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On the design of Beck's column 

U.T. R inge r t z  

Department of Lightweight Structures, Royal Institute of Technology, S-100 44 Stockholm, Sweden 

A b s t r a c t  The optimization of a single column subject to a 
follower load is studied. The shape of the column that maximizes 
the critical load for a given amount of material is found using 
optimization. The objective function is nonsmooth and there are 
also multiple local optima. Improved solutions to the optimization 
problem are found and compared to previous columns suggested 
in the literature. The sensitivity to perturbations in shape and 
refined discretizatiou is also investigated. 

1 I n t r o d u c t i o n  

Optimal design of structures subject to nonconservative 
forces is significantly more difficult compared to the design of 
structures subject to conservative forces. The main difference 
is that stability analysis in the former case involves analysis 
of unsymmetric eigenvalue problems, whereas the latter case 
involves eigenvalues of symmetric matrices, usually in the 
form of the matrix of second variations of a potential energy 
function. An overview of structural optimization subject to 
stability constraints can be found in the work of Haftka and 
Adelman (1993), Olhoff and Taylor (1983), Mr6z (1993) and 
Zyczkowski (1982). 

It is common that there are coalescing eigenvalues for the 
optimal design, see the paper by Cox and Overton (1992) 
for a typical example. The eigenvalues are not smooth func- 
tions of parameters such as shape and loading, when there 
are coalescing eigenvalues, causing significant difficulties in 
solving the optimization problem. Coalescing eigenvalues of 
unsymmetric matrices are also known to depend in a much 
more complicated way on parameters in the problem, com- 
pared to eigenvalues of symmetric matrices, see the paper by 
Seyranian (1991) for a thorough analysis. 

A classical model problem for stability analysis of struc- 
tures subject to noneonservative forces is shown in Fig. 1. 
The column, usually referred to as Beek's column, is clamped 
at one end and is subject to a follower force at the other end. 
There is no potential energy function for this mechanical sys- 
tem and one is therefore forced to consider the dynamics of 
the structure in order to analyse stability. The column is 
said to be in stable equilibrium if small perturbations of the 
deformations in the equilibrium state do not cause the defor- 
mations to become unbounded. 

If the column is uniform in shape and material properties, 
it is possible to determine the critical load of the column using 
a semi-analytical approach (see Ziegler 1968). The critical 
load of the uniform column is approximately given by 

P e r  = 20.05 E I o / L  2 , (1) 

where L denotes the length, E the modulus of elasticity, and 

I 0 the moment of inertia of the column. 

\ \ \ \ \  \ \ \ \ \  
Fig. 1. Beck's column, initial and deformed state 

The purpose of this paper is to derive improved solutions 
to the optimal design of Beek's column, that is, finding the 
shape of the column that maximizes the load for a given 
amount of material. The sensitivity of the critical load with 
respect to perturbations in geometry and refined discretiza- 
tion is also discussed. 

2 Stabi l i ty  analysis  

The equations of motion in discretized form are 

M i i  ÷ K u  - T I K g u  - ~ F u  = 0, (2) 

where the vector u E ~ m  denotes the transverse displace- 
ment of the column, M the mass matrix, K the stiffness ma- 
trix, Kg the geometric stiffness matrix, F the matrix defining 
the follower load, and ~/the scalar load parameter. The matri- 
ces M and K are symmetric positive definite, Kg symmetric, 
and F unsymmetric. 

Solutions to (2) are sought in the form 
u = q e iw t  . (3) 

Introducing (3) in (2) gives the unsymmetrie generalized lin- 
ear eigenvalue problem 

[A0/) - w2M] q = 0, (4) 

where A(~)= K - ~ K g  - ~ F .  The structure is stable whenever 
w 2 is real and positive (Ba~.ant and Cedolin 1991). 
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The stability analysis is to determine the largest value r/c 
of the load parameter r/such that w 2 is real and positive. This 
computation can be done numerically using bisection where 
the eigenvalue problem (4) is solved repeatedly for each trial 
value of r/. However, the computation of r/c must be done 
with great care, since there may exist loads r />  r/c for which 
all w 2 are real and positive. A proper definition of r/c is 

r/c = max{r/ I w2(r/) -> O, Im[w2(~) ]  = O, 

i = 1 , . . . ,  m, for all ~ C (0, r/c)}. (5) 

However, this is not a very useful definition, since it is im- 
possible to check w 2 for all r) E (0, r/c). A more practical 
definition is obtained by considering a discrete subset of the 
range (0, r/c). In .this study r/c is computed by first finding the 
smallest integer k such that the column is stable for r /=  k Ar/, 
stable for all 7/= jar / ,  j < k, and unstable fo r f i=  ('k+ 1)Ar/. 
A more precise value for r/c is then obtained using bisection 
with the initial interval defined by (r/, fi). The numerical value 
AT/= 0.1 is used in this study and the bisection algorithm is 
terminated when the length of the interval of uncertainty is 
less than 10 -10. The unsymmetric eigenvalue problem (5) is 
solved using LAPACK (Andersson et al. 1992). 

3 O p t i m a l  des ign  

Obviously, the critical load r/c depends on the shape of the 
column since both A(r/) and M depend on the shape. The 
optimal design problem of finding the shape of the column 
that maximizes the critical load for a given amount of mate- 
rial can be posed as 

max r/c(X), x E ~ n ,  (6) 
x 

aTx = v0, (7) 

$ _ j < x j < ' ~ j ,  j = l , . . . , n ,  (8) 

where z j  denotes the cross-sectional area of the column in the 
j- th cross-section, the vector a defines the constraint on con- 
stant volume v0, and z j  and ~j the lower and upper bounds 
on the cross-sectional area. The values ~ = 0 and ~ = cc are 
used in this study. 

A somewhat standardized form (Gutkowski et al. 1993) 
of the problem assumes that the column is modelled using 10 
beam finite elements, with piecewise cubic approximation of 
the displacements, and piecewise linear cross-sectional area 
giving 11 design variables. The cross-section is assumed solid 
and circular. It is also convenient to put the problem in di- 
mensionless form such that the true critical load is r/cEIo/L 2, 
the true cross-sectional area z j A o ,  and the square of the true 

eigenfrequency w 2 E I  0 / (pA  0 L4), where L denotes the length, 
E the modulus of elasticity, p the mass density, A 0 the cross- 
sectional area of the initiM uniform column, and I 0 the mo- 
ment of inertia of the initial uniform column. Consequently, 
r/c, x j ,  and w 2 are all dimensionless quantities. 

The best solution presented in the literature so far, has 
been obtained by Gutkowski et al. (1993). Using an opti- 
mality criteria method, they obtain a design with a buckling 
load of r/c = 92.56. 

To investigate the optimality of r/c = 92.56, a linear in- 
terpolation of this design ~ and the initial uniform design x 0 
is made, such that 

x(~) = (1 - ~)x 0 + ~ ,  (9) 

where ~ is a scalar parameter. The value ~ = 0 gives the 
uniform column, and ~ = 1 gives the column of Gutkowski 
et al. (1993). The vector x(~) is feasible with respect to the 
constraints (7) and (8) for ~ in the interval (-1.408,1.318). 
The critical load is plotted as a function of~ in Fig. 2. Clearly, 
the design of Gutkowski et al. (1993) is not optimal. It is 
not even a local optimum, since increasing ~ from ~ = 1.0 
gives higher critical load. It is also obvious from the figure 
that there are several local optima, and that the function 
r/c is nonsmooth. The best design along this direction is 
obtained for ~1 = 1.261 where the critical load is r/c = 110.8, 
which compares favourably with the results of Gutkowski et 
al. (1993). The values of x for the design of Gutkowski et aL 
(1993) is given in the first column of Table 1, and the design 
X(~l) in the second column. 
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Fig. 2. The critical load 7/c versus the design parameter 

Table 1. The cross-sectional area of the columns 

r/c 92.56 
x 1 1.080722 
x 2 0.777793 
x 3 1.152735 
x 4 1.709925 
x5 1.572900 
x 6 1.308235 
z 7 0.982000 
x 8 0.749315 
x 9 0.673849 

Xl0 0.412146 
Xll 0.241472 

110.8 
1.101791 
0.719798 
1.192599 
1.895215 
1.722427 
1.388684 
0.977302 
0.683887 
0.588723 
0.258716 
0.043496 

105.8 
1.103325 
0.715576 
1.195501 
1.908704 
1.733312 
1.394541 
0.976960 
0.679124 
0.582527 
0.247547 
0.029084 

188.1 
1.760551 
0.174082 
2.237730 
1.557436 
1.746399 
0.965645 
0.959646 
0.691606 
0.502391 
0.284706 
0.000169 

The variation of the real part of the smallest eigenfrequen- 
cies w~, with the load q for the design ~, is shown in Fig. 3. 
The eigenvalues are all real and positive for small loads r/, but 
for increased load, the eigenvalues merge and form a complex 
pair with the same real part. There is not a complete set 
of eigenvectors for the point where the eigenvalues coalesce, 
which is known as strong interaction of eigenvalues (Seyra- 
nian 1991). Obviously, this design is very sensitive to small 
perturbations since eigenvalue w 2 almost coalesce with w3 2 at 
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a load significantly lower than the critical load r/c = 92.56. 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The jump in Fig. 2 for ~ = 1 occurs when eigenvalues w 2 and 
w 2 coalesce. For ~ < 1, w22 and w32 form a complex pair such 120 

that the critical load is r/c ~ 67. However, for ~ > 1, w 2 and 100 / \ 
lc32adare real and distinct giving a significantly higher critical ~ \ 
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4 0 !  : min a T x ,  x E ~ n ,  (10) 

20 w12(r/k,x) _> O, k = l , . . . , n , ,  (11) 
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Fig. 3. The load ~/ versus ~o 2 of the design by Gutkowski et al. 
(1993) 

However, the design x(~ 1) is not much better in the sense 
that eigenvalue to 2 almost coalesce with w 2 (see Fig. 4) at a 6 
load r / ~  98.7 which is much lower than the critical load r/c 
= 110.8. 
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Fig. 4. The load 7/versus w 2 for x(~t) 

In an attempt to find even better solutions than X(~l) , 
an initial point for further optimization is chosen as x(~2) , 
where (2 = 1.28. This column has eigenvalues that are well 
separated (see Fig. 5) and a critical load of r/c = 105.8. 

4 A ba r r i e r  a l g o r i t h m  

It may be possible to devise an algorithm for solving (6)- 
(8), but it is convenient to consider a somewhat different 
formulation. The volume of the column is minimized subject 
to stability constraints for a fixed magnitude of the load r/c, 
giving 

i = l , . . . , m - 1 ,  k =  1 , . . . , n ~ ,  (12) 

xj <_ xj < gj, j = l , . . . , n .  (13) 

The constraints on the eigenvalues are imposed for a large 
number of different load levels r/k in the interval (0, r/c), giving 
a total of m x n~ nonlinear inequality constraints. 

Using the logarithmic barrier function, (10)-(13) is trans- 
formed to the unconstrained problem 

n r /  

minaTx - # ~ l°gWl2(r/k, x) - 
k=l 

n r /  f / ' t  

# Z Zl°g[w~-Fl(r/k'X)--w2(r/k'X)]- 
k=l i=1 

n 

# Z log(xj - _xj) - # Z log(~j - xj) ,  (14) 
j = l  j = l  

where # is a positive scalar barrier parameter. The barrier 
function is minimized using a modified Newton method where 
the first derivatives are explicitly computed and second- 
derivatives obtained by finite difference approximations. 

A significant feature of the barrier formulation is that 
the iterates x k are all strictly feasible with respect to the 
constraints. Consequently, the eigenvalues cannot merge and 
form a complex pair if they are initially real and distinct. 

The barrier subproblem (14) is usually solved for a de- 
creasing sequence of barrier parameters p. However, in this 
case it is desirable to use a good initial approximation of 
the solution making it necessary to use a small initial value 
for #. The drawback is that the barrier function is usually 
nonconvex and illconditioned for small #. 

The barrier function is minimized with a constant value 
of # = 0.001 using x(~2) as initial point. The bounds on x 
are chosen as x = 0 and ~ = 10. The fixed load is chosen to 
be r/c = 105 ensuring that the vector x(~2) is strictly feasible 
to (10)-(13). The eigenvalue constraints (11) and (12) are 
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enforced for the loads r/k = 1 .0 ,2 .0 , . . . ,  105.0, giving a total 
of 2100 nonlinear constraints. 

The minimization is terminated after 17 iterations when 
the change in volume is less than 0.01. The volume is initially 
1.0 and is reduced to 0.75. In order to make comparison 
with the previous columns possible, the cross-sectional areas 
are scaled uniformly to a column with unit volume. The 
cross-sectional areas x*. of this improved column are given 

3 
in column 4 of Table 1. The critical load of the column is 
188.1, a significantly higher critical load compared to the 
other columns in Table 1. 

Unfortunately, this column is also sensitive to small im- 
perfections. Eigenvalue w 2 almost coalesces with w~ (see Fig. 
6) for the load ~ ~ 150, which is much less than the critical 
load. Consequently, a small imperfection could give a drastic 
reduction in the load "carrying capacity of the column. Mini- 
mizing the barrier function for smaller values of/~ than 0.001, 
gives columns with marginally improved critical load at the 
expense of increased imperfection sensitivity. In theory, a 
higher value of/~ would give a column where the eigenvalues 
are further separated, but the distance between eigenvalues 
will only increase on average, there is no guarantee that  the 
column actually is less sensitive to imperfections. 

Finally, the shapes of the different columns discussed in 
this section are shown in Fig. 7. The columns appear in the 
same order as in Table 1. 
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Fig. 6. The load ~/versus 0) 2 of the improved design x* 
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5 I n f l u e n c e  o f  a r e f i n e d  d i s c r e t i z a t i o n  

Beck's column has been frequently used as a model problem 
for optimal design of structures subject to nonconse~vative 
loading. However, the discretization of the column is usually 
rather crude. The standard form (Gutkowski et al. 1991) of 
the problem uses only ten finite elements and a piecewise lin- 
ear cross-sectional area. It is reasonable to assume that  the 
optimal design is dependent on the quality of the discretiza- 
tion since the critical load of the column is in many cases 
sensitive to small variations in shape. 

To investigate the influence of a refined discretization for 
the displacements u, the last column discussed in the previous 
section is analysed using a refined mesh. The cross-sectional 
areas are the same (column 4 of Table 1), but the number 
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Fig. 7. The geometry of the four columns given in Table 1 
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of finite elements N is increased. Consequently, the design is 
fixed but the accuracy of the analysis is refined. 

Table 2. The critical load for several different numbers of finite 
elements 

N r/c 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

188.07 
141.94 
143.01 
143.52 
143.58 
143.57 
143.57 
143.57 
143.58 
143.59 

Simply increasing the number of finite elements to N = 20 
causes a significant drop in the critical load r/c, see Table 2. 
For N = 20 and more, interaction of eigenvalues w42 and w 2 
causes a significant drop in the critical load. As expected, the 
variation of the smallest eigenvalues is hardly affected by the 
refined discretization, whereas the larger eigenvalues signifi- 
cantly changes behaviour. The dependence of the eigenvalues 
on 7/for N = 50 is shown in Fig. 8. The variation of the two 
smallest eigenvalues is hardly different in Figs. 6 and 8, but 
the difference is quite apparent for the larger eigenvalues. 
Note that  the scale on the z-axis is slightly different in Figs. 
6 and 8, in order to show all the interacting eigenvalues. 

6 D i scus s ion  

Although Beck's column is a rather academic optimal design 
problem, it illustrates many of the difficulties with optimal 
design considering nonconservative forces. The basic equa- 
tions are the same for simple problems of aeroelasticity, and 
one can expect similar sensitivity to changes in design and 
loading. In particular, the sensitivity to variation in load- 
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Fig. 8. The eigenvalues of the design x* for N = 50 

ing would be very important  for probiems in aeroelasticity 
since the load is usually derived as an approximate numeri- 
cal solution to the differential equations modelling the flow 
field. 

It is possible to obtain dramatic improvement in perfor- 
mance using optimization. In the case of Beck's column, an 
increase of the critical load by a factor of nine over the uni- 
form column is obtained. The drawback is that  the optimized 
structure tends to be extremely sensitive to imperfections in 
geometry, boundary conditions, and loading. Some strat- 
egy for considering imperfections in the optimization process 
would be highly desirable. 
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