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for r e c t a n g u l a r  d o m a i n s  w i t h  

A b s t r a c t  A comprehensive review of both previously known 
and newly derived exact optimal layouts for rectangular domains 
with point loads and either line or point supports is given in this 
note. 

1 I n t r o d u c t i o n  

In this brief note, a short but systematic survey of optimal 
truss topologies for rectangular domains with various support 
conditions is presented. Detailed derivations of new optimal 
layouts will be given in a full length paper. It is shown sub- 
sequently that the solutions become more complicated if a 
smaller part of the boundary is supported. 

Research into optimal truss layouts gained a new impetus 
recently through the discovery that the optimal topology of 
perforated plates in plane stress tends at low volume fractions 
to that for least-weight trusses, if a compliance constraint is 
used (e.g. Allaire and Kohn 1992). A similar conclusion 
was reached earlier in relation to axisymmetric perforated 
plates in flexure and grillages (Rozvany, Olhoff, Bendsce et 
al. 1987). All solutions discussed in this paper are valid for a 
stress constraint (Michell 1904) or a compliance constraint. 
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Fig. 1. Admissible range of load directions for optimal multibar 
layouts in Section 2 

For simplicity, only one point load parallel to one side of 
the rectangular domain is considered in this note. However, 
the following generalizations can be made within the same 
optimal layout for all problems in Section 2, if the topology 
consists of more than one bar. 

• The direction of the point load may be changed by an 
angle not exceeding 450 . 

• Any number of point loads can be applied simultaneously 
if all of them enclose an angle not exceeding ±45 ° with 
one side of the rectangular domain (Fig. 1) 

• O n  leave f r o m  the  In s t i t u t e  of  S t r u c t u r a l  Mechan ics ,  W a r s a w  Uni-  
vers i ty  of Techrtology, s u p p o r t e d  b y  the  H u m b o l d t  F o u n d a t i o n  

2 A s u m m a r y  o f  k n o w n  solu t ions  

2.1 Line supports along two or more sides 

The optimal layout is relatively simple for the above support 
conditions. In the case of supports along two adjacent sides 
(Figs. 2a-c), the domain is to be divided into two regions by 
a straight boundary passing through the supported corner 
and having a slope of 2:1 to the direction of the sides parallel 
to the load. If the load is on one side of this line, then the 
optimal topology consists of a single bar (Fig. 2a). If it is 
on the other side, the topology consists of two bars (Fig. 
2b), one in tension (continuous line) and the other one in 
compression (broken lines). H the load acts on the above 
boundary, then the solution may consist of three bars, but 
any statically admissible distribution of the forces in those 
bars gives the same structural weight, including a two-bar 
and a one-bar topology (Fig. 2c). 

In the case of three supported sides, the region boundary 
consists of two lines starting from the corners formed by two 
supported sides and having a slope 2:1 with the direction 
of the point load (Fig. 2d). The solution again consists, in 
general, of one bar (Fig. 2d) or two bars (Fig. 2e), but it may 
contain three bars if the point acts on the region boundary. In 
special cases, the optimal topology may even consist of four 
bars (load at equal distance from two parallel line supports, 
Fig. 2f) or five bars (load at the intersection of boundary 
lines, Fig. 2g), but these solutions are again non-unique. 
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Fig. 2. Optimal layouts for line supports along two or more sides 
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Similar rules apply to four supported sides. In that case, 
however, even six bars are possible in the optimal topology if 
the side length ratio is 5:1 and the load acts at the centre of 
the domain (Fig. 2h). The above solutions were explained in 
detail elsewhere (Rozvany and Gollub 1990). 

In the case of line supports along two opposite sides with 
a load parallel to those sides, the solutions for narrow do- 
mains are similar to the ones in Figs. 2b and f. For longer 
spans, the optimal layout becomes more complicated (Roz- 
vany, Lewifiski et al. 1993). 

2.2 Line support along one side with a point load parallel to 
that side 

For this support condition, the optimal  topology consists of 
only two bars if the distance d of the loaded point from the 
support is smaller than both its distances from the two sides 
normal to it (Fig. 3a). 
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Fig. 3. Optimal layouts for line support along one side 

The topology changes to one consisting of two "concen- 
trated" straight bars and a circular fan if the distance a from 
one normal free edge is smaller than the distance d from the 
support (Fig. 3b). A further condition for this solution is 
that the length h of the support is greater than or equal to 
V~r where r is the distance of the loaded point from the 
nearer end of the support. 

If the loading falls anywhere within the area ABCD in 
Fig. 3c, then the solution consists of two circular fans (e.g. 
AGB and ADH) and a Hencky-net with curved members 
(e.g. ABCD),  the members GB, BC, HD and DC being 
"concentrated" ones. The solution in Fig. 3c is for a load at 
the point C; for other load locations (e.g. Fig. 3d) the layout 
becomes a subset of the one in Fig. 3c. The members within 
the area ABCD are given by (Chan 1967) 

x(4,/3) = ~(4, 8) cos ¢ - y(a,  8) sin ¢ ,  

u(4, /3)=~(4, /3)s in¢+~(~,8)cos¢,  ¢ = - 4 + 8 ,  (1) 
with 

~(4,/3)/r  = F0(4, 8) + .Fl(o~,/3) - cos(/3- 4),  (2) 

y(u,/3)/r  = F1(4,/3 ) + F2(4,/3 ) + sin(/3 - 4) ,  (3) 

oO 

Fn(4,/3) = (4) 
r n = 0  

in which '2rnq-n are modified Bessel functions, (4,/3) 
are curvilinear coordinates (Fig. 3c) and Fn(4,/3) = 
Un(24, 2iVr~-fi) where Un are Lommel functions of two vari- 
ables (Watson 1966). The curves BC and DC in Fig. 3c are 
given by (1) with 8 = ~r/4 and c~ = Ir/4, respectively. 

If some loads fall within the areas B E C  of DCF in Fig. 
3e, then in the above regions further Hencky-nets appear 
in the solution. For example, the coordinates of the point 
Q(4,/3) in Fig. 30 is given by (1) and (4) with (Chan 1967) 

-Z(4,/3)lr -- F1(8, 4)q-F2(8, 4 ) - s i n ( 8 - 4 ) - F l ( 4 - 0 ; / 3 + 0 ) -  

F : ( 4 -  0;Z+0) ,  Y(4,/3)/r=FO(8,4)+Fl(/3,~)- 
c o s ( 8 - 4 ) - F 2 ( 4 - 0 ; 8 + e ) - F a ( 4 - e ; 8 + e ) ,  0 = ~/4,(5) 

The layout in Fig. 30, or a subset of it, remains valid ff 
several point loads act anywhere within the regions ABCD, 
BEC or DCF. 

3 N e w  s o l u t i o n s :  r e c t a n g u l a r  d o m a i n s  wi th  s imple  
s u p p o r t s  

Figures 4a and c show two loading conditions for a simply 
supported truss and Figs. 4b and d the equivalent support 
conditions for a half-truss. A problem similar to that in Fig. 
4a is often referred to as the "MBB-beam" (e.g. Olhoff et al. 
1991). If the span length L is relatively small in comparison 
to the height h (i.e. L _< 2h ) for the problem in Fig. 4c, 
then the optimal layout (Fig. 4e) consists of a circular fan 
(Hemp 1973, p. 82). For other aspect ratios, the approximate 
optimal topology was shown by numerical solutions (Figs. 5a 
and b, see also Zhou and Rozvany 1991) obtained by Zhou 
for perforated plates in plane stress by the SIMP formulation 
(Rozvany, Zhou and Birker 1992). 
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Fig. 4. Simple supports considered in this note 

The correct optimal topology was then suggested by Zhou 
and its close relation to Chan's (1967) work was pointed 
out by Rozvany. The detailed mathematical proof of the 
new types of Michell-fields was obtained by Lewifiski through 
rather lengthy derivations. The optimal layout for the prob- 
lem in Fig. 4a is shown in Fig. 6a (numerical implementation 
by Zhou) and the corresponding regions in Fig. 6b. The lay- 
out of bars in Fig. 6 is given by the following equations. 
Region I [extension of Chan's (1967) results]: (1), (4) and (5) 
with 0 = 0. 
Region II: (1) and (4) with 

~(4,/3)/r = -cos(/3:-4)-F2(/3-0, 4+0)+F4(/3-0, 4+0)+ 
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Fig. 5. Numerical solutions by the SIMP method for perforated 
plates in plane stress for the support and load conditions in Figs. 
4b and d, respectively 
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Fig. 6. Optimal layout for the problem in Fig. 4b 

F0(<~, 13) - F2(~, 13), 

y(ee,13)/r = sin( /3-  a ) -  F1 ( /7 -8  , e ~ + O ) + F 3 ( f l - O  , c~+O)+ 

s q ( <  13) - Y3(< 13), 0 = ~ /2 .  (6) 
Region I l k  (1) and (4) with 

~(~, 13)1r = F 0 (c~, t3) - F0(13, a)  + F4(13 - O, e~ + O) - 

F4(a  - 0 , / 3 +  0) + F2(ci - O, fl + O) - F2(13 - O, a + O) , 

- 9 ( 4 , 1 3 ) / r  = F I ( ~ ,  13) - F-1(13, (~) + F3(/7 - O, ~ + 0) - 

& ( ~ -  O, 1 3 + 0 ) + F a ( ~  - O ,  13+ 0) - F1(13-  0, ~ + O ) ,  

e = ~ / 2 .  (7) 

It can be seen from Fig. 6b that  the length of the regions 
increases as we move to the right from the supports (support 
conditions in Fig. 4b or points 0 and A in Fig. 6b). At an 
infinite distance from the supports, the bar shapes are given 
by cycloids (Hemp 1973, pp. 94-95, with x ---* y, y --+ - x )  

= - ( h / 2 ) { 1  - ¢os[2(~ + 13)1}, 

y = (h/2){sin[2(c~ + t3)] + 2(a - 13)}, (8) 

The projection of each curved bar given by (8) onto the y- 
axis h a s a  length of h r / 2  --- 1.57079633h which is only 0.4% 
bigger then the length of the last segment in Fig. 6b. This 
convergence of the segment lengths to a known limiting value 
represents an indirect confirmation of the results in this note. 
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Fig. 7. Further solutions for simply supported trusses 

The optimal layout for the problem in Fig. 4c and some 
further applications of the proposed new Michell fields are 
given in Fig. 7 which includes an optimal truss with two point 
loads (Fig. 7d). 
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