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A b s t r a c t  The method of moving asymptotes (MMA) which 
is known to work excellently for solving structural optimization 
problems has one main disadvantage: convergence cannot be guar- 
anteed and in practical use this fact sometimes leads to unsatisfac- 
tory results. In this paper we prove a global convergence theorem 
for a new method which consists iteratively of the solution of the 
known MMA-subproblem and a line searchperformed afterwards. 

1 I n t r o d u c t i o n  

In the last few years, the concept of convex approximations 
has caused more and more interest in structural optimization. 
A structural optimization problem written in the form 

rain f (x )  ( x E ~ n ) ,  s.t. h i ( x ) < 0 ,  j = I . . . M ,  

x E X ,  (1) 

where X := {x [ x--i <- xi  -< xi , i = 1 . . . n }  is replaced by 
asequence of easier to solve, convex, separable subproblems 
which approximate the original problem. The functions f 
and hj  ( j  = 1 . . .  M )  are assumed to be continuously differ- 
entiable and the feasible region is assumed to be non-empty. 

The most general of these methods, the Method of Mov- 
ing Asymptotes (MMA), is nowadays implemented in many 
software systems (see e.g. H5rnlein and Schittkowski 1992). 
The experience of users is that  if MMA converges, then it 
approximates a solution rapidly by a sequence of steadily ira- 
proved designs, but the major drawback is that  it diverges in 
quite a few of applications. 

This was the reason for the investigations which resulted 
in this paper. By adding a line search subject to a fnnc- 
tion measuring the global convergence, the behaviour of the 
method can be stabilized without losing the known advan- 
tages. 

In the following section, we will describe the optimization 
methods CONLIN and MMA and outline some of their main 
features. In Section 3 we will explain the new method and for- 
mulate the most important  results including a proof of global 
convergence. Section 4 contains one possibility to overcome 
difficulties concerning the solvability of subproblems. The 
numerical behaviour is illustrated by some examples in the 
final section. 

2 C O N L I N  a n d  M M A  

Using the idea of using reciprocal variables, Fleury and 
Braibant (1986) developed the optimization method CON- 
LIN (convex linearization). An approximation of a function 

is defined by separate linearization for each component de- 
pending on the sign of the partial  derivative at the expansion 
point. If the sign is positive, then the linearization is per- 
formed with respect to the original variable, if the sign is 
negative, then it is subject to the inverse variable, leading to 
a convex approximation of the original function. 

The Method of Moving Asymptotes (MMA), however, is 
a generalization of CONLIN. Svanberg (1987) proposed a ]in- 
earization with respect to substituted variables 

1 1 
and 

U i - x i xi  - L i ' 
respectively, where U i and L i are some chosen parameters. 

Definition 2.1. Let g be a continuously differentiable function 
on X .  An MMA approximation ~ of g is defined by 

-~i ~° r (U" x°~2 ] ~(x) = g (x  °) + ~ °g  i ~ ~ - i~ ( v i  - ~°)  _ 

r ( x  ° - L.' ,2 l ~g /',~_ ~,., o 
_ x o [ x i - L  i (xi  - L i ) ]  ' 

where ~ ( ~ _ ~  means summation over all components 
+ k /  

Og 
i where the partial derivative - -  at the expansion 

8x i  
point x 9 is non-negative (negative); [7 is defined on D~ : = 
{x I m a x ( i i ,  xi)  < xi  < min(Ui , -x i ) ,  i =  1 . . . n } .  

It is easy to verify that  ~ is a first-order approximation of 
g, i.e. 
~(x 0 ) = g ( x  0) and V~(x 0 ) = V g ( x o ) ,  

and ~ is convex and separable, where g stands for the objec- 
tive or constraint function, respectively. 

Remarks 

• The CONLIN method is obtained by letting L i = 0 and 
U i --* ~ (i = 1 . . . n ) ,  and 

• L i and U i are asymptotes for ~. 
The algorithm proposed by Svanberg (1987) can be outlined 
as follows. 

Step 0: Choose a starting point x 0, let k := 0. 
Step 1: Compute f (xk) ,  h j ( x k ) ,  Vf(xk) ,  ~7hj(xk) ,  j = 

1 . . . M .  
Step 2: Define a subproblem, replacing f ,  hj  b y / ,  /tj, j = 

1 . . . M  , according to (2.1). 
Step 3: Solve this subproblem and let its solution be denoted 

by x k+l .  Let k := k + 1 and goto Step 1. 
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We neglect here certain details, for example, the choice of the 
asymptotes, which are in general updated in each iteration. 
When applying this algorithm one sometimes may observe 
difficulties concerning the objective function. It is possible 
that  the approximation is linear or almost linear leading to 
useless subproblems. Therefore, Svanberg (1993) suggested 
to append a term to the approximation of the objective func- 
tion which guarantees strict convexity of the objective func- 
tion. We use here the following mode, where we first rewrite 
the original approximation, 

- ~ ci ci 
if(x) = f A- T Ui xi ~ xi - Li 

Definition 2.2. For the (continuously differentiable) objective 
function of ( i )  we use the approximation 

+ Ui - x i + . . . .  ~ _ L i Ui - xi J _ xi . 

c(xi : x°) 2 ] 
x i - L i J ' 

where ~ is some positive number. 
This approximation remains separable and is now strictly 

convex with two major advantages. 

• The subproblem has a unique solution (if it has at least 
one). 

• A very efficient dual approach for solving the subproblem is 
applicable (eft Fleury 1989; Svanberg 1987; Zillober 1992). 

To simplify the notation, we shall use the following ab- 
breviation. 
Definition 2.3. By S P ( x  k) (s_ubproblem) we state the opti- 
mization problem 

min f (x )  subject to h i ( x ) < 0 ,  j = I . . . M ,  x ~ X ' ,  

where x k is the expansion point and the functions are chosen 
according to (2.1) and (2.2) and X '  := {x [ max [xi, x/k - 

w(x k Li) ] < x i < rain [xi , xki + w(Ui k - _ _ - x i)]} , ( w  4 ] 0 ,  1 [  

fi~ed). 
We note tha t  always X I _C X and all x E X I are bounded 

away from the asymptotes. Next, we state a result which is 
very important  in identifying a solution. 

Lemma 2.4. x* is a stationary point of (1) if and only if x* 
is a stationary point of SP(x*) .  

Proof: Zillober (1992). 

Of course the choice of asymptotes is a crucial point for 
the behaviour of the algorithms discussed in this paper, but 
it is not our central scope. For theoretical purposes we now 
restrict the set of possible choices. 

Definition 2.5. A strategy for the choice of asymptotes is 
called continuous, if for any sequence {x k} ~ x we have 
n i ( x  k) --~ Li(x ) and Ui(x k) --+ Ui(x), respectively, for all 
i =  1. .  .n and for all x , x  k E X .  

By the notation Li(xk) ,  Ui(x k) we mean the asymptotes 
resultin~ from the evaluation of the chosen strategy at the 
point x% These asymptotes may depend on the current iter- 
ation point, additionally on previous iteration points as the 
strategy in Section 5, or may be independent of the iteration 
point (note that,  for example, the CONLIN method results, 
if L i = 0 and U i = -4-00 are chosen for all i = 1 . . .  n). In 

the theorems stated later we will assume that  the strategy 
for the choice of the asymptotes fulfills (2.5). The reason is 
that  (together with other assumptions) the feasible regions of 
the subproblems then vary continuously with respect to the 
expansion point. Tests with different strategies showed that 
global convergence of the new method is observed by apply- 
ing non-continuous strategies. In other words, the continuity 
of the strategy for the choice of the asymptotes is sufficient 
for global convergence, but not necessary. 

For the CONLIN method, Nguyen et al. (1987) gave a 
convergence proof but only for the case that  (1) consists of 
concave functions, which is of less practical interest. They 
indicated furthermore by some examples that  a generaliza- 
tion to non-concave functions is not possible. Zillober (1992) 
showed that  a similar convergence analysis could be applied 
to MMA. Using the flexibility of the asymptotes which in- 
fluence the curvature of the approximations, it is possible to 
omit the concavity assumption. However, the resulting re- 
striction on the choice of the asymptotes leads to a very slow 
numerical convergence of the algorithm so that  the theoreti- 
cal improvement does not result in a more efficient algorithm. 
This was the motivation to look for another way to prove con- 
vergence of the method without losing the good behaviour of 
the original method. These results are reported in the next 
section. 

3 Se que n t i a l  convex  p r o g r a m m i n g  

It is well-known that  by adding a line search with respect 
to a function measuring the global convergence of an algo- 
rithm, the behaviour of an optimization method is improved. 
Generally, such a line search needs additional evaluations of 
the original functions Of (1). Therefore most people reject 
this idea to globalize MMA, since its numerical performance 
is excellent even without a stabilization. In this section, we 
prove that  MMA, together with a line search subject to an 
augmented Lagrange function, leads to a globally convergent 
optimization method. The examples in Section 5 are chosen 
to illustrate this  fact. However, first we rewrite (1) in order 
to obtain a simplified notation in this section, 

min f (x)  s.t. h j ( x ) < 0 ,  j =  1 . . . m ,  (2) 

where m = M + 2n, i.e. we also write the box constraints 
in the form hj(x)  < 0. Now we introduce the augmented 
Lagrange function. 

Definition 3.1. The augmented Lagrange function e r  : 
IFL n+m ---+ ]R associated to (2) is for a fixed parameter r > 0 
defined by 
~r  (x) = / ( x )  + 

f i  r-h2.(x), if - - -  < hi (x)  u j h j ( x )  + 2 3~ r - 
u2 

3=1 - ~ otherwise 

This function is also used in the general purpose optimization 
method SQP (Sequential Quadratic Programming) by Schitt- 
kowski (1981) as a merit function and is known to work well 
for stabilizing the method. 

The motivation to choose the augmented Lagrange merit 
function results from the following two well-known state- 
ments. 
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X* (1) A point (u*) is stationary for @r if and only if (x:) is 
stationary for (2). 

(2) Under some regularity conditions there is an g > 0 such 
that x* is a global minimizer for ~ r (X) :=  tr(X,U*) for 
all r > ~. 

To simplify the notation we use the following definitions. 
Definition 3.2. Let u 6 N m  be a vector of multipliers and 
x 6 X be an arbitrary point. Then 
• u := (Ul , . . . , gm)  T, where gj  = 

u j ,  i f  uj - - -  _< hj(x) 
r 

0,  otherwise 

• h (x ) :=  (hi(x), .. . ,hm(x)) T ' 
• ~(x) := ( ~ ( x ) ,  . . . , ~ ( x ) )  T , where 

hj(x)  i f  uj , - - -  < hj(x) 
r 

~j(x) = 0,  otherwise 

• ~ (x) :=  (]~(x), ...,~m(X)) T , where 

]~j(x - - - -  < hj(x) 

otherwise 
r 

• A(x) := (Vh l (x) , . . . ,Vhm(x))  T , 

{ )} • J : =  j ] l < _ j < _ m ; - - - < h j ( x  
r 

• K : = { J l l < _ j < _ m ;  j ~ J } .  

Hence, the gradient of the augmented Lagrange function 
is 

V#r(X) = { Vf(x)  + A(x)[~+]~(x) rh(x)] } . 

Before we formulate the algorithm we state some auxiliary 
results. 
Lemma 3.3. Let us consider S P ( x  k) where x k is an arbitrary 
element o f f .  Then 

(a) hj (x)  and f ( x )  are uniformly bounded on X for all j = 
1 . . .m;  

(b) Vhj(x)  and Vf(x)  are uniformly bounded on X for all 
j = l . . . m ;  

(c) hj(x) and f (x)  are uniformly bounded on X t for all j = 
I . . . m ;  

(d) Vhj(x)  and Vf(x)  are uniformly bounded on X '  for all 
j =  1 . . .m ;  

[i=l . . .n  (U~ - Lk) 3 ' 

r (~ ~} - L i )  ] 
min /2e k (> 0) is a lower bound such 

i=l...n k (Ui -- Lk)3 J 

that ~ 2  x >- for allx ~ O ]  (i = 1 . . .n) .  

(f) There are ~ and ( > 0 such lhat ~ k (k > ( f o r  all k. 

Corollary 3.~. Let yk+l  be the optimal point of SP(xk) .  
Then 
(a) V f ( x k ) T ( x k  - yk+l )  _> f ( x  k) _ f ( y k + l ) +  

r/k yk+l  _ x k 2 ~k where @ , : = y  and II II denotes 
the Euclidean norm throughout. 

(b) ~f x ~ is feasible for (2) then Vf(xk)T(x  ~ -- yk+l )  > 
r/k y k + l _ x  k 2. 

(c) There are ~ and ~1 > 0 such that ~ > @ > y for all k. 

Lemma 3.5. I f  x C X and 0 < uj < Umax for all j = 1 . . .  m, 

then q5 r (x) is uniformly bounded from below f o r  all r > 1. 
The proofs for these statements are straightforward and 

omitted here. The interested reader is referred to the doctoral 
dissertation by Zillober (1992). 

Now we formulate the SCP (Sequential Convex Program- 
ming) algorithm in order to show the similarity to the SQP- 
method. 

Step 0:Choose x 0 G X, u 0 _> 0, 0 < e < 1 (e.g. 0.001), 
0 < ¢ <  1 (e.g. 0.5), r > O  (e.g. 1),let k :=O.  

step l :  Compute f(xk) ,  Vf(xk) ,  hj(xk) ,  Vh j (xk ) ,  j = 
1 . . .m .  

S t e p 2 :  Compute L k and U/k (i = 1 . . . n )  by some scheme; 
define f(x) ,  hj(x),  j = 1 . . . rn  [cf. (2.1) and (2.2)]. 

yk+l 
Step 3:  Solve SP(xk);  let (vk+l) be the solution, where 

v k+l denotes the corresponding vector of Lagrange 
multipliers. 

Step 4:  If yk+l  = x k stop; (xkk)is the solution. 
x k y k + l  

Step 5:  Let s k := (uk--vk+i) , 6 k :=[I yk+] _ x k ]], @ as 
defined in (3.4). 

Xk x k ) r  
Step 6:  Compute ~r(uk) ,  VOr(uk), V~r(X~k s k. 

ixk~ T k @(6k)2 let r := 1Or and goto Step 7 : I f  V~r~.u ~) s < 

Step 6; otherwise compute the smallest j G B~ 0, such 

(nrmijo); let ~r k := t J .  
. xk+ l ,  X k 

Step 8 : Let (uk+l) := (uk) - a k s k ,  k := k +  1, goto Step 1. 
The major difficulties in proving global convergence for 

the new method are to show that the search direction defined 
in Step 5 of the algorithm is a descent direction for #r  and 
that the resulting sequence of penalty parameters is bounded. 
To prepare the proofs we proceed as follows. 

For x 6 X t we rewrite the approximating functions 

](x)  = ] (x  k) + Vf (xk )T(x  - x ~) + R f ( x ) ,  

hj(x) = hj(x k) -b XTttj(xk)T(x - x k) +/~]tj  (X), 

where R],  R~j : ]p~n _.+ ]R are continuously differentiable. 

Since we have convex approximations we conclude Rf(x) ,  

R~j (x) _> 0 for all x E X t. 

Since the approximations are of first-order for objective 
function and non-box-constraints, and the box-constraints 
can be rewritten as hi(x) := h j ( x ) + x j  with xj  > 0 constant, 
we further write: 

f (x)  = f (x  k) + V f ( x k ) T ( x -  x k) + ~ f ( x ) ,  

hj(x) = h j ( x  k) + V h j ( x k ) T ( x _  x k) + / ~ j  (x), j = 1 . . . m .  

:= [h l (x ) , . . . , hm(x) ]  T a n d / ~ ( x )  := Next we define: ~(x) 

[R~I (x ) , . . . ,  R ~  (x)] T. Hence ~(x) = h (xk)+A(xk)T(x -  
x k) + R~(x) .  
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For the op t imal  solution y k + l  of S P ( x  k) we define and con- 
clude as follows. 

Corollary 3.6. Let A x  k := y k + l ,  x k. Then 
(a) A ( x k ) T A x  k = ~ ( y k + l )  _ h(x  k) _ R/~(yk+l) ,  

(b) ~ ( x )  > 0 for anx ~ X t, 
(c) ~ + r~(x) > o, 
(d) ~ ( y k + l )  < 0 since y k + l  is feasible for Sp (xk ) .  

A result f rom pe r tu rba t ion  theory together  with (2.5) tells us 
tha t  A x  k is a continuous function with respect to x k. This 
is the main reason for introducing the qualification (2.5). 

The next l emma shows tha t  the elements of the sequence 
(x k uk)k=0,1,2 .. are all elements of a predefined compact  
set. 

~x k u k~ be produced Lemma 3.7. Let the sequence ~ )k=0,1,2, 
by SCP, all subproblems be solvable and gradients of active 
constraints at the optimal points of S P ( x  k) be linear inde- 
pendent as well as those of SP(x*)  where x* is any possible 
accumulation point of (xk)k=O,1,2,.... Then all points x k are 

in X and all u k are in a compact set U. 
Proof: Zillober (1992). 
Remark. The p roper ty  x k E X is a t r ivial  conclusion of the 
definition of X t. 

Now we are able to s ta te  the first main  result. 
Theorem 3.8. Let the assumptions of (3.7) be valid," hence 
there is a Umax with u k v k+l ~_ for all k > 0 and j ,  j Umax -- 

j =  1. . . m. Let x k C X and u k >_0 be given where x k is not 
a stationary point or (2); sk,r] k and 5 k are defined as in the 
algorithm and let the choice of asymptotes be continuous. 
(1) Then there is a penalty parameter ~k > 0 such that s k is 

a direction of descent for all r >_ ~k for the augmented 
Lagrange function qhr , i.e. 

x/~ T k @(5k)2 for all r > ~k Wr(,. ,~) s > 4 - 

(2) For each fixed 5 > 0 there is a finite -~5 such that for all 
x k 

(u,~) with 5 k >_ 5 we have 

V -  ,xk ,  T k @(5k)2 > ~]52 for all r > r -5 
~O~uk ) s > _ ~ _ - - 4 - -  _ . 

Proof. ~ #  rxk~Ts k v r ku k) = 

_ V  f ( x k ) T  A x  k _ [~k + r~(xk) ]  T A(xk )T  A x  k _ 

~(~k)T(vk+l _ u k) = _ V f ( x k ) r A x  k _ [ (~k+  

r~(xk)] T [ ~ ( y k + l ) _  h(x  k) _ _R~(yk+X)]_ 

h(xk )T(v  k+l - u k) cf. (3.6a) = --V f ( x k ) T  A x  k - -  

_ T ~  - k T • [uk+rh (xk ) ]  h ( y k + l ! + [ u k + r h ( x  )] h ( x k ) +  

_zo 
- k T ^ !~k  + r h ( x  )] t ~ ( y k + l ! - - h ( x k ) T ( v  k + l -  

u k) cf. (3.6b,c, d) _> - V f ( x k ) T ± x  k + (~k)Th(xk) + 

r-h(xk)T h(x k) - ]~(xk)T (vk+ 1 - u k) : - y (~k)T z~xk•+ 

(~) 

E u k h j  (xk)+r E h 2 ( x k ) -  E hJ (xk) (v)  +1 - ' a k )  + 
jEJ jCJ jEJ 

(o5 (5) 

r 
j ~ K  

Using the last inequali ty we first prove par t  (2) of the 
theorem. For this purpose,  we will show tha t  critical terms 
are sufficiently small  for large penal ty  parameters .  

Let x k be feasible. By (3.4b) we then have 

_ V f ( x k ) T A x  k >_@ A x  k 2 = @ ( 6 k ) 2  >0.  

If J = 0 :  (b), (c) and (d) are empty  sums, 

1 2 

j E K  
of the size of K.  Hence we have for r > r l := 

4Ufnax : o  I(e)l < ~ 2  This  means V ~ r ( x ~ ) T s  k -  > 
m ~52 _ - ~ -  

~k(6k)2 
3 ~ f o r a l l r > _ r l .  

I f J ¢ 0 :  
~52 

We have (c) _> 0. Similar to the above is I(e)[ _< - - ~  for all 

r > r  1 . 

~62 (otherwise there is nothing to (b) : Assume I(b)[ _> - ~ -  

show!) 
~5 2 

](b)] < Umax E hj (xk)  ~ E h j (xk )  > This  
-- jCJ jEJ  - 8Umax ' 

sum consists of at  most  m elements and is essentially not  
~5 2 1 

influenced by those elements where h j ( x  k) < . 
-- ?n Sum& X 

hj(xk) I v5 2 Since j E J we have for all j with > : 
m 8Umax 

u/~ 1 r/5 2 uk' 
3 < h j (x  k) < and - ~ > -Uma--~x 
r -- m 8urea x r -- r 

8U2max 
However, for r > r 2 := m ~  t h i s j  is in K and does 

therefore not increase (b). 
~/62 1 

(d) : Analogously either h j (x  k) < - - - - ,  or j E K  for 
-- ~ 8"ama x 

r > r2 such tha t  I(d)i < - 8 -  

For each feasible x k we conclude 

V "  t xk~rs  k for all r > max{r1,  r2} 
@(6k) 2 

Or ku k) >_ ~ 

Now we assume tha t  x k is infeasible. Therefore there is 
at least one j with h j (x  k) > 0. This j is an element of J 
for all positive r and is a non-box constraint  because of the 
definition of X t. 
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Corollary (3.4a) tells us that  (a) > ] (x  k) - ] ( y k + l )  + 
,k(sk)2.  Since x k is now infeasible we can no longer con- 
dude  that  ] ( x  ~) - ] ( y k + l )  > 0. ~owever, there is Z~ > 0, 

such that  for all x k where x k - yk+ l  > 5 we have: 

,5 2 
j ' _ -~a \  h / x k ) _ _ . . . . ~  < fll ~ ] ( x  k) - i ( y k +  ~) > - - ---~--; fll does 

not depend on xk(E X)  since the feasible region is compact. 
.k(Sk)2 

These conditions yield (a) > 3 ~ .  In other words, com- 

pared with (3.4b) a weaker condition is also valid for expan- 
sion points x k , which are "slightly infeasible". Now we have 
to consider the other terms, 

I(d)l < Umax ~ hj(x k) < "52 - jCJ - -~-  ¢:~ "~" hj(xk) ~- 
JE3 

q62 . This condition is fulfilled, if (e.g.) all hj(x k) < 
8 u r e a  X 

1 ,5 2 - .  f12 • If hj(x k) < 0 it is valid for r > r2, since 
m 8Umax 
this j then belongs to K. 
(b): Since ujk _> 0 all j G J where hj(x k) _> 0 are positive 

elements in (b) and can therefore be neglected; i.e. with the 
,62 

same arguments as above we have for r > r 2 : (b) > - ~ -  

Now let fl := rain{ill;/?2} and assume hj(x k) ~ fl for all 
,52 

j. Since (c) _> 0 and I(e)] < - ~ -  for r > r 1 we conclude : 

x k Tsk 3 , k ( sk )  2 ,52 ,52 ,52 > r]k(sk) 2 
V ~ r ( u  k) > 4 8 8 4 - 4 
for all r > max{r1, r2}. 

Otherwise, there is at least one j with hj(x k) > 13 . Gen- 
erally we have: 

] (a)[< ]]~f(xk)]]]]Axk N < max HVf(xk)H max ]]Axkll= 
_ _ xkEX xkEX 

:71 (3.3b) 

I(b)l < mUmax max hj(x k) =: 72, (3.3a) 
- x ~ E X  

I(d)l < mUmax max h : ( x  ~) = 72 
- -  X k ~ X  ~ 

I(e)l ___ m U ~ x  =:  73 for r > 1, 

1 "k(sk)~2 < - ~  max HAxktl 2 =: 74. (3.4) 
4 - 4 x ~ X  

In our situation we have in addition (c)_> rfl 2. 

VOr (xk~) ~sk~r > -71  - 72 - 73 + rfl 2 > "k(sk)2 for r > 
- - 4 - 

7 1 + 7 2  + 7 ~  + 7 4  r 3 ~ fl~ independent o f x k ( ~  X) 

~ [ x ~ T s  k "k(sk)2 for r > ~5 This yields v r [ue  ] -> 4 := 

max{rl, r2,r3} , which proves the second part of the theo- 
rem. 

Replacing 6 by 6k a n d ,  by ,k we can show the existence 
of corresponding rkl , r k (instead of rl,r2, independent of k) 

x k 
for a fixed (u ~) where x k is feasible, with the same argumen- 

tation and hence of y k  However, with these arguments we 

can no longer guarantee the boundedness of ~k since 6 k can 
be arbitrarily small. 

For infeasible x k there is at leas't one j C {1, ..., m} where 
h j (x  k) = /3 > 0. Therefore the condition is fulfilled with 

, k ( e k ) 2  

r > 4 + ~12 + 72 + 73 Since ~ might be arbitrarily 

small we cannot conclude the boundedness of the penalty 
parameter in this case also without further arguments. 

The next theorem shows us conditions which guarantee 
the boundedness of the penalty parameter also in the case of 
6k ~O.  

Theorem 3.9. Let the assumptions of (3.7) be valid and as- 
sume a continuous choice of asymptotes. For 5 k ~5 0 we 
d¢ne: ~k II u k  - v k + l l l 2  x k 

• - (5k)2 . Let wher, xk is not a 

stationary point for (2), be determined by the SCP-algorithm 
and fulfill the following two conditions: 
(a) j E J if and only if [t j(y k+ l )  = 0 (j = 1 . . . m )  (i.e. 

subproblems and the original problem identify the same 
set of active constraints), 

(b) there is an c~ E ~ independent of k, such that  c~ k < ~ < 

Then there is a 5r__ > O, such that 

[xk ~ T ,k(6k)2 
V'~ for all (xk~)with 6k< 5r, k ~ r ~ u k  ) s > ~ - _  

wherer_:=min( lOJ: jE lNo ,  l O J k 2 ~ } .  

Proof, Since we know the correct set of active constraints we 
have u k = v k.+l = 0 for all j E K because of the station- 3 
arity conditions of SP(xk).  Therefore: u k = ~ k , v k + l  = 
V k+l ,  tt(x k) = h(xk).  Moreover, ttj(x k) = hj(x k) is valid 
also for active box-constraints. 

Using Taylor's formula and the sufficient differentiability 
of the approximating functions in X l, we can write: 

= f (xk  ) + Vf(xk )T(  x -  xk ) + 1 ( x -  x k ) T v 2 f ( x k ) ( x -  / ( x )  

x k ) + f R ( x ) ,  h j ( x ) = h j ( x  k ) + v h j ( x k ) T ( x - x  k ) +  

~(xl _ xk)T~j2~j(xk)( x _ xk ) + ~j,R(x ) 

where ]1t, hj,R (J E J) : IR n --+ ]R are differentiable like ] 

and hj.  Considering Lagrange's remainder we conclude 

jR(X), ~ j , R ( x ) = O (  x _ x k  3)  . 

Hence, we write the gradients 

Vf (x )  = V f ( x  k) + V 2 f ( x k ) ( x  - x k) + V/R(X) ,  

~7hj(x) = Vhj (x  k) + ~72hj(xk)(x - x k ) ' +  ~7hj,R(X), 

where ~TfR(x) , ~7hj,R(x ) = 0 (  x - x  k 2)  . 

Using these equations the stationarity conditions for 
SP(x  k) are 



(i) V f ( x  k) + V 2 f ( x k ) ( y  k+l  - x k) + VfR(Y k+l)  = 
m 

- ~ v k+l  [Vhj(x k) + V2tzj(xk)(y k+l - xk)+  
j = l  3 

Vhj,R(yk+I)], 

(ii) v k.+l~ [hj(x k) + Vhj(xk)T(y k+l - x k) + 21-(Y k + l -  

xk)TV2hj(xk)(y k+l - x k) + tzj, R(yk+l)] =0, j = 

1 . . . m  
(iii) hj(x k) + Vhj(xk)T(y k+l - x k) + l ( y k + l  _ 

xk)Tv2hj(xk)(y k+l -- x k) + tzj,R(y k+l) <_ O, j = 
1 . . . m  1 

(iv) v k.+l > 0, j = 1 . . . m ;  

(i) yields : --Vf(xk)T Ax k = (Axk)Tv2f(xk)Axk+ 
VfR(yk+l)T Ax k + (vk+l)T A(xk)T Axk+ 

m Ax k . 
[ j= l  

From the definition of hj  we know 

A(xk)TAx k = [z(y k+l )  - h(x k) - H ( A x  k) - h ,R(yk+l) ,  

where 

~R(yk+l )  : :  [~ZllR(yk+l), . . .  ' ~m,R(yk+l) ] T ,  

and 

H ( A x  k) := [ l (y  k + l -  x k ) T V 2 ~ l ( x k ) ( y  k+l - xk), . . . ,  

1, k+l  xk)] T -~t,y - xk)TV2hm(xk)(y k+l - 

If j G J, then 

Ihj(xk)l = I~j(xk)l = laj(x ~) - [zj(yk+l)l  

[since ~ j ( y k + l )  = O] = 

[hj(x k) - hj(x k) - V a j ( x  k + O(y k+~ - xk) )T(yk+ ~ - xk)l, 
(where 0 ~ [0; 1]) = 
1- V[tj (x k + 0(y k+l  - x k ) )T(yk+ l  _ xk)[ _< Ll[yk+l _ x k II, 

with L > 0 (3.3d). 
Now we are able to derive the necessary inequality 

xk T k  V~r(u~) s = 
_ V f ( x k ) T A x  k _ (~k + r_~(xk))TA(xk)TAx k _ 

]z(xk)T(v k+l -- u k) = ( Axk)Tv2 fi(xk)Axk + 

~+IT ~ ~+IT ~T y / ~ ( y  ) ~x + (v  ) A(x) ax + 

o[(~)3] 
m 

v ~+~ (z~x~)Tv~j(x~)zXx~ + 
j = l  

>_0 (convexity) 
m 

~k+lV~y,~(y~+l)Tmx~ _ ( ~  + 
j = l  

o[(~;)q 
r_-h(xk) )T A(xk)T Ax k - tz(xk)T (v k + l - u k) _> 
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! Axk)Tv2j(xk)Axk•+(vk+I)T A(xk)T Axk -- 

>@ (5k)2 (3.4),(3.3e) 

[~k + r_-~(xk)]T A(xk)T Ax k _ ~(xk)T(vk+l _ u k ) +  

=~(x~)T(vk+l--u k) 

O[(5k) 3] >_ r]k(6k) 2 + (vk+l)Th(yk+l)-(vk+l)Th(x k) - 

=o (ii) 

(vk+I)T H( Ax k) - (,vk+l)T hR(yk+l)- 
o[(~) a] 

!~k + r~(xk)lT~(yk+l) +[gk + r_~(xk)lTh(x k) + 

=0, cf.(~) 

[~k + r_-~(xk)]T H( Ax k) + !~k + r~(xk)]T~R(yk+l)- 

o[(~k)q 

~(~k)T(vk+l _ k )  + O[(~k)3] _> ,k (~k)2_ , (vk+l )G(xk)  _ 

=(vk+l)T~(x~) 

(vk+I)T H( Ax k) + !~k)Th(xk) +r_ -~(xk)Th(xk) + 

!Kk)T H( Axk) +r_-h(xk)T H( Ax k) - ~(xk)T (v k + l -- u k) + 

=(uk)TH(Z~X ~) 

O[(sk) 3] = @(6k) 2 + r_h(xk)T[h(x k) + H(Axk)]  - 

(vk+l)T[2h(x k) + H(Axk)]  + (uk)T[2-h(x k) + H(Axk)]  + 

O[(6k) 3] = r/k (sk) 2 + r_[h(x k) + g(Axk)]T[h(x k) + 

H(Axk)]  + 2(u k -- vk+l)T[h(x k) + H(Axk)]  - r_H(Axk) T • 

[h(x k) + g (Axk) ]  -- (u k - vk+l)TH(Ax k) + O[(6k) 3] = 
2 

,k(#)2 + ~ [~ (x  ~) + H(~x~)] + l ( u ~  _ v~+~) _ 
v - -  

A 

r_ rH(Axk)T-h(xk),-rH(Axk)TH(Axk)~- 

o[(~k)q o[(~)q 

!u k _ v k + b T  H(a , &AO[(6k )3  ] >_ k(~k)2 _ 

o[(~k)q a.(b) 

uk _ v k + l  2 +O[(sk)  3] -> l t /k(sk)  2 + ~,(sk)2__ 
r 

a(sk)~2 + 0[(6k)31, cf (b) = ~,k(6k)2 + 
r 

7)( 3 ) + o[(~k) 3] > o[(~k)3]. 
• ,,,,, 

;0 

uk _ vk+l  2 
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x k 
Now let g ( u  k) be the (rest-) function which is 0[(6k)3]. 

Thus, there is an Mr_ E IR (r__ is fixed !), such tha t  ~ < 

Mr.  

Our goal is: _< lr /k(6k)2 . This is fulfilled with 6 k _< 

x k T k ~k(6k)2 
rl --. 6r = const. > 0 , such tha t  V ~ r ( u k  ) s > 

4Mr_ - - 4 
x k 

for all (u k) with 6 k <_ 6r_. 
x k 

Corollary 3.10. Let the sequence (uk)k=0,1,2,... be produced 

by SCP. I f  the assumptions of(3.8) and (3.9) are valid, then 
the corresponding sequence of penalty parameters is bounded, 
i.e. there is an F < oe, such that r k = ~ for all k > k > O. 

Proof. We consider r_ and 6r_ of (3.9). Using (3.8,2) there is 

an ~5 < oc such tha t  for 5 := 6r_ we have 

V#r(Xkk)Ts k > @(6k)-----22 for all r > 75 and all (xkk) with 

6k>6. 
I-f g5 < _r then the assertion follows directly since then r_ 

is the required ~. 
If F5 > _r we have to make some addi t ional  considera- 

tions. By the assumptions  of (3.9) we have for the func- 
xk T 

tion ~ : [1,ee[--* IR with ¢/(r) := V ~ r ( u k  ) s k : ~ is 

one-dimensional and continuously differentiahle with k~l(r) = 
- h ( x k ) T A ( x k ) T A x  k = const. [cf. first row of the main in- 

equali ty in the proof of (3.9) using h(x k) = h(xk)] .  Tha t  is 
k~ is linear and since l im gr(r) > 0 [cf. (3.8,1)] we conclude 

r---+ oo 

@(6k)2 for that (/t(r) >_ O. This means that ~,(~5) > ¢t(_r) _> 4 

x k 
all (uk) where 5 k ~_ 6 . That is the penalty parameter also 

does not need to be enlarged in these points and ~ = ~6. 
Now we are able to formulate the main result of this pa- 

per. 
X k 

Theorem 3.11. Let x 0 ~ X and the sequence (u~)k=0,1,2,... 

produced by SCP fulfill the assumptions of (3.8) and (3.9). 
Then the sequence either terminates at a stationary point, or 
it has at least one accumulation point and each accumulation 
point is a stationary point for (2). 

Proof. X is compact  and convex. Since each subproblem is 
uniquely solvable, its solution yields y k + l ,  which is different 
from x k as long as x k is not a s ta t ionary  point  (2.4). Hence 

the search direction s k does not vanish. Theorem (3.8) tells 
us then tha t  we can find an r > 0 such tha t  s k is a direction of 
descent for the augmented Lagrange function ~ r .  The step 
size procedure (Step 7 of the algori thm) results in a point 

x k + l .  
~+~)  where x ~+~ ~ ]x~,y  ~+~] and u ~+a ~ ]u~,v~+~]. 

x k 
Using (3.7), (u})k=0,1,2,... is therefore a sequence in the com- 

x k 
pact set (X, U). Hence, (u})k=O,1,2 .... has at  least one accu- 

X* mulat ion point  (u*) @ (X, U). 
If a s ta t ionary  point  is an element of the sequence, then 

the a lgor i thm terminates  because of (2.4) and Step 4 of the 

algorithm. Otherwise an infinite sequence is produced.  
Let us now assume tha t  there is an accumulat ion point 

( x : )  which is not stat ionary.  

By (3.10) we have a finite F, such tha t  

V # r  (_x_~)Ts k u  '°- > @(5k)2 for all r > F and k > 0. 
- -  4 - - 

This means tha t  reaching some i tera t ion index the penal ty  
parameter  does not need to be enlarged and is therefore con- 
stant .  Let us now consider this remaining sequence with con- 
stant  penal ty  parameter  ~. Hence, in Step 7 of the algori thm 
we always have the same function #~. The remaining se- 

x* quence now contains a subsequence which converges to (u*)'  

Let Ilax*l[ =: 26; 6 > 0 because of (2.4). Since Ax  k 
is a continuous function of x k there is a k E NO such tha t  
Ilaxkl[ ___ 6 for all elements of the subsequence with k _> k, 
i.e. for infinitely many  i terat ion points.  For these elements 
of the subsequence we conclude now tha t  the scalar product  
of the gradient  of the augmented Lagrange function and the 
search direction is uniformly bounded  away from zero, i.e. 

xk T k r] 62 
W~(u~  ) s _ - ~ - .  

Standard  arguments  of opt imizat ion  tell us further tha t  
this fact leads to a sequence of step sizes (~k) which is 
bounded away from zero by acr  > 0. This  means (cf. Step 7 
of the algori thm) 

l O ~ ( u k ) - ~  ( u k ) - - ¢ k s  k >cakV#~(xkk >_co" 4 ' 

. X k 
for infinitely many i terat ion points,  yielding kf i rn  #g (u k) = 

- o o ,  which is a contradict ion to (3.5). Hence the assumption 
is wrong and the assertion proved. 

At  the end of this section we want to prove a result  which 
is weaker than  (3.11) because it makes no use of (3.9). This 
means tha t  we do not assume a k _< c~ any longer, but  allow 
an unbounded sequence of ak .  

x k 
Theorem 3.12. Let x 0 C X and the sequence (u~)k=O,1,2,... 

produced by SCP fulfill the assumptions of (3.8). Then the 
sequence either terminates at a stationary point, or it has at 
least one accumulation point and at least one accumulation 
point is a stationary point for (2). 
Proof. 

(1) There is at  least one accumulat ion point  similar to the 
first par t  of the proof of (3.11). 

(2) If the sequence of penal ty  parameters  is bounded,  then 
the proof of (3.11) is t ransferable and the therein cited 
stronger results hold. Therefore we assume a non-bounded 
sequence of penal ty  parameters .  

x k 
(3) There is an infinite subsequence of (uk)k=0,1,2 .... with 

6 k ~ 0; otherwise the sequence of parameters  would be 
bounded because of (3.8,2). 

(4) Since this subsequence is in the compact  set (X, U) it has 
at least one accumulat ion point  where 6 k = 0. Using 
(2.4), this is a s ta t ionary  point.  
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4 Artif icial  variables  

One important assumption in the theorems (3.8) and (3.9) 
is the solvability of the subproblems, i.e. non-empty feasible 
regions. This cannot be ensured in advance and in fact it is 
sometimes not fulfilled, especially in the first iterations, when 
we are still far away from the solution. However, there are 
various techniques to overcome this situation (see e.g. Fleury 
and Braibant 1986; Svanberg 1987; Sehittkowski 1983). In 
this section we briefly describe one possibility and state a 
result which preserves the convergence of the method. 

We look at the situation, where there is at least one 
j C {1, ...,m} with hj(x k) > O. Otherwise x k is feasible and 

therefore SP(x  k) is solvable. 

Definition 4.1. The auxiliary problem APp(x k, 1) is defined 
by 
m i n { f ' ( x , # ) l h ~ ( x , # ) < O , j = l . . . m ; O < # j  < I ,  j c M }  
X,tt - -  _ _ 

where M := {j • {1,. .. ,m}]hj(x k) > 0}, fit(x,#) := 

h}(x,#) := { hj(x),-/)J(X) - t t jhj(xk),  ifjifj •~ MM and 

pj (j • M) are some positive parameters. 

We note that (x k, 1) is feasible for APp(x k, 1) and that 
#j (j • M) are additional primal variables. The functions of 
the auxiliary problem remain convex and separable. 

The solution of APp(x k, 1) still yields a descent direction 
for the augmented Lagrange function. 

Theorem 4.2. Let x k and u k >_ 0 be given, where x k is 
not feasible for Sp(xk) .  Let the gradients of functions hj 

belonging to active constraints of APp(x k, 1) in the solution 
point (yk+l ,  vk+l ,  pk+l)  be linear independent. If p~+l < 

1 for all j • M then there is a penalty parameter-~ > O, 
x k yk+l 

such that s k := (u~-v~+l)  is a descent direction for the 
augmented Lagrange function C~r for all r >_ ~, i.e. 

V~  /xk~ T k rlk(bk)2 for all r > 7 
q ) ~ u  k )  s >_ 4 - " 

Proof. Zillober (1992). 

Now we have to answer the question, whether the solv- 
ability condition was replaced by another strong condition 
(#j < 1 for all j • M), or if this condition is weaker. 

Lamina 4.3. Let the gradients of hj belonging to active con- 

straints of APp(x k, 1) be linear independent at each feasible 
point. Then there is for arbitrarily fixed 0 < -fij < 1 a param- 

• k+l < ~j for allpj > ~j (j • M) eter ~j < oo, such that t~j _ 

in the optimal point ( yk+l , vk+l ,#k+l )  of APp(x k, 1). 

Proof. Zillober (1992). 

The lemma tells us that an iterative process is needed to 
obtain a suitable solution of the auxiliary problem since a 
sufficient parameter p is not known in advance. 

5 Examples 

By the following 2 examples we compare the convergence be- 
haviour of SCP to that of the MMA method. The efficiency of 

MMA in the case of convergence is well-known. The examples 
are computed using the Finite-Element-System LAGRANGE 
(Kneppe et at. 1987). The examples analysed are called "tb- 
dyn" and "aplate2". In the table below we show the weight 
of the structure in each iteration followed by the maximum 
constraint violation and, in the case of SCP, the step size 
(¢k in Step 7 of the algorithm). We neglect the units and 
further details since they are not essential for our purposes. 
The asymptotes are chosen identical for both methods due to 
a slightly modified scheme by Svanberg (1987). Let k be the 
iteration index; then for all i = 1 . . .  n we choose as follows: 

k = O , 1  : L k = x _ i - O . l ( ' ~ i - ~ i )  , Ui k = g i + O . l ( g i - x _ i ) ,  

X k - 1  ) = sign (x/k-1 k = 2 ,3 , . . .  : if sign (x k - i z ~x~2~  ~ 

x k-I  _ L k-1 U k-1 L xk. - I  
L~ = xki i , Uik = xki + , 

t ' t 

If sign (x k -- xk-1)i 7£ sign (x. k-l, - x k-2), : 

k t (vk-1  k-1 Lk = x i k - t ( x k - l  - L'k-1)z ' uk = x i  + - xi ) 

where t E ]0, 1[ is a parameter. We chose t = 0.7. 

5.1 Example "tbdyn" 

We consider the famous 10-bar truss and minimize the weight 
of the structure subject to one major constraint. There is a 
lower bound on the smallest eigenfrequeney. Additionally, 
there are lower and upper bounds on the design variables. 
The initial weight is 3630. The optimal weight is 2185.19. 
The constraint is active at the optimum. 

I It. ] 
0 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

36 

SCP MMA 

3630 / 0 / - 3630 / 0 

1857.00 / 0.72 / 1 1857.00 / 0.72 
1857.01 / 0.70 / 0,10 1857.10 / 0.79 
1856.62 / 0.69 / 0.16 1856.75 / 0.72 
1855.89 / 0.68 / 0.1 1852.95 / 0.79 
1855.85 / 0.68 / 0.03 1855.94 / 0.72 
1860.44 / 0.67 / 0,04 1847.27 / 0.79 
1865.56 / 0.65 / 0.04 1853.22 / 0.73 
1883.42 / 0.59 / 0.11 1842.03 / 0.79 
1905.00 / 0.52 / 0.13 1847.78 / 0.73 
1924.59 / 0.46 / 0.13 1960.98 / 0.73 
2127.57 / 0.12 / 1 1844.64 / 0.73 
2119.35 / 0.11 / 0.1 1953.24 / 0.72 

2185.19 / 2.5.10 -7  / 1 1924.78 / 0.53 

The first 3 iterations are equivalent (i.e. ~r k = 1 in Step 
7 of the algorithm). MMA is cycling between designs that 
are very different from the optimal one. SCP overcomes this 
situation and finally converges to the optimum. 

5.2 Example "aplate2" 
This is a minimum weight problem of a plate with 49 finite 
elements, 7 design variables, 49 stress constraints, 2 displace- 
ment constraints, i.e. 51 major restrictions and lower and 
upper bounds on the variables. The initial weight is (scaled) 
5.282, the optimal weight is 3.217. 
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l i t .  [ 

0 

7 
8 
9 
10 
11 
12 

13 

14 

15 

16 
17 
18 
19 

SCP MMA 

5.282 / 0 / - 5.282 / 0 

3.159 / 1.36 / 1 3.159 / 1.36 
3.148 / 1.11 / 0.1 3.046 / 95.29 
3.162 / 0.61 / 0.47 3.093 / 38.75 
3.174 / 0.41 / 0.34 3.122 / 15.23 
3.177 / 0.37 / 0.1 3.145 / 5.92 
3.180 / 0.33 / 0.1 
3.210 / 4.14.10 -2  / 1 

3.211 / 3.9.10 -2  / 0.06 

3.217 / 1.07.10 -3  / 1 

3.217 / 8.46.10 - 7  / 1 

3.175 / 4.45 

3.227 / 1.70 

3.267 / 0.49 

3.277 / 0.06 

3.258 / 2.20 
3.088 / 78.04 
3.111 / 17.04 
3.143 / 7.23 

The first 7 iterations are equivalent. MMA also cycles 
in this example, but close to the optimal solution without 
approximating it. SCP, however, converges directly to the 
optimal design. 

Finally we must mention that in many other test cases 
SCP and MMA produce the same sequence of iteration 
points. Sometimes the sequences differ but both methods 
converge to the optimal solution and in some examples MMA 
diverges, contrary to SCP. Two of them have been shown in 
this section. 

6 C o n c l u s i o n  

The method we described in this paper has the advantage 
of guaranteed global convergence in contrast to the original 
MMA method. Numerical experience shows that this is not 
only a theoretical property, but has significant practical im- 
pact. The SCP method is a stabilized version of MMA and 
solves problems for which MMA cycles. 

In our opinion, more attention should be paid to the 
choice of the asymptotes in the future. These parameters 
are essential for the behaviour of MMA or SCP. First tests 

showed significant differences between some preliminary ver- 
sions. 
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