

and 
U e l ( x )  = U 10(x)  + ¢ u l l ( x , y ) - 4 - ¢  2 u  1 2 ( x , y )  + . . .  , y  = ~ . ( 9 )  

In the previous expressions the various expansion terms 
are functions of the macroscopic variable x and periodic 
functions of the microscopic variable y (see e.g. Guedes and 
Kikuehi 1990). 

One important assumption made in (9) is that the dis- 
placement u 10, the first term in the bifurcated solution ex- 
pansion, is only a function of the macroscopic variable x. 
This implies that the model will detect only macroscopic 
buckling modes, i.e. no cell buckling. This is justified if one 
is interested only in the problem of optimal design for crit- 
ical loads associated with macroscopic modes. If this is not 
the case, then expansion (9) is not valid since no periodicity 
assumption could be made for u el. 

Using the above expansions in the definition of uS(x), sub- 
stituting it into the strain expression (7) and assuming only 
a nonlinear contribution from the term ul0(x),  we obtain 

1(0o00 0:0  1(0  1 0o01  
dis(us) = : / -gT~ + 0xi ] + : \ 0~j + 0v; ) + 

{1:0u10 1:0 110 11 } 
ox i -g~ ] +6(...). (10) 

Substituting (10) into the potential energy functional, we 
have 

t2~ \ OXm + dY2- 

Pitiu~Odp+aliEijkm(OUOOG tx?~ t~Xm+~Ym)t~xJ+ OuTl~ [Oul"O 

! OulO Oull 
+ 1_ + 

oulO Out0 ~ ( OuTO OuO1 \ "1 "1 
0xm)t-~:j + ~ )Ja~ /+: ( ' )+~( ) (11)  

Stationarity of the total potential energy equilibrium re- 
quires 

5/ / (u  s) = 5A(u ~) - 5R(u e) = 0. (12) 

Since u s0 is known, the variation 5u s is defined as 5u s = 
[vl0(x) + ev11(x, y) + ¢2(...)] with 

v 10 E Vf2 = { v :  vlpu = 0},  v II  E FOx Y = 
{v(x, y ) :  v l r  ~ = 0, v is Y-periodic in y} , 

and the first variation of the potential energy is given by 
5/ / (u  ~) = 



and Kikuchi 1990). If the cell material is homogeneous, E~k ~ 
is defined as ()/,1, H z .  P dY, (19) ~3Pm CQym Eijkl = PEijkt -- ~ 

where p is the material "density" (p = l - a 2 ) ,  and the correct- 
ing term xkt(k ,  ~ = 1, 2, 3) is a Y-periodic function, solution 
of the elastostatic problem 

f Ov i ~Xkg avi dY = J E i j k ~ d Y ,  Eijpm Oym Oyj 
¥ ¥ 

V v - Y-per iodic .  (20) 

A detailed derivation of (16)-(18) is presented by 
Neves (1994) based on the bifurcation model presented by 
Novozhilov (1953). 

3 T h e  t o p o l o g y  des ign p r o b l e m  

The finite element approximations of the equilibrium equa- 
tions (16) and (18) are obtained using nine-node 2D isopara- 
metric finite elements. This choice is justified by the fact that 
the four-node element is very rigid to approximate instability 
modes of frame type structures in two-dimensional elasticity. 

Using the finite element approximation, the problem is 
transformed to the generalized eigenvalue problem 

K(/*)¢ - PG(t t ,  u)~b = 0,  (21) 

where tt = {#e} E R M denotes the vector of design variables, 
u = {ui} E R N is the displacement vector solution of a finite 
element approximation of a linear elasto-static problem 

K ( , ) u  = f ,  (22) 

and K and G denote the stiffness and geometric stiffness 
matrices, respectively. 

The design problem is stated as an optimal reinforcement 
of a given structure so that its buckling critical load is max- 
imized. To limit the amount of reinforcement material an 
upper bound on the reinforcement volume is introduced. 

Let us assume that the buckling load factors are positive, 
different from zero and numbered such that 0 < P1 -< P2 -< 
• .. Pr <_ P r + l "  ', with the critical load factor defined by 
Per = P1. 

With this notation the reinforcement design problem is 
stated as 

max (min Pr) ,  (23) 
/tmin</t<l r 

subjected to the volume constraint 

M 
#e / d~2 = V, (24) 

e=l /2~ 

and to the density bound constraints 

#min--<Pe <_ 1, e-= l , g , . . . M .  (25) 

The problem defined by (23)-(25) is a nonsmooth opti- 
mization probelm if Per = P1 is a multiple eigenvalue. 

To overcome this problem using, formally, the concept of 
the generalized gradient (see Clarke 1983), the problem is 
restated using the Rayleigh variational principle as 
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v ¢  = 0 in r~ .  (18) 

In the previous equations EHki denotes the homogenized 

(effective) coefficients of the porous material (see e.g. Guedes 

v v ~ v ~ t ,  • ~ v ~ l ×  ¥ . L.,L,. . , ]  

Now let us assume that the microstructure size parame- 
ter s is infinitesimal, i.e. the material heterogenities have a 
characteristic dimension (d) much smaller than the global di- 
mension of the structure (D) (see Fig. 1). Thus taking the 
limit as ¢ -+ 0 we obtain the homogenized equilibrium equa- 
tions defining the displacements u 00 and u 01, 
~ , 0 0  ~h,~ic, n ,nf 
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CTG(~,  u ) ¢  (26) min max 
I*,u ~#o c T K ( ~ ) ¢  

¢ E 1% N 

subject to the set of constraints (22), (24) and (25). Stat- 
ing the problem in this way the buckling equation (21) is 
implicitly satisfied. 

We should note that in the Rayleigh variational principle 
as stated here the roles of the stiffness and geometric stiffness 
matrices were reversed, implying that the inner maximum 
problem will give as solution the inverse of Pcr, i.e. hcr = 
1/Pcr, assumed nonzero. 

4 Op t ima l  so lu t ion  necessa ry  condi t ions  

To obtain the necessary conditions for the topology optimiza- 
tion problem let us introduce the Lagrangian of the problem, 
L(.), where the prebifurcation equilibrium equation (22) is 
considered as an additional constraint and the volume con- 
straint is relaxed with a penalty function, 

L: [ CrG(,,u)¢] 
4,~a~ c T K ( , ) ¢  J + v T [ g ( ' ) u -  f] + 

/,. .)] }'+ 
\ e = l  f2e 

M 
[17~(#e- l)-iT~(#e-#se) ] . (27) 

e=l 

In the previous augmented functional the Lagrange mul- 
tipliers satisfy the inequalities defined in Table i, and p > 0 
is the penalty factor for the volume constraint. 

Table 1. Lagrange multipliers for equilibrium and bound con- 
straints 

~/~>0 e = l , 2 , . . . , M  
~;0_ e= l ,2 , . . . ,M 
v 0 on ru 

Based on this Lagrangian, the necessary conditions for 
minimum can be identified with the stationarity conditions 
at the optimal solution (Clarke 1983). 

From stationarity with respect to the nodal displacements 
u and element "densities" t~, we obtain the stationarity con- 
dition [see the paper by Rodrigues et al. (1995) for a complete 
derivation of this condition] 

o • O~L, (2S) 
with the generalized gradient set characterized by 

Pcr ¢ q -  

pq OK ^ ~ ] 
v - -u0. ,  ) : ,~ • R m , l l , ~ l l  = i f  + 

P e=l g~e J2e 

where co denotes the convex hull of the set. 
In the generalized gradient definition, m is the multiplic- 

ity of the eigenvalue Pcrit, Cp, (P = 1 . . . .  m) is any set of m 

orthonormal (with respect to the stiffness matrix K) eigen- 
vectors associated with this eigenvalue, fi is the displacement 
vector solution of (22) and the 1/2m(m+ 1) adjoint displace- 
ment fields, vPq, (p,q = 1, . . .m),  are the solution of the 
auxiliary problems 

f cTOG ~. 1 (30) 
Kv.  = t ' 

If the adjoint displacements are zero, for example in the 
case that the matrix G is independent of u, the necessary 
condition defined by (28)-(29) is equivalent to the condition 
presented by Seyranian et al. (1994). 

Finally, the necessary condition (28) is supplemented with 
the complementary slackness conditions 

( # e - 1 ) i 7 7 - - 0 ,  ( # e - 1 ) < O ,  177>__0, (31) 

(#e - #min)~  ---- 0, #e ~ #min, 7/~ > 0. (32) 

5 T h e  c o m p u t a t i o n a l  m o d e l  

The stationarity condition (28) is only necessary for a local 
minimum and does not give a more precise characterization 
of the candidate "optimal" point. The ideal approach would 
be to state the sufficient conditions, then one would have the 
necessary tools to verify if the candidate solution is indeed a 
minimum. 

At this stage and due to the complexity of the problem 
this approach is not realizable. In optimization problems a 
practical way to overcome this problem "assuring" conver- 
gence, at least for a local minimum, is to solve the necessary 
conditions by an optimization algorithm with design updates 
based on a descent direction of some "cost" function (the 
objective function or of some weighted sum of the objective 
function and constraint violation). Such an algorithm is de- 
scribed in the following. 

Let us consider a general iteration "k". At this iteration 
k k and once the design ~ , the displacement u , the critical 

load factor Pcr and the respective eigenvectors Cp=l,...,m are 
known, the question is to define a design change decreasing 
the cost function value at least in a neighbourhood of the 
current design, i.e. to choose a direction of descent. 

To characterize this direction let ~ > 0 be a small num- 
ber defined by the user and let me, which we will call e- 
multiplicity of her, be equal to the number of eigenvalues 
satisfying the inequality (h i - h c r )  < ¢hcr, i = 1 , . . .  N. 

Let also d p, p = 1 ,2 , . . .  ,m~ be the vectors whose com- 
ponents are 

~ - -  ~ U  4 PcraZ ¢" 0.o )+ 

, J .)}: - m a x  0; Pe d J 2 -  d ~ ,  e = l , M .  (33) 
P e=l ~e 

These vectors are obtained from the definition (29) with- 
out the Lagrange multipliers associated with the material 
density upper and lower bound constraints. These con- 
straints are not considered in this phase, instead they will 
be strictly enforced at each design iteration. 

Using these me vectors, let D be the set obtained by 
convex combinations of the different d p, i.e. 



D =  wPdP:w p>Oand E wp=l  . (34) 
p=l  

A "candidate" direction of descent d* can now be defined 
as the negative of the vector in D with minimum norm, i.e. 
d* solves the minimization problem (see e.g. Demyanov and 
Molozemov 1990; Kiwiel 1986) 

lid*I] 2 = min [[dH 2 . (35) 
dCD 

Note that if 0 E D one has d* = 0 and the necessary con- 
dition is satisfied. However, if d* ¢ 0 it does not imply that 
we are not at a stationary point since D is an approxima- 
tion of the generalized gradient set and, in general, strictly 
contained in it. 

In the case of multiplicity me = 1, the set D has only one 
element and d* = -~7 / tL .  

Based on the descent direction d* and introducing the 
upper and lower bound constraint thickness parameter ( (de- 
fined by the user), the iterative procedure is 

' m a x { ( 1 - ( )  #ek ,#min} if #e k + a d *  

_~ max {(1 -- C) #ek ,#rain} 

#e k +c~d* ifmax {(1 - ~) #k,  #min} 

= < + , 

and #e k + a d *  _ < m i n { ( l + ¢ ) p e k , 1 }  

m i n { ( i  + ~ ) # k , 1 } i f  #e k + , d :  

> min {(1 + ¢)/~ek , 1} 

( 3 6 )  

where the step length factor a is a positive number defined 
by 

= m a x  I d * l '  ( 3 7 )  
e 

with the parameter a* > 0 selected by a line search proce- 
dure. 

6 Example problems 

In this section two example problems are presented to show 
the feasibility of the model developed. In the example the cell 
base material (see Fig. 1) is isotropic with Young's modulus 
E = 210 GPa and Poisson's coefficient u = 0.3. 

The generalized eigenvalue problem (21) is solved by the 
subspace iteration method using the Householder method to 
solve the resultant reduced problem and the eigenvalue mul- 
tiplicity parameter ¢ is equal to 0.05. 

6.1 Example A 

This example considers the reinforcement of a portal frame 
clamped at the base. All members in the initial structure 
have the same geometry (see Fig. 2). 

The computational first critical load factor (first eigen- 
value) of the structure without reinforcement material is 
P c r =  14600, using a nine-node isoparametric finite element 
model, and P c r =  12851 using an exact beam model. 
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Fig. 2. Initial structure 

The problem is modelled eomputationally using a finite 
element mesh with 22 x 21 nine-node isoparametric finite ele- 
ments. The admissible volume of the reinforcement material 
is 13 m 3. 

Considering an initial homogeneous distribution of the re- 
inforcement material satisfying the volume constraint, we ob- 
tain P c r =  24580. The final design (see Fig. 3) was obtained 
after 80 iterations, the first critical load factor is P1 = 89320 
and the second is P2 = 92170. 

a) 

b) c) 

Fig. 3. Example A. Final solution: (a) final design; (b) first 
eigenmode, P1 ----- 89320; (c) second eigenmode, /o 2 ---- 92170 

Using the final topology to define an equivalent frame type 
structure, its buckling load factor is 81898 (see Fig. 5). Here 
we can observe a good agreement between the load factors of 
the final design and "equivalent" frame. This is not the case 
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for the eigenmodes where the first mode of the equivalent 
structure agrees with the final structure second mode. This 
fact is not surprising due to the proximity of the respective 
load factors. The results obtained are summarized in Table 
2 ,  

150000  

100000  

50000  

II 

0 10 20 30 40 50 60 70  

iteration 

I Pcrl - - -  Pcr2 ~ Volume 

Fig. 4. Iteration history 

80 

I 
i 

Fig. 5. "Equivalent" structure 

Table 2. Critical load factors - Example A 

Critical load factor Volume 
Q9 Beam element 

Initial structure 14600 12851 30 m 3 
+ Uniform material distribution 24580. - -  . 43 m 3 
+ Final solution 89320 81898 43 m 3 

One important  aspect that  should be discussed is the 
model numerical instability due to ill-conditioning of the stiff- 
ness and geometric stiffness matrices. 

The material distribution model substitutes voids by a 
very weak (low density) material. This has the big advan- 
tage of maintaining the same finite mesh during the design 
process, however, it originates stiffness and/or  geometric stiff- 
ness matrices with very small entries for the degrees of free- 
dom belonging to elements with low density value. This fact, 
which is not so critical in elastostatie problems, can originate 
localized modes in the low density regions (see Fig. 6), that  
are not present in the real structure since in this case these 
subdomains are not considered. 

To prevent this, elements with "low" density and "low" 
normalized stress (< Xlim) do not contribute to the global 
geometric stiffness matrix.  This is an artificial way of impos- 
ing that  the stiffness geometric effects go to zero faster than 
the structural stiffness, thus removing the modes associated 
with these low density regions. In Fig. 7 the influence of this 
parameter in the final solutions obtained is shown. 

6.2 Example B 
This example considers the reinforcement of a five-storey 
frame clamped at the base. All members in the initial strue- 

~ - + - -  
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tl/tl//l/// 

Fig. 6. Eigenmodes in low density regions 

XLIM=0,05 XLIM=0.3 
Fig. 7. Effect of the Xlim parameter on the final design 

ture have the same geometric properties (see Fig. 8). A simi- 
lar example, but for natural  frequency optimization, was pre- 
sented by Diaz and Kikuehi (1993). 

The first critical load of the structure without reinforce- 
ment is Per = 805 (nine-node finite element model) and 
Per = 722 (beam model). 

5 
P=10 N 5 

I P = 1 0  N 

Fixed 
Domain 

[ ]  O. l mx l m I!!i!!!!ii!!ll!!i 

Design 
Domain - -  

~ \ \ \ \ \  

iiiiii 
iiiiii 
iiiiiii 

i~iiiiiiiii!i~i!ili~iiiiiiii~ii~ 
!~1I/1//I 

itii!i 
x \ \ \  \ 

5m 

I lm 
, , \ \ \ \ \  

Fig. 8. Initial structure 

The problem is modelled computationally using a mesh 
with 101 x 22 nine-node finite elements. The total  volume of 
the reinforcement material  is 0.96 m 3, for an initial structural 
volume of 1.5 m 3. For the final solution the first buckling load 
factor is P1 = 6472 and the second is P1 = 6780 (see Fig. 9). 
Figure 10 shows the iteration history for this example. 

Using the resultant topology to define an equivalent frame 
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Fig. 9. Example B. Final solution: (a) final design; (b) first eigen- 
mode, P1 = 6472; (c) second eigenmode, P2 = 6780 
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Fig. 10. Iteration history 

model the critical load factor is 6187 (see Fig. 11). Table 3 
summarizes the results obtained. 

r l 
f 
F 
I j 

/ \ 

Fig. 11. "Equivalent" structure 
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Table 3. Critical load factors - Example B 

Critical load factor 
Q9 Beam element 

Initial structure 805 722 
+ Uniform material  4400 - - -  
+ Final solution 6472 6187 

Volume 

1.50 m 3 
2.46 m 3 
2.46 m 3 

7 C o n c l u d i n g  r e m a r k s  

The development presented in this work extends the material 
based topology optimization model to include a critical load 
criterion. 

The problem is solved through the use of finite element 
modelling and a mathematical  programming method based 
on descent directions. 

The feasibility of the approach presented was substanti- 
ated through the resolution of two numerical examples. From 
these examples a substantial  increase in the critical load of 
the structures is observed. Also, the topologies obtained led 
to the identification of reinforced frame type structures with 
much higher critical loads. 

However, some important  issues remain to be analysed. 
The optimization iterative procedure used is based on a 
method proposed in 1972 by Demyanov and Malozemov to 
find e-stationarity points for minimax problems (see De- 
myanov and Malozemov 1990). Recently, an intensive re- 
search effort has been devoted to the study and development 
of efficient algorithms for nonsmooth optimization problems 
(see e.g. Kiwiel 1985), so it is expected that,  in the near fu- 
ture, these new developments can lead to more efficient and 
reliable algorithms that  will drastically reduce the computa- 
tional time required to solve nonsmooth optimization prob- 
lems such as the one presented. 

Another very important  issue is the optimal structure sen- 
sitivity with respect to geometric imperfections and the do- 
main of validity of the mechanical model. 

The hypotheses behind the linearized buckling model lim- 
its its range of applicability. To overcome these limitations a 
mechanical nonlinear model should be used. Mr6z and Haftka 
(1993) present sensitivity expressions for such a model assum- 
ing simple eigenvalues and shape and size design variables. 

However, in spite of its limitations one should note that 
the results obtained with the linearized model give important  
information for optimization purposes as an upper bound of 
the load capacity of the structure. Also if the nonlinear anal- 
ysis model is solved iteratively by a set of linearized subprob- 
lems, the respective optimization model can be based on the 
developments presented here. 
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