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A b s t r a c t  The present study proposes a detection technique 
for delaminations in a laminated beam. The proposed technique 
optimizes the spatial distribution of harmonic excitation so as to 
magnify the difference in response between the delaminated and 
intact beam. The technique is evaluated by numerical simulation 
of two-layered aluminum beams. Effects of measurement and ge- 
ometric noise are included in the analysis. A finite element model 
for a delaminated composite, based on a layer-wise laminated plate 
theory is used in conjunction with a step function to simulate de- 
laminations 

1 I n t r o d u c t i o n  

Delamination is one of the most commonly observed damage 
modes in laminated composites and may develop as a result 
of manufacturing defects or in-service events such as low ve- 
locity impact.  Delaminations are not readily identified by 
visual inspection since they are cracks in the interior of the 
laminate. 

Delaminations are known to cause changes in vibration 
frequencies and mode shapes of laminated composites. The 
delaminated sublaminate generally exhibits new vibration 
modes and frequencies that  depend on the size and loca- 
tion of the delamination. Thus, provided that  the natural 
frequencies and mode shapes are known for a laminate con- 
taining delaminations, the presence of invisible delaminations 
can be detected, and their size and location can further be 
estimated. 

Not much research has been done on detecting the ex- 
istence and location of delaminations in laminated compos- 
ites. Hanagud el al. (1992) proposed a method to detect a 
delamination in a laminated beam by comparing the vibra- 
tion signature of a delaminated beam with an intact beam. 
They showed that  it is difficult to assess the size and location 

of the delamination from the time response itself, and that  
care must be taken to calibrate the sensor response to de- 
tect the delaminations. Teboub and Hajela (1992) proposed 
a neural network based strategy for detecting delamination, 
fiber breakage, and matr ix cracking in laminated composites. 
They computed the slopes of the strains at the measurement 
points by using piezoelectric sensors. Kim e~ al. (1993) used 
strain sensors on the surface and inside the material  for de- 
tecting delaminations in laminated composites. Their results 
suggested that  numerous sensors would be needed for large 
structures. 

In the present paper, a finite element model based on a 
layer-wise laminated plate theory (Lee et al. 1992) is used to 
compute the steady state harmonic response of delaminated 
and intact beams. Then, an anti-optimization strategy is 
used in conjunction with system identification techniques for 
detecting a delamination. Anti-optimization is a method for 
maximizing differences between alternative models. Haftka 
and Kao (1990) maximized the ratio and difference between 
two laminated composite failure models by varying the load- 
ing, the geometry, and lamination angles. Gangadharan et al. 
(1991) sought the loads that  maximize the difference in strain 
energies between two finite element models. They showed 
that  the optimal discriminating loading was the solution to 
a generalized eigenvalue problem. Recently, Gangadharan 
et al. (1993) used an anti-optimization scheme for compar- 
ing alternative finite element models, and suggested that  the 
method might be used to help damage detection. 

In this paper, several measures of the difference between 
intact and delaminated beams are considered, including ra- 
tios of strain energies, external works, and surface strains. 
The ratios are maximized by solving eigenvalue problems. 
After obtaining the excitation that  maximizes the response 
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ratio between delaminated and undelaminated beams, this 
excitation is used to detect the location of delamination as a 
force input in a residual force Calculation. 

2 D y n a m i c  m o d e l l i n g  of  d e l a m i n a t i o n  

The notation here follows that  of Lee et al. (1993). To model 
multiple delaminations, the layer-wise displacement field is 
supplemented with unit step functions which allow disconti- 
nuities in the displacement field (Fig. 1). The resulting dis- 
placements u 1 and u 3 at a generic point x, z in the laminate 
and time t are assumed to be of the form 

Ul(X, z, t) = u(x, t) + e J ( z ) ~ ( ~ ,  t) + 5i(z)~i(z,  t ) ,  

ua(x , z,t) = w(x,t) + 5i(z)~i(x,t). (1) 

The superscripts i and j range from 1 to D and 1 to M, 
respectively, where D is the number of delaminations, and 
M is the number of layers of a composite. Repeated indices 
follow tensor notation for summation. 

uNL --2 - - 2  
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tl, 

--1 ~ / I  I], 
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Fig. 1. Kinematics of layer-wise laminated composite plate theory 

The terms u and w are the displacements of a point 
(x, 0, t) on the reference surface of the laminate, uJ are nodal 
values of the displacements in the x direction of each layer, 
~i and ~ / r ep re sen t  possible jumps in the slipping and open- 
ing displacements, respectively, at the L(i)-th delaminated 
interface, L(i) denotes the location of the interface where the 
i-th delamination lies, and eJ(z)  and 5i(z) denote a linear 
interpolation function through the thickness of the laminate 
and unit step function, respectively. 

The Euler-Lagrange equations of motion of the layer-wise 
theory can be derived from Hamilton's principle 

N~,z = I°fi + PfiJ + ~ ,  (2a) 

Q~z,~ = x°~ + 7 ' ~ ' ,  (2b) 

NJ,x - QJz = IJu + IJkfik + ]iJui, (2c) 

--i " ~iJ~tj + 7irur ' Nx, z = ~ i i  + (2d) 

Qzz,z = 7.@ + , (2e) 

where i,r = 1 , . . . , D  and j ,k = 1 , . . . , M .  The stress resul- 
tants are 

hi2 
[Nx, j --i [ N~, Nx] = C~x[1, ¢J, 5 i] dz, 

-h/2 

h/2 
j --i / ej, z,6i]dz, [Qxz, Qzz, Qzz] = Vxz[1, 

- h / 2  

and the inertia coefficients are defined as 

(3) 

h/2 

[I °,I  j , I / ]= f p[1,¢J,6 i] dz,  

-h/2 

h/2 
[iJk, iij,-i is] = / p[¢Jek, 5i¢j, 5i5s] dz,  (4) 

where p is the material density. A more detailed mathe- 
matical formulation can be found in the paper by Lee e~ al. 
(1993). 

To obtain finite element equations, the generalized dis- 
placements (u, w, u J, ~i, ~i) are expressed over each element 
as a linear combination of the one-dimensional interpolation 
functions ¢~ and the nodal values: 

n 

w, = (5)  

i=1 
These expressions can then be used to develop the finite ele- 
ment model of a typical element• By assembling the element 
matrices, the global stiffness and mass matrices (K and M) 
can be obtained• 

3 A n t i - o p t i m i z a t i o n  

The anti-optimization technique seeks conditions that  max- 
imize the difference between two models. Here we use anti- 
optimization to obtain the frequency and spatial  distribu- 
tion of excitations that  maximize the difference between the 
delaminated and intact beams under harmonic excitation. 
First, consider the equations of motion of a delaminated beam 
under 

M U  + K U  = Hfe iwt , (6) 

where w denotes the excitation frequency, M and K are n × n 
mass and stiffness matrices, respectively, of a delaminated 
beam with n being the number of total  degrees of freedom of 
the beam, H is a real matrix which indicates the locations of 
actuators, and f is an actuator input vector with dimension 
n .  

Since the excitation is harmonic, so is the response 

U = u e  i ~ t  . (7) 
Thus, (6) becomes 

(K - w2M)u = H f .  (8) 

To use anti-optimization, we need a measure of the difference 
in the response between the damaged and intact beams. In 
this work, we considered three possible measures as described 
below• 

3.1 Strain energy measure 
We started with the strain energy as a measure of the re- 
sponse. Therefore, we sought excitations that  maximize the 
ratio E 1 of strain energies between delaminated and nominal 
structures 

u T K u  
E 1 -  uoTgou ° , (9) 

where u and uo are the displacement vectors of delaminated 
and intact beams for a given excitation, respectively, and Ko 



95 

is the stiffness matr ix  of an intact beam. We look for the 
excitation that  maximizes E 1. 

At the same time, the calculated displacement fields u 
should not be associated with very high natural  frequencies, 
because such fields typically have small amplitudes and are 
difficult to measure. This imposes the constraint 

u T K u  
E 2 _ _ _  <w2 (10) 

u T M u  
where Wo is a limit frequency. 

These two requirements can be combined by minimizing 

1 A1 (11a) 
E1 E2 ' 
or, alternatively, maximizing 

u T K u  
= , (11b) 

E3 uoTKouo - )~uTMu 

where A is a positive weighting factor. Since the frequency 
and spatial  distribution of excitation is to be selected, ( l l b )  
is transformed in terms of excitation. 

From (8), u can be obtained as 

u = (K - o j 2 M ) - l H f .  (12) 

Similarly for the undelaminated beam, 

Uo = "(Ko - w 2 M o ) - l H f .  (13) 

Now ( l l b )  can be rewritten as 

f T k f  
E3 - f T ~ f '  (14a) 

where 

I(  = H T ( K  - w 2 M ) - I K ( K  - w 2 M ) - I H ,  

b = ko  - ~1~, 
Ko = H T ( K o  - w 2 M o ) - l K o ( K o  - w2Mo) - 1 H  , 

1~ = H T ( K  - w 2 M ) - I M ( K  - w 2 M ) - I H ,  (14b) 

are generalized flexibility matrices associated with the two 
models. Equation (14a) indicates that  E 3 is a Rayleigh quo- 
tient, so that  its extreme values are the extreme eigenvalues 
of the generalized eigenvalne problem 

(I~ - E3D) f  = 0. (15) 

For a given set of actuator locations and excitation frequency, 
the actuator excitation amplitude vector that  extremizes E 3 
is the eigenvector of the eigenproblem of (15). 

Stiffness and mass matrices of the delaminated beam (K 
and M) are unknown in general, but I~ and /Vl can be de- 
termined experimentally by measuring the displacements at 
the actuator locations as follows. The functional E 3 in ( l l b )  
can be rewritten using (8) as 

u T H f  + w 2 u T M u  fiTf + w2uTMu 
= = , (16) 

E3 uTKouo  - A u T M u  uoTKouo - A u T M u  

where fi = H T u  is a reduced displacement vector correspond- 
ing to the locations of actuators. Displacements at each ac- 
tuator location of the beam need to be measured under the 
action of a unit load applied at each actuator, one at a time. 
The total displacement at each actuator location is then ob- 
tained as 

ui = S i j f j ,  (17) 

where Si j  is the displacement generated at the i-th actuator 
location due to a unit load applied to the j - t h  actuator. The 
flexibility matrix S can be expressed with the aid of (12) as 

S = H T ( K  - w 2 M ) - I H .  (18) 

The quantity u T M u  can be determined from the derivative 
of S with respect to w2. That  is, 

aS _ H T ( K  _ w 2 M ) _ I M ( K  _ w 2 M ) _ I H  = 1VI (19) 
0(~2) 
Therefore, we can write 

u T M u  = f T 0 ~ 2 )  f .  (20) 

Note that  the quantity 0S/0w 2 can be experimentally es- 
t imated by measuring S for several different frequencies w. 
Finally, the functional E 3 = f T f ~ f / f T f ) f  from (14a) is now 
expressed as 

0S 0S 
k = s + ~2 0 - J '  15 = ko  - ~--o~2 (21) 

where S is measured for the damaged structure, and I~o is 
calculated analytically from a model of the intact structure. 
If we do not have a good model of the intact structure, we 
can also measure I~o as 

I~o = So + w 2 0So 
0 ~ 2  ' (22) 

where 

So = HT(Ko - w 2 M o ) - l H .  (23) 

3.2 External work measure 

A second measure of the difference between two models is the 
ratio of work done by the external forces: 

u T H f  
E 4 -- uoTH f . (24) 

By using (12) and (13), E 4 can be written as 

f T s f  
E 4 -- f T S o f ,  (25) 

where 

So = HT(Ko - w 2 M o ) - l H .  (26) 

In the same manner as for the strain energy measure, maxi- 
mizing E 4 can be written as an eigenvalue problem in which 
we seek the ratio of excitation corresponding to the largest 
eigenvalue E 4 of 

(S - E4So)f  = 0. (27) 

3.3 Strain gauge measure 

Because surface strains are easy to measure, we considered a 
third ratio involving only a vector e of surface strains. The 
anti-optimization approach is then used to maximize 

E 5 -  ll,ll~ 
ll~oll~ ' (28) 

where I1' 112 denotes the Euclidean norm, and ~ and ~o are 
strain vectors of a delaminated and an undelaminated beam, 
respectively. Since the shear strain (7xz) vanishes at the top 
and bottom surfaces of the beam, e includes only normal 
strain (ex) components. 
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The measured strain at M locations of the delaminated 
beam is 

E = G B u ,  (29) 

where G contains sensor location information, and B is a 
differential operator which relates the strain vector to  dis- 
placements. From (12) and (29) we obtain 

e = A f ,  (30) 

where 

A = G B ( K  - w 2 M ) - I H  (31) 

is a matrix that  relates the measured strains to the vector of 
external excitation for the delaminated beam. The matrix A 
can be determined experimentally by applying a unit load at 
each actuator, one at a time. 

In the same manner, the strain vector of the intact beam 
is 

eo = A o f ,  (32) 

where Ao is a matrix given by 

Ao = GoBo(Ko - w 2 M o ) - l H .  (33) 

Using (30) and (32), (28) can be finally written as 

f T c f  
E 5 - f T c o  f , (34) 

w h e r e  

C - -  A T A ,  Co = A T A o .  (35) 

Maximization of (34) leads to the eigenvalue problem 

(C - EhCo)f  = 0. (36) 

The generalized eigenvector f,  which corresponds to either 
the largest or smallest eigenvalue, is the excitation vector 
that maximizes the difference between delaminated and un- 
delaminated beams as measured by the strain ratio E 5. 

4 S y s t e m  i d e n t i f i c a t i o n  

Once the excitation is found by anti-optimization, identifying 
the location of delamination in the structure is based on the 
differences in responses of delaminated and intact structures 
in conjunction with anti-optimization. Assume that  the stiff- 
ness and mass matrices of a delaminated beam are written 
as  

K = Ko + TliAKi, M :- Mo + 7liAMi, (37) 

where rli is an amplitude coefficient and A K  i and zAM i are 
differences in stiffness and mass matrices for the i-th delam- 
ination location, respectively. The subscript i indexes the 
simulated delaminations. 

Using (37) and (13), we can define the residual force vec- 
tor R,  which is similar to the one in the paper by Chen and 
Garba (1989), as 

(K - w2M)uo - n f  = ~/i(AK - w2AM)iuo -- R. (38) 

The partial  derivative of the residual force P~ with respect to 
the parameter ~i becomes 

0__RR = ( A K  - w2AM)iuo .  (39) 

Observe that  ( A K  - w 2 A M ) i  can be predetermined for all 
simulated delamination locations. The displacement vector 
of an intact structure Uo in (39) is calculated from (13) with 
an anti-optimization solution as a force vector f.  The partial  

derivatives of the residual force are calculated for all degrees 
of freedom of the beam, and later they are lumped into a 
parameter for each finite element node. 

The delamination location is assumed to be the region 
where the derivative of residual force is high. When there 
is more than one peak in the residual force response, all the 
candidate locations are investigated further as follows: We 
find the maximum excitation ratio and corresponding eigen- 
vector fc for a given external frequency w using the anti- 
optimization method described in the previous section for all 
candidates. Then the angles between the solution f of the 
original (measured) system with unknown delamination and 
the candidates fc are calculated as 

I f ' f c l  .~ 0 ° < V < 90 ° . 
O = arccos IlfllllfCll] ' (40) 

The candidate whose eigenveetor makes the smallest angle 
with the measured eigenvector is considered to be the actual 
location of delamination. After determining the delamination 
location, the delamination size can be estimated by compar- 
ing the eigenvalue of candidate size with the experimentally 
achieved eigenvalue. 

5 N u m e r i c a l  e x a m p l e  

A simply-supported aluminum beam of length / = 3 ft and 
thickness h = 0.5 in with a delamination at the midplane is 
considered for numerical investigation (Fig. 2); the material 
properties are 

E - -107ps i ,  ~ = 0 . 3 ,  

s 2 
0 1 l b m =  0.259 × 10 -31b ' (41) 

p = . in----- ~ in 4 • 
A 7.2 in delamination (20% of the beam span) is assumed 

to be centered at the location e / / - -  0.3. For criteria E 1 to 
E 4 we assume three pairs of force actuators and displace- 
ment sensors, spaced uniformly along the top surface of the 
beam. For criterion E 5 we assume that  six sensors are at- 
tached on the bot tom surface of the beam. Finite element 
analysis based on the theory described in the previous sec- 
tion is employed to solve the problem using 20 linear finite 
elements. 

fl f2 f3 
~ a ~ j ~  ~ _~_ 

I t h=0.5 in 
/~- S1 S 2 S4 S5 S 6 /---~"~'- e ]83 

% 1=3 ~ rill 

Fig. 2. Simply-supported beam with a delamination at midplane 

5.1 Natural frequencies 

The first ten natural frequencies of the beam are calculated 
and compared to those of its undelaminated counterpart in 
Table 1. There are no remarkable differences in frequencies 
between the two models for the first five modes. The 6th nat- 
ural frequency of the delaminated beam (1140 Hz) is identi- 
fied as the delamination mode, which is a nonclassical mode 
shape (Fig. 3). This special mode can lead to response dif- 
ferences from an undelaminated beam. However, as noted by 
Hanagud et al. (1992), it may be difficult to detect the size 
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and the location of the delamination from the time response 
data. ~ r t he rmore ,  it is not easy to assess the delamination 
by th i s  high frequency excitation. Therefore, the actuator 
forces should be optimized such that  the delaminated beam 
can be excited to maximize the response difference from the 
undelaminated beam even for low excitation frequencies. 

Fig. 3. Delamination mode at 1140.1 Hz 

Table 1. Natural frequencies of delaminated and undelaminated 
beams 

Delamin£ted (tIz) Undelaminated (ttz) 
1 35.91 
2 144.55 
3 293.35 
4 541.31 
5 922.77 
6 1140.10 
7 1207.85 
8 1751.60 
9 2390.73 
10 2800.28 

36.14 
145.75 
332.57 
603.02 
966.64 
1436.67 
2030.88 
2772.62 
2806.10 
3692.31 

5.2 Weighting parameter 

To show the effect of the weighting parameter ~, the response 
ratio E 3 was maximized for increasing values of ~ by the 
eigenvalue problem (15). For each case, the corresponding 
values of E 1 and E 2 are given in Table 2. In this exam- 
ple, the excitation frequency (w) was half of the first natural 
frequency of the undelaminated beam (Wl). 

For ,~ = 0 the value of E 2 falls between the square of the 
first (0.051x 10 - 6 )  and the second (0.825 × 10 -6)  natural  fre- 
quencies, which are not very high frequencies. Consequently, 
the displacement fields for $ = 0 are not associated with very 
high frequency vibration modes, and this ,~ value gives a rea- 
sonable approximation for strain energy anti-optimization. 
As )~ increases, E 1 and E 2 approach 1 and the square of the 
first natural  frequency, respectively. Substantial changes in 
E 1 and the eigenvector f do not Occur until ~ reaches 105. 
For all cases, the combined ratio E3 was always found to be 
greater than 1. 

Table 2. E1 and E2 (xl06) as functions of )t for excitation fre- 
quency equM to 0.5 wl 

E1 E2 f l  f2 f3 
0 1.364 0.653 -0.879 1 -0.481 

103 1.364 0.589 -0.877 1 -0.478 
104 1.300 0.144 -0.808 1 -0.418 
105 1.023 0.051 -0.229 1 0.350 

5.3 Comparison of response measures 

Tables 3 (with ~ = 0), 4 and 5 show the anti-optimization 
solutions of (15), (27), and (36), respectively, for various ex- 
ternal frequencies. In these tables, both the maximum and 

minimum eigenvalues are calculated. Then, if the inverse ra- 
tio 1/E i from the minimum eigenvalue is larger than E i from 
the corresponding maximum eigenvalue, the entry is denoted 
by an asterisk (*) in the tables, and the eigenveetor corre- 
sponding to the minimum eigenvalue is presented. 

Table 3. Anti-optimization solution for excitation ratio using 
strain energy, eigenproblem (15) (with)t = 0). An asterisk denotes 
that the inverse of minimum eigenvalues is greater than maximum 
eigenvalues 

w/w 1 max min Actuators 
E1 E1 f l  f2 f3 

0.5 1.364 0.999 -0.879 1 -0.481 
0.95 2.410 0.726 -0.875 1 -0.513 
0.99 74.56 0.132 -0.883 1 -0.529 
1 - a  23.61 0.14×10 -8* -0.890 1 -0.547 
1.5 1.367 0.963 -0.871 1 -0.515 
2 1.387 0.978 -0.919 1 -0.585 
3 1.533 0.975 1 -0.640 0.780 
5 2.055 0.887 1 0.617 0.937 
10 3.457 0.122" 0.327 1 0.387 

~1- indicates slightly smaller than one 

For the strain energy ratio (Table 3), until the excita- 
tion frequency becomes very high (w/w I = 10), the maxi- 
mum eigenvalue is greater than the inverse of the minimum 
eigenvalue except for frequencies very close to the resonant 
frequency. For w/w 1 -- 10, the inverse of the minimum eigen- 
value is greater than the maximum eigenvalue, and thus the 
eigenvector which corresponds to the minimum eigenvalue is 
considered in this case. For the external work ratio (Table 4), 
the minimum eigenvalue is always 1 for the frequencies lower 
than the first natural frequency w 1 . For w > w I , the matrices 
S and So are not positive definite, and the minimum eigen- 
value is less than 1. The inverse of the minimum eigenvalue 
becomes greater than the maximum eigenvalue for w > w 1 = 
10 as for the strain energy case. In general, the eigenvalue 
seems less sensitive to the excitation frequency compared to 
the other approaches. The surface strain ratios show a differ- 
ent tendency, that  is, even for low frequencies, the inverse of 
the minimum eigenvalue is greater than the maximum eigen- 
value. 

Table 4. Anti-optimization solution for excitation ratio using ex- 
ternal work, eigenproblem (27). An asterisk denotes that the in- 
verse of minimum eigenvalues is greater than maximum eigenval- 
u e s  

w/w 1 max rain Actuators 
E4 E4 f l  f2 f3 

0.5 1.363 1 -0.886 1 -0.478 
0.95 1.498 1 -0.870 1 -0.481 
0.99 3.511 1 -0.856 1 -0.487 
1 -  1.067 -0.20×10 -3* -0.845 1 -0.492 
1.5 1.341 1 -0.858 1 -0.477 
2 1.356 1 -0.832 1 -0.478 
3 1.394 0.999 -0.764 1 -0.478 
5 1.404 0.984 -0.562 1 -0.479 
i0 1 0.389* 0.028 1 -0.492 

For all methods, when the excitation frequency ap- 
proaches the first resonant frequency from below, the max- 



98 

imum eigenvalue increases by an order of magnitude and 
the minimum eigenvalue decreases, while the corresponding 
eigenvectors do not change much. When the external fre- 
quency is very close to the first natural  frequency from be- 
low, the maximum eigenvalue decreases rather sharply and 
the minimum eigenvalue decreases drastically to almost zero. 
The eigenvector in this case is presented for the minimum 
eigenvalue, but it appears that  the eigenvalue for this case is 
almost same as the one for oJ/w 1 = 0.99, which corresponds 
to the maximum eigenvalue. This shows that  as the resonant 
frequency is approached, the eigenvector for the two extreme 
eigenvalues converge [observe that  at the resonant frequency 
(w = Wl) , the matr ix Co = A T A o  is not defined since the 
matrix Ko - w2Mo in Ao is singular, see (33)]. 

For higher excitation frequencies, high ratios are obtained 
for all approaches. This suggests that  the higher the fre- 
quency, the higher the ratio if the excitation frequency is not 
close to the resonant frequencies. However, for measurement 
purposes, very high frequencies are not recommended. 

The results from the strain energy are, in general, more 
reliable than those from strain sensors, because strain en- 
ergy is calculated at every degree of freedom of the finite 
element mesh of the beam, while strains are measured at 
several points on the surface of the beam. For example, at 
w/w 1 = 5, the difference in ratio between two approaches is 
about 30%. The strain energy results are also more efficient 
(larger values of ratios) than those from external work for all 
the excitation frequencies. 

Table 5. Anti-optimization solution for excitation ratio using 
strain sensor, eigenproblem (36). An asterisk denotes that the 
inverse of minimum eigenvalues is greater than maximum eigen- 
values 

w/w 1 max min 
E5 E5 

0.5 1.020 0.913" 
0.95 2.107 0.579 
0.99 77.120 0.089 
1 -  25.021 0.93×10 -9* 
1.5 1.081 0.866* 
2 1.094 0.900* 
3 1.243 0.917 
5 1.549 0.701 
10 5.811 0.029* 

Actuators 

f l  f2 f3 
1 -0.688 0.173 

-0.851 1 -0.531 
-0.862 1 -0.550 
-0.860 1 -0.554 

1 -0.811 0.746 
1 -0.430 -0.853 

-0.299 1 -0.070 
0.752 1 0.593 
0.449 1 0.498 

The effect of the number of strain sensors on the optimum 
solution is investigated for w/w 1 = 5 in Table 6. Strain sen- 
sors are assumed to be uniformly spaced. As expected, the 
results approach the strain energy results with an increasing 
number of sensor results. As a result, strain energy measure 
is found to be the most efficient and accurate. For this rea- 
son, in the following the strain energy is used as the response 
measure for anti-optimization. 

5.4 Effects of errors 

In many practical situations, measurement noise and mod- 
elling errors may be significant. To simulate such noise and 
errors, the actuator amplitude vector (f) and matrix I~ in 
(21) calculated from the strain energy anti-optimization are 
perturbed as follows: 

Table 6. Effect of the number of strain sensors for w/w1 = 5 

Number of strain sensors 

3 
4 
6 
10 
20 

E5 
3.816 
2.738 
1.549 
1.870 
1.982 

Strain energy solution E 1 = 2.055 

Actuators 

0 0 1 0.689 
1 -0.207 0.899 

0.752 1 0.593 
1 0.512 0.908 
1 0.616 0.931 
1 0.617 }.937, 

fi = [1 + N ( 2 R  - 1)]fi, Ki j  = [1 + N(2R - 1)]I~ij,  (42) 

where N is a noise amplitude and /~ is a random number 
uniformly distributed between zero and one. First, actuator 
amplitude vectors are perturbed, and the mean values of rel- 
ative errors of two extreme eigenvalues are presented in Table 
7 for four different excitation frequencies. The relative errors 
in Table 7 are defined as 

A E  -- IEperturbed -- Eexactl 
Eexact (43) 

It is seen that both maximum and minimum eigenvalues 
are not sensitive to measurement noise except very close to 
a resonant frequency. This is because in this case, the eigen- 
vector of the minimum eigenvalue If = (-0.889, 1,-0.547)] is 
very close to that  of the maximum eigenvalue If = (-0.883, 1, 
-0.529)]. Thus, even small perturbation in eigenvectors can 
cause a very large deviation in eigenvalues. 

Table 7. Effects of perturbed eigenvector on relative errors in 
strain energy ratio E1 

w/0J 1 1% Noise 5% Noise 
AEmin 

0.5 0.46x 10 - 5  
0.99 5.98 

2 0.58x10 - 6  
5 0.12x10 - 4  

AEmax AEmi n AEmax 
0.13x10 -3  0.12×10 - 3  0.32x10 - 2  

0.29 122.42 0.73 
0.20x10-4 0 .14x10-4 0.50x10 - 3  
0.17×10 -3  0.32x10 - 3  0.41x10 - 2  

In general, beams are not perfect and have variations in 
material properties and geometry. We simulate such imper- 
fections through random thickness variation along the beam 
length. The thickness of each finite element is allowed to 
vary within 5% combined with the variation of matrix K. 
The relative errors of two extreme eigenvalues and the an- 
gles between exact and perturbed eigenvectors are presented 
in Table 8. For w/w I = 0.5, the results are shown to be 
sensitive to the variation of I (  with more than 1% noise of 
measurement error producing unacceptable errors. At ex- 
citation frequencies close to resonance, the results are too 
sensitive to be meaningful. This is because of the unstable 
nature of the I£ matr ix near resonance. Thus, this excitation 
frequency is not appropriate for identification. For higher ex- 
citation frequencies, the results are. much less sensitive to the 
measurement noise. For w/w 1 -- 2, the angle between exact 
and perturbed eigenvectors is only 30 even for 5% measure- 
ment noise. This excitation frequency is found to be the best 
among the frequencies considered. For all cases, the effect 
of thickness variation seems to be negligible compared to the 
measurement noise. 
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Table 8. Effects of geometric and measurement noise on relative 
errors in strain energy ratio Et and change 0 (in degrees) in angle 
of anti-optimized force vector 

i O / ~ d  1 Noise in I~ No thickness variation 5% thickness variation 
AEmi. AEm~x O AEmin AEmax 0 

0.5 0% 0 0 0 0 .015 0.001 0.325 
1°'/o 0.199 0.063 12.53 0.207 0.067 13.05 
3~ 0.501 0.291 26.30 0.528 0.306 26.85 
5% 0.850 0.544 29.47 0.857 0.546 29.50 

0.99 0~ 0 0 0 31.87 0.001 0.343 
1% 9590 23.01 34.08 12840 22.83 31.66 

2 0% 0 0 0 0 .014 0.001 0.364 
1% 0.015 0.002 0.576 0.019 0.002 0.675 
3% 0.047 0.008 1.780 0.049 0.008 1.814 
5% 0.078 0.016 2.988 0.079 0.017 3.043 

5 0% 0 0 0 0 .055 0.018 0.975 
1% 0.108 0.025 2.560 0.109 0.028 2.625 
3% 0.297 0.061 7.958 0.300 0.062 8.310 
5% "0.479 0.116 14.29 0.486 0.117 14.35 

5.5 Delamination detection 

The actuator magnitude ratios that maximize the strain en- 
ergy ratio are obtained for three different excitation frequen- 
cies. The derivative of the residual force is calculated for ev- 
ery possible simulated delamination with a size of 10% of the 
beam length from node 1 to node 21, and is plotted through 
the axial location of the beam in Fig. 4 both with and with- 
out dmasurement noise in I~. For each finite element node, 
these three values are multiplied to help find peaks. Results 
are presented in Fig. 5. There are two peaks in Fig. 5, and 
the delaminated region is indicated to be either of these two 
locations of the beam. The effect of noise is negligible as can 
be seen from Figs. 4 and 5. 

12. 
• w/wl=0.5 (exact) I 

. . . . .  w/wl=2 (exact) I 
lnJ ,'~--', • ........ w/wl=5 (exact) I 
. v ~  f/fl:=~,.  • w/wl=0.5 (5% error)l 

: ,ld" "~ . . . . .  w/w 1=2 (5% error) I 
8- ,']" ~', [ .......... w/wl=5 (5% err°r) I 

' ,:" "iL / xx ", ,  

, ... . | : .  . . . - -  

1 3 5 7 9 "11 13 IS 17 19 1 
Node Number 

Fig. 4. The derivative of residual force for a delamination at e/g 
=0.3 

It should be noted that the location corresponding to the 
higher peak is not necessarily the location of delamination. 
Thus, both candidate locations of delamination are further 
investigated by using the method described in Section 4. The 
location of C1 and C2 can be estimated based on Fig. 5 as 

C 1 : delaminated at node 7, 

C 2 : delaminated at node 15. (44) 

The eigenvectors for the two candidates are calculated by 
using anti-optimization, and the angles for both candidates 
are presented in Table 9 for the three different excitation 

700- 

k 600- 
r '~ I • exact ] 

500-  I - 

400- ~ _ actual delamination 

300- 

200- 

100- y 

0 - - 3 5 7 9 11 13 15 17 19 ~1 
Node Number 

Fig. 5. The derivative of residual force for a delamination at e/£ 
= 0.3 (multiplied) 

frequencies. The angles associated with C 1 are smaller for 
three frequencies. 

:able 9. Estimation of the location of a delamination 

Candidate w/w I E 3 Actuators 0 

f l  f2 f3 
C 1 0.5 1.051 -0.894 1 -0.474 0.605 

(node 7) 2 1.053 -0.948 1 -0.605 0.908 
5 1.146 1 0.736 0.927 4.128 

C 2 0.5 1.051 -0.474 1 -0.894 23.517 
(node 7) 2 1.053 -0.605 1 -0.948 18.487 

5 1.146 0.927 0.736 1 5.480 

In fact, neither C 1 nor C 2 corresponds exactly to the ac- 
tual location and size of delamination. For low excitation 
frequencies, the error angle 0 between the actual location 
and the C 1 is small. As the frequency increases, the angle 
becomes larger for C1, but the error angle for C 2 decreases. 
This is because C 2 has a mirror image to the actual delami- 
nation location and becomes indistinguishable for larger wave 
numbers. That is, for more accurate estimation of delamina- 
tion location, higher frequencies may be necessary, whereas 
low frequencies are preferable for selecting a candidate that 
is closer to actual delamination location. Consequently, C 1 
is the estimated location of delamination. 

Once the location of a delamination is estimated, the 
next step is to determine the size of the delamination. The 
delamination size can be estimated by comparing the mea- 
sured eigenvalues with eigenvalues of candidate delamina- 
tions. These candidates are produced by increasing the size 
of the delamination by releasing neighbouring nodes of C 1. 
As shown in Table 10, it can be concluded that any of the 
entries except the one with only node 7 delaminated can be 
a solution (observe AE). 

6 C o n c l u d i n g  r e m a r k s  

In this paper, a technique that can detect a delamination 
in laminated beams was presented. Using anti-optimization, 
an optimal excitation load distribution, which extremizes the 
difference between harmonic response of a nominal and de- 
laminated beams, was obtained: Then, the location and the 
size of a delamination is then estimated by using the ex- 
citation obtained from anti-optimization in conjuction with 
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Table 10. Estimation of the size of a delamination 

Delaminated nodes E 3 Actuators A E  3 

h Y2 /3 
7 1.051 -0.894 1 -0.474 0.235 

6,7 1.112 -0.867 1 -0.485 0.185 
7,8 1.208 -0.897 1 -0.473 0.114 

5,6,7 1.179 -0.920 1 -0.461 0.136 
6,7,8 1.364 -0.879 1 -0.481 0 
7,8,9 1.524 -0.9 1 -0.474 0.117 

system identification. In order to validate the reliability of 
the approach, geometric and measurement noise effects were 
numerically simulated. It was found that  the present anti- 
optimization based system identification technique is capable 
of detecting the size and the location of delamination success- 
fully. Experimental work to verify this capability is currently 
underway and will be reported in another publication. 

The significance of the anti-optimization procedure de- 
tailed in this paper lies in its ability to augment the system 
identification process. Most system identification approaches 
require large amounts of data  to detect damage. By accen- 
tuating the difference between the response of nominal and 
delaminated beams, anti-optimization reduces the amount of 
data required to detect the damage. 
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