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Abstract A general approach for minimizing radiated acous- 
tic power of a baffled plate excited by broad band harmonic ex- 
citation is given. The steps involve a finite element discretization 
for expressing acoustic power and vibration analysis, analytical 
design sensitivity analysis, and the use of gradient-based opti- 
mization algorithms. Acoustic power expressions arc derived from 
the Rayleigh integral for plates. A general methodology is devel- 
opcd for computing design sensitivities using analytical expres- 
sions. Results show that analytical scnsitivity analysis is impor- 
tant from both computational time and accuracy considerations. 
Applications of the optimization strategy to rcctangular plates 
and an engine cover plate are prcscnted. Thicknesscs are chosen 
as design variables. 

1 I n t r o d u c t i o n  

The design and control of structures that radiate minimum 
sound power is a subject of active research in structural 
acoustics. Such a strategy is typically approached by active 
vibration control. However, material tailoring and sizing us- 
ing optimization techniques for complex structures is becom- 
ing more feasible due to advances in composites technology 
and in numerical methods for acoustics. The problem con- 
sidered in this paper is the minimization of acoustic power 
radiated by plates which vibrate due to broad band harmonic 
excitation. The plate is modelled using finite elements and 
thicknesses of the finite elements are chosen as design vari- 
ables. A general approach is presented involving the following 
steps. 

1. The Rayleigh integral is discretized and acoustic power 
radiated by the plate is expressed as a quadratic form 
involving surface velocities and an impedance matrix. 

2. The plate is modelled with finite elements and the eigen- 
value problem is solved, followed by modal superposition, 
to obtain the velocities. 

3. Analytical sensitivity coefficients of the acoustic power 
with respect to the design variables (plate thicknesses) is 
computed. 

4. An optimization problem for power reduction due to 
broad band excitation is formulated and solved using a 
nonlinear programming technique. 
The above approach may be viewed as a passive control 

strategy for minimizing noise radiation from vibrating struc- 
tures. While noise reduction can also be achieved by active 
noise and/or vibration control, the extent of active control re- 
quired can be greatly reduced if the design is first controlled 
passively. In the passive approach, sizes and shapes of the 
structural components and composite material tailoring are 

candidates for optimization. Early work on using optimiza- 
tion techniques and finite element models for noise reduc- 
tion was done by Lang and Dym (1974) and Lalor (1979). 
Shape optimization has been shown to be effective by Bernard 
(1985) and Wilcox and Lalor (1987). More recent work in this 
area has been carried out by Lamancusa (1988), Sivakumar 
et al. (1991) and Naghshineh et al. (1992). 

This paper presents a general approach for minimiz- 
ing radiated power from vibrating structures due to single- 
frequency and broad band excitation. Emphasis is placed 
here on broad band excitation. A key feature of this work is 
the analytical calculation of design sensitivity coefficients for 
gradient-based optimization. Analytical sensitivity analysis 
dramatically reduces computation time and provides greater 
accuracy as compared to finite difference schemes, particu- 
larly in dynamic problems. Analytical expressions for power 
sensitivity for broad band requires eigenvector derivatives. 
They are computed using Nelson's method (Nelson 1976). 
Some of the earlier works on acoustic design sensitivity analy- 
sis was done by Smith and Bernhard (1989) and Cunefare and 
Koopmann (1992). These methods are based on the bound- 
ary element analysis and the approach is semi-analytical. 

2 A f ini te  e l emen t  d i s c r e t i za t i on  for  r a d i a t e d  power  

The acoustic power radiated from fiat plates in an infinite 
baffle is expressed in terms of the Rayleigh integral which 
uses the free field form of Green's function. Finite element 
discretization reduces the power expression to a quadratic 
form in terms of the nodal velocities of the plate. The devel- 
opment, a generalization of the approach applied to beams 
(Naghshineh et al. 1992), is described below. 

Consider a baffled plate vibrating in out of plane motion 
and placed in a light fluid such as air. The pressure p(rts) 
at any observation point rls on the surface of the plate due 
to plate normal surface velocity v(rs) at rs can be written 
using the l~ayleigh integral as 

p(rls) = iwp [ e - i k R  
2~r J v(rs)---R--- dS,  (1) 

S 
where p is the density of air, w is the frequency of plate 
vibration, c is the speed of sound in air, R is the distance 
between rls and rs, k = ~ is the wave number, and i = x/r~-f. 
The acoustic intensity at any point rls is written as 

i ( r l s )=  1 I . I ~Re{V(rs)V (rs)}, (2) 
where v* is the complex conjugate of v. Hence the acoustic 
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power W radiated from the baffled plate can be obtained by 
integrating the intensity over the plate surface area as 

w = [ ;(r') dS'. (3) 
S I 

Using (1) and (2) in (3) and simplifying using the reciprocal 
property that p(rs) due to unit velocity at rts is equal to p(rls) 
due to unit velocity at rs, we have 

f /  wpsin(kR)  . , 1 v(rs)~-~ R v ( r s ) d S d S '  (4) w = ~  
S ~ S 

Note that the singularity present in the pressure expression 
(1) at the point where source and receiver coincide has van- 
ished in the power expression (4) since s in (kR) /R  approaches 
k as R approaches zero. The power W is evaluated numeri- 
cally using finite element discretization. In the present work, 
four noded quadrilateral elements are used in the mesh. The 
integral for the power is evaluated using Gaussian quadra- 
ture. The computational effort for this integral is propor- 
tional to the fourth power of the order of integration. Here, 
single point integration is used to reduce this effort. The 
accuracy of single point integration was compared with a 
method in which the order of integration was iteratively in- 
creased until convergence. The difference between the two 
integration results is about 1%. Thus, using single point 
integration, the following discretized power expression is ob- 
tained: 

e e 
~'~ X-~ T w p ~  . s in(kRrs) , 

W 4 vr - - J r J s  vs, (5) A.~ 
7~ ]~ r s r= l  s=l  

where r and s indicate receiver and source elements, vr and Vs 
are normal velocities and Jr,  Js are the values of the Jacobian 
at the element centre. Expressing vr and Vs in terms of nodal 
values, we have 

4 
1 

Vr(¢,~/) = ~ E N i ( ¢ , y ) V i ,  
i=1 

where N i are shape functions for the four noded quadrilateral 
element and ~ are the nodal values of the normal velocity. 
Hence 

4 
1 

 r(0,0) = 
I=1 

Thus power W can be written as 

W = ~ v T B v  * , (6) 

where V is a global vector of dimension N×  1, N = num- 
ber of nodes. The matrix B is called the global impedance 
matrix and is a symmetric, positive definite real matrix. It 
is assembled from element matrices (for single point integra- 
tion) as (111 ) 

w p .  _ sin(kRrs) 1 1 1 1 
b r s = - ~ J r J s  ~ 1 1 1 1 " (7) 

1 1 1 1 

The rows of brs correspond to the node numbers of the re- 
ceiver element r while the columns correspond to those of 
the source element s. This aspect needs to be considered in 
assembling the global matrix B. The power in decibels is 
obtained from power in watts using the conversion formula, 

Wwatts 
WdB = 10.0log10 10_12 , 

where 10 -12 watts is the reference. 

3 V ib ra t i on  analysis  us ing f ini te  e lements  

A four-node plate element (DKQ) has been implemented 
based on the discrete Kirchoff theory (Hughes 1987). Each 
node has three degrees of freedom - one out of plane trans- 
lation and two rotations. The (12 × 12) element stiffness 
matrix k can be written as 

1 1 
t 3 

k =  ~ / / B T D B d e t  Jd~d~/, (8) 

-1  -1  

where t -- thickness of the element, J is the Jacobian matrix, 
B is a (3 x 12) strain-displacement matrix, D is a (3 x 3) 
material matrix, and ~ and ~ are natural coordinates. The 
integration of k is carried out numerically. The global stiff- 
ness matrix K is assembled from element kts by taking into 
account the element connectivity. Similarly the global mass 
matrix M can be assembled from element mass matrices m 
given by 

m = p tm I + Pt6 m2 ,  (9) 
12 

where m 1 and m 2 are (12 × 12) matrices which are indepen- 
dent of thickness. 

Vibration analysis is carried out using modal superposi- 
tion. Hysteritic proportional damping is assumed. The equa- 
tions of motion for the structure is given by (Ewins 1984), 

MJ~ + (K + iH)x = Fe i'~t , (10) 

where H = a K  + tiM, ~ is the excitation frequency, M and 
K are the structural mass and stiffness matrices, a and t 
are the damping coefficients, x and & are the displacement 
and acceleration vectors, and F is the vector representing the 
amplitude of the excitation force. The p-th component of F 
is denoted as Ap, which is a complex number. In (10) we first 
substitute for 

x ~- Xe  i'Gt , 

where X is the amplitude of the response. This gives 

(K + i H  - 52M)X = F .  (11) 

Using modal superposition, we represent X as 
m 

x = ~_, yjqJ, (12) 
j = l  

where yj is modal participation factor, m is the number of 

modes used and QJ is the j- th eigenvector. The j- th reso- 
nant frequency wj,  and mode shape Q3 are obtained from 

the eigenvalue problem K Q  j = w 2 M Q  j .  Inverse iteration 

is used to solve the eigenvalue problem (Chandrupatla and 
Belegundu 1991). Substituting (12) in (11) gives 

(K + i H  - ~ 2 M ) Q y  = F .  

Premultiplying the above equation bey QT and using the 
property Q T K Q  = diag(w~) and Q~ M Q  = I, we obtain 
the solution to the j- th equation as 
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n 

E QpjAp 
p=l  (13) Yj (1 + ioOw 2 + (ifl - ~ 2 ) '  

where n represents the degrees of freedom. The equations 
(12) and (13) are used to compute the displacement vector. 
The vector X is now introduced to represent the amplitude 
of the velocity vector and is given by 

m 

:K = E i~y j  Qj"  (14) 
j-- t  

Components of the normal velocity vector V are extracted 
from (14) by ignoring the rotational velocity components 
since these produce motions that couple poorly with the 
bounding fluid. The vector V is then substituted into (4) 
to evaluate the radiated power. Above, the accuracy of the 
frequencies and mode shapes are dependent on the density 
of the finite element mesh. As a general rule, two elements 
per half-wavelength of the highest mode of interest is recom- 
mended. 

4 Ana ly t i ca l  sens i t iv i ty  o f  power  

A key step in solving the optimization problem is analytical 
design sensitivity analysis. Forward-difference schemes are 
prohibitively expensive owing to the large number of eigen- 
value problems that must be solved for modal analysis. Also, 
the accuracy of finite difference formulae is poor because the 
eigenvalue analysis involves iteration. Analytical sensitivity 
coefficients W k =_ d W / d t  k = derivative of W with respect to 
the k-th design variable are obtained as follows. [For details 
the reader is referred to Salagame (1994), only basic concepts 
are summarized here for the sake of completeness.] 

Differentiating (6) with respect to design variable bk, we 
obtain 
dW T 0v* 1 T 0B . 

= v B + a--y;v (15) 
db k 

The power radiated from the structure depends on the 
excitation frequency. In most of the problems, the excitation 
frequency varies over a band including some of the natural 
frequencies of the structure. Hence the objective is to min- 
imize the total power radiated from the structure over this 
band of frequencies. 

Ideally, the total power in the band can be obtained by 
integrating the power versus frequency curve between fre- 
quencies of interest. However, the contribution to the to- 
tal power is mainly from the power at resonant frequencies. 
Hence the total power in the band can be approximated as 
the sum of the power at each resonant frequency in the band. 
Specifically, let us consider a band consisting of three reso- 
nant frequencies. The total power in the band can be written 
a s  

w ~ wl~=~l + w l ~ = ~  + wl~=~3 - v¢1 + w2 + w3 .(16) 

The task is to evaluate the sensitivity of W at a current 
design b 0. Differentiating the above equation with respect 
to the k-th design variable, we obtain 

dW dW 1 dW2 + dW3 (17) 
- + db---/' 

where 

dWi b ° = lim W l ~ = ( v i -  Wl~=wi(b°) 
db k ~ 0  ~ ' 

where &i 0 0 . . .  ,b~v ) and wi(b 0) is the = ~ ( b  1, b 2 , . . . ,  b 0 + ~, 
value of the first resonant frequency at the current design. We 
see that computing the sensitivity of the total power in the 
band requires computing the sensitivity ~ "  = sensitivity of 

power at individual resonant frequencies, ~ = wi, i = 1,2, 3 
(or as many as in the band). 

We are interested in computing ~ = V,k , where Vj -= ve- 

locity at node j at a known frequency ~. Consider (14), which 
expresses the velocity vector in terms of the mode shapes. 
Differentiating this equation with respect to design variable 
b k yields 

m 

X,k  = E i-w(YJQ~k + YJ, kQj )  + i~,kYJQJ ' (18) 
j= l  

where f,k = d ~ .  Since the sensitivities are evaluated at 

resonant frequencies for broad band excitation, ~ coincides 
with a resonant frequency. As the design changes, the reso- 
nant frequencies of the structure also change. Hence the term 
~,k is not zero, but is the derivative of the eigenvalue with 
respect to thickness. The second term in the above equation 
involves the derivative of yj,  which can be obtained by dif- 
ferentiating (13). This derivative as well as the first term in 
the above equation involve derivatives of eigenvectors. Eigen- 
value derivatives can be obtained from the generalized eigen- 
value problem using Nelson's method (Nelson 1976). 

The impedance matrix is a function of the excitation fre- 
quency. Hence, its derivative with respect to design variable 
b k can be expressed as 
dB dB d~ 
db k - d-~ db k " (19) 

dB The first derivative ~ can be computed by differentiat- 
ing brs given by (7) with respect to 5. The element deriva- 

dB This assembly is similar tives are then assembled to give -a--~. 
to the assembly of B itself. However, it should be noted that 
as R approaches zero, sin(kR)/R approaches k and this fact 
should be used before differentiation. The second derivative 
is nothing but the eigenvalue derivative as discussed earlier. 

4.1 Special case: fixed single frequency excitation 

One special case of interest is when the structure is excited 
at a constant or fixed frequency, ~. There are two methods 

dW to evaluate ~ at ~ in this special situation. 

In the first method, we use the fact that  ~,k = 0. Hence 
the derivative of the impedance matrix with respect to a de- 
sign variable is zero. Consequently, only the first term in 
(15) needs to be evaluated. The velocity derivative can be 
obtained by the method described above by substituting the 
value of the excitation frequency for ~. Another approach, 
which does not require eigenvector derivatives, is described 
by Salagame (1994). 

5 Min imiza t ion  o f  acous t ic  power  

Acoustic power can be described in terms of the velocity am- 
plitudes of the plate as discussed in Section 2. Hence the 
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optimization problem is to 
1 T • minimize W =-~v Bv , 

subject  to: 

weight <_ Wo, b~ g b i <_ b u, 

where b i i = 1 , . . .  , ndv are the ndv design variables. Our 
choice for design variables in this paper are element thick- 
nesses. However, the formulation holds for other variables. 
The power W for the case Of broad band is the total power 
in the band of frequencies which is approximated as the sum 
of powers at resonant frequencies, as discussed in detail in 
Section 4 [see (16)]. If the structure is excited at a single 
frequency, W is the power computed at the excitation fre- 
quency. We discuss the case of single frequency excitation 
first. 

5.1 Single frequency harmonic excitation 

The velocity v implicitly depends on thickness as described in 
(10)-(13) above. It is possible to associate groups of elements 
with a single design variable. However, the main difficulty 
is that  the above problem has multiple local minima. The 
physical reason for this may be explained by the following 
argument. Let the resonance frequencies for a given design 
(or thickness distribution) be (Wl,W2,w3,. . .)  Hz, and the 
excitat ion'be at ~, w2 _< ~ _ w3. Then, as the thickness of 
the plate is increased, the stiffness will increase and frequen- 
cies will consequently increase; the resonance frequencies w 1 
and w 2 will "pass" by ~. At  each pass, there will generally 
be a surge in radiated power. Thus, the graph of power vs 
thickness will have peaks and valleys, and then show a steady 
decline as the thickness continues to increase. This fact is il- 
lustrated for a rectangular plate in Fig. 1 where W is plotted 
vs t, the uniform thickness of the plate. The difficulty is that 
gradient-based optimization routines will only ensure a local 
minimum within the "valley" near the current design. This 
aspect has been discussed in greater length by Larnancusa 
(1993). In our work, analytical design sensitivity expressions 
have been derived for the derivatives of power with respect to 
the thicknesses. Optimization has been successfully applied 
to reduce power within the "valley". In the case when the 
force is applied at a single point on the plate, the optimized 
thickness distribution corresponds to a thickening of the plate 
at that location, as expected. The strategy for minimizing 
radiated power for broad band excitation is considered next. 

5.2 Minimization of power within a band of frequencies 

The challenge here is to find the optimum thickness distribu- 
tion of a plate for minimum radiated acoustic power where 
the plate is excited over a band of frequencies. Firstly, if 
there are r resonance frequencies in a band, then the total 
power W within the band is assumed to be approximated 
by the sum of the powers at each frequency. To understand 
this, we must note that  a variation in thickness will result 
in a variation in the resonance frequencies which will then 
result in a variation in the total  power W. Unlike the sin- 
gle frequency excitation problem discussed above, the total 
power in (16) is a relatively smooth function of thickness. 
This can be explained as follows. A change in thickness will 
cause the resonance frequencies to shift. Thus, when view- 
ing a graph of power vs thickness, there will be a shift in 
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Fig. 1. Acoustic power as a function of thickness for fixed excita- 
tion frequency 

the power peaks. However, since only the sum of the peaks 
in the power graph are being monitored, there is no sudden 
change in total power. Figure 2 illustrates this observation 
that W in (16) is a relatively smooth function of design for a 
rectangular plate, where W -= W 1 -t- W 2 + W  3 is plotted vs t, 
t = thickness of the uniform plate. Compare this figure with 
Fig. 1 for single frequency excitation. 

The sensitivities of the total power with respect to thick- 
ness variables are computed using the analytical expressions. 
These derivatives are then used in a nonlinear optimization 
program, which gives the optimum thickness distribution of 
the plate that  minimizes W. 

A final remark regarding the above problem is in order. 
The power W that  is being minimized is defined as the power 
contributed from the first r resonance frequencies or modes. 
The values of these resonance frequencies, however, change 
during the thickness optimization. Thus, the band is not 
defined in terms of fixed frequency limits. Minimization of 
W within such fixed limits can be achieved although this 
requires a change in the formulation of the problem. Con- 
straints on frequencies will have to be imposed and care must 
be taken since entering or exiting modes may cause non- 
differentiabihty of the power function. That  is, the smooth- 
ness of the power vs thickness graph in Fig. 2 is not ensured if 
modes are allowed to enter or exit in the summation in (16). 
This is a topic that needs further study. 

50 

40 

30 

20 

6 N u m e r i c a l  e x a m p l e s  

6.1 Problem 1: point driven rectangular plate 

The problem consists of a rectangular, isotropic, steel plate 
of dimensions 546 m m ×  682 mm × 5 mm excited by a sin- 
gle force at its quarter point as shown in Fig. 3. The plate is 
clamped on all its edges and has damping assumed to be pro- 
portional with ~ = 0.1 and f~ = 0.0. The finite element model 
consists of 81 nodes and 64 quadratic plate elements. A 1 N 
force is applied at the quarter-point of the plate, located at 
(x, y) = (136.5, 160.5) ram. The amplitude of excitation force 
is set to 1 N. Finite element analysis gives surface normal 
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Fig. 2. Total power contributed from the first three modes as a 
function of thickness 

velocities and acoustic power is determined using (7). The 
thickness of each element is the design variables. From finite 
element analysis, the first 3 natural  frequencies of the plate 
are 123 ttz, 222 Hz and 293 Hz, respectively. 

6.1.1 Case I: single frequency ezcitation 

In this example, the element thicknesses have been grouped 
as indicated by the numbers in Fig. 3. Thus there is a to- 
tal  of 16 design variables. The plate is excited at 5 = 230 
Hz. The sound power at this frequency is equal to 90.2 dB. 
The optimum thickness distribution for the plate is shown in 
Fig. 4. It can be clearly observed that  the mass is lumped 
around the point of excitation to reduce the sound power. 
The optimum sound power value is 84.5 dB. 

Fig. 3. Rectangular plate clamped on its edges 

6.1.2 Case II: broad band excitation 

For this problem, the power in the band up to the first three 
natural  frequencies is considered. The sound power at these 
points are 87.6 dB, 83.7 dB, 84.1 dB, respectively. The to- 
tal power W = W 1 + W 2 + W3 is 90.3 dB. Note that  the 
total power is obtained by adding the individual powers in 
watt units and then converting to decibels. The optimiza- 
tion problem is to minimize total  power subject to a limit on 

Fig. 4. Optimized rectangular plate for single frequency excitation 
(magnified) 

maximum to minimum thickness ratio of 5.0. 
The optimized thickness distribution is shown in Fig. 5. 

At optimum, the first three resonance frequencies are 176 Hz, 
290 Hz and 387 Hz, with the power being 69.1 dB. Figure 
6 shows the power versus frequency for three designs: the 
initial (uniform) design (weight = 14.6 kg), the optimized 
design (weight = 21.1 kg), and a uniform-thickness design 
for a plate having the same weight as the optimized design. 
We see that  the optimized design is still far better  than the 
uniform thickness design, implying that  pure weight increase 
has had little to do with the power reduction. 

Fig. 5. Optimized rectangular plate for broad band (magnified) 

6.2 Problem 2: broad band excitation of a Quad 4 engine 
timing chain cover plate 

An engine cover plate made of steel is shown in Fig. 7. It is 
modelled using 80 quadrilateral finite elements. The damp- 
ing coefficients are ~ = 0.01, 13 = 0. Young's modulus = 
2.068Ell  N /m 2, density = 7820 kg /m 3. All boundary nodes 
of the cover plate are clamped with respect to rotations, but 
are supported on springs with stiffness equal to 105 N/m, 
i.e. very high stiffnesses such that  the frequencies of the rigid 
body modes are well above the radiating plate modes of in- 
terest. The excitation forces correspond to one half of the 
boundary nodes subjected to a force of F = 1 N while the 
other half has F = i N, which is 90 deg. out of phase. The 
split is made along the Y-axis. The objective function is the 
total  power radiated from the first three modes subject to a 
maximum-to-minimum thickness ratio of 3.0. For the initial 
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Fig. 6. Power vs frequency for rectangular plate 

design, t = 2 mm (uniform), the first three resonance fre- 
quencies and associated sound power are 183 Hz (117.6 dB), 
271 Hz (109.7 dB) and 315 Hz (112.8 dB), with total power = 
119.3 dB. The thickness distribution for the optimized plate 
is shown in Table 1. In Table 1, the symbol "el-5" means 
"elements 1 through 5"; the thicknesses for these five ele- 
ments are given in the first row. All element numbers are 
indicated in Fig. 7. For the optimized design, the resonance 
frequencies and associated power are 128 Hz (104.2 dB), 221 
Hz (102.7 dB) and 260 IIz (100.3 dB), and total power = 
107.5 dB. The power versus frequency graph for the initial 
and optimized designs is shown in Fig. 8 and the optimum 
thickness distribution in Fig. 9. The results, of course, de- 
pend on the thickness bounds imposed during optimization. 
Purthermore, more than one starting design is recommended 
for nonlinear optimization problems. The weight of the initial 
and optimized plates are 1.77 kg and 1.20 kg, respectively. 

7 Conc lus ions  

A general gradient-based approach has been presented for 
minimizing sound power radiated from baffled plates. An- 
alytical sensitivity analysis is essential in making this a vi- 
able approach. The optimization problem for fixed frequency 
excitation has multiple local minima and standard gradient 
approaches can only yield a local minimum. Here, the possi- 
bility of using certain global optimization methods needs to 
be investigated. For broad band excitation, the total power 
from a specified number of modes is a relatively smooth func- 
tion of thickness and gradient methods are effective. The case 
of broad band excitation with fixed lower and upper limits 
on frequency needs further work to study the effect of modes 
entering or leaving the band. Numerical results for the en- 
gine cover plate show significant reduction in dB with just 
redistribution of the material in an optimal manner. 

Fig. 7. Finite element model of the engine cover plate 
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........... Optimum design, PWL=I07.5 dB 
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Frequency (Hz.) 
Fig. 8. Power vs frequency for engine cover plate 
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Fig. 9. Optimum thickness distribution 
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