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A b s t r a c t  Two types of solutions may be considered in gen- 
eralized shape optimization. Absolute minimum weight solutions, 
which are rather unpractical, consist of solid, empty and porous 
regions. In more practical solutions of shape optimization, porous 
regions are suppressed and only solid and empty regions remain. 
This note discusses this second class of problems and shows that a 
solid, isotropic microstructure with an adjustable penalty for in- 
termediate densities is efficient in generating optimal topologies. 

1 I n t r o d u c t i o n  

The aim of generalized shape optimization is the simultaneous 
optimization of both the shape and topology of the boundaries 
of two- or three-dimensional continua or of the interfaces be- 
tween different materials in composites. 

Fig. 1. One of the earliest solutions in generalized shape opti- 
mization (after Kohn and Strang 1983) 

It was established by Kohn and Strang (1983) in the con- 
text of:plastic design for torsion of a cross-section within a 
square area (Fig. 1) that generalized shape optimization may 
yield three types of regions, namely, 

• solid regions (filled with material) 
• empty regions (without material) and 
• porous regions (some material, with cavities of inifinitesi- 

mal size). 
Considering elastic perforated plates in plane stress or 

bending, it was found (e.g. Lurie and Cherkaev 1984; Murat 
and Tartar 1985; Kohn and Strang 1986) that one optimal 
mierostructure for a compliance constraint consists of rank-2 
laminates (ribs of first and second order infinitesimal widths 
in the two principal directions). 

2 So l i d - emp ty -po rous  ( S E P ) s o l u t i o n s  

Analytical solutions based on rank-2 laminates for axisym- 
metric perforated plates by Rozvany, Olhoff, Bendsee et al. 
(1987) and Ong, Rozvany and Szeto (1988) have shown that 
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• a high proportion of the available space in exact optimal 
designs consists of porous regions; and 

• for low volume fractions the solution tends to that for 
least-weight trusses (Michell 1904) for plane stress and 
least-weight griUages (e.g. Prager and Rozvany 1977) for 
bending. This conclusion was also confirmed by Kohn 
and Allaire (1992). 

Using both the correct microstructure (rank-2 laminates) 
and a "sub-optimal" microstrncture (square or rectangu- 
lar holes), near-optimal solutions were deterimined numeri- 
cally by several investigators (e.g. Bendsoe and Kikuchi 1988; 
Suzuki and Kikuchi 1991; Bendsee 1989; Diaz and BendsOe 
1992; Olhoff, Bendsee and Rasmussen 1991). 

Solutions with the correct optimal microsfructure (rank-2 
laminates) are rather unpractical for the following reasons: 

• even an approximate, finite version of the rank-2 mi- 
crostructure in porous regions, which are rather extensive, 
would require very high manufacturing costs; 

• rank-2 laminates for perforated structures have zero shear 
stiffness in one direction, which makes these solutions 
completely unstable if the load direction is changed; and 

• solutions are only available for a single compliance or 
natural frequency constraint which are not realistic de- 
sign problems. This was also demonstrated recently by 
Sankaranarayanan, Haftka et al. (1992); 

• owing to noneonvexity, these solutions may represent a 
local optimum. 

However, solutions with rank-2 laminates are of great the- 
oretical value because they represent an absolute limit on the 
structural weight, albeit for a somewhat artificial problem. 

Sub-optimal microstructures tend to result in more prac- 
tical solutions because they penalize and therefore suppress 
porous regions. 

The term homogenization means that an inhomogeneous 
structural element, containing an infinite number of discon- 
tinuities in material or geometrical properties, is replaced by 
a homogeneous but anisotropic element, whose stiffness is di- 
rection but not location dependent within the element. The 
same idea was used in layout optimization already much ear- 
lier by others (e.g. Prager and Rozvany 1977) under terms 
like "grillage-like continua". This operation seems obvious 
to engineers, although it has no doubt interesting mathemat- 
ical implications. Unfortunately, in the literature the term 
"shape optimization by homogenization" has become almost 
synonymous with "generalized shape optimization". 
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3 So l id -empty  (SE) solut ions  a nd  solid, i so t rop ic  
m i c r o s t r u c t u r e  wi th  p e n a l t y  ( S I M P )  for  in t e rmed i -  
a te  densi t ies  

From an engineering point of view, it is more practical to aim 
at solutions in which porous regions are largely suppressed 
and then a second stage design procedure can produce a so- 
lution consisting of solid and empty regions only. This proce- 
dure was lucidly demonstrated by Olhoff et al. (1991) on an 
example involving a simply supported beam with a central 
point load (Figs. 2a and b). 

(a) 

• 
(b) 

(e) 
I 

Fig. 2. (a) Topology for a simply supported beam (one half 
shown) using a sub-optimal microstructure, (b) design after a sec- 
ond stage process (after Olhoff et al. 1991), (c) the exact topology 
suggested by discretized truss solutions (Zhou and Rozvany 1991), 
(d) topology using a solid, isotropic microstructure with penalty 
for intermediate densities, SIMP (Zhou and Rozvany 1991) 

It was suggested by the first author at a meeting in Karl- 
sruhe in 1990 (see also Zhou and Rozvany 1991) that porous 
regions could be suppressed by adding to the material costs 
the cost of manufacturing of holes, thereby penalizing, and 
suppressing in the solution, porous regions. Once we decide 
that we want only solid and empty regions in the solution, 
any microstructure with an appropriate penalty for porous 
regions (or iatermediate densities) can be assumed in the so- 
lution process. In selecting such a microstructure, the follow- 
ing objectives should be considered: 

• simplicity of analysis and optimization; 
• selective suppresion of porous regions by adjustable 

penalty; and 
• capability of handling a variety of design conditions (e.g. 

combinations of deflection, stress , natural frequency and 
stability constraints for several load conditions). 
It was demonstrated (Zhou and Rozvany 1991) that a 

solid isotropic microstructure with penalty (SIMP) for in- 
termediate densities combined with new optimality criteria 

• methods (COC, Rozvany and. Zhou 1991), does result in 
very satisfactory SE-type topologies in generalized shape op- 
timization. Figure 2c shows, for example, the "exact" topol- 
ogy for the same beam problem, suggested by discretized 
truss solutions (Zhou and Rozvany 1991, Figs. 15a-d). In 
the theoretical optimal solution, the number of intersecting 
members tends to infinity. The solution obtained with the 
SIMP model (Fig. 2d) seems to be much closer to this layout 
than the one obtained by using square cells (Fig. 2@ 

An alternate optimal microstructure for plates with a 
compliance constraint was derived recently by Vigdergauz 
(1992). The latter may start with a Michell-structure or 
least-weight grillage at very low volume-fractions (Fig. 2c), 
then develops roundings at the corners (Fig. 3a), finishing 
up with elliptical holes at high volume fractions (Fig. 3b). In 
view of the above results, the solution obtained with SIMP in 
Fig. 2d seems to be a very good approximation of the exact 
solution at lower volume fractions. 

(a) 

(b) 
Fig. 3. Alternative optimal microstructures at higher volume frac- 
tions 

In Fig. 4, three types of specific costs are compared for a 
plate in plane stress or bending. The straight line represents 
weight per unit area of a plate of variable thickness. The 
next curve shows the weight of a rank-2 laminate (perforaeed 
plate) with equal stiffness in two directions (Rozvany el al. 
1987). Finally, the top curve represents the power-type cost 
function for a SIMP formulation. 

The method employed herein was also proposed by 
Bendsce (1989) under the term "direct approach" or "0-1 
discrete optimization method with a suitable differentiable 
approximation" using an "artificial material". The authors 
of this paper do not find, however, that the results are highly 
mesh-dependent, nor that a physical interpretation of this 
model is "impossible". 

Another test example concerns a cantilever beam, for 
which the analytical solution (Hemp 1973, pp. 97-99) is shown 
in Fig. 5a, a topology generated by using a microstructure 
with square holes (Suzuki and Kikuchi 1991) in Fig. 5b and 
SIMP solutions by M. Zhou (10800 constant strain triangular 
elements) and by T. Birker (1440 isoparametric square ele- 
ments) in Figs. 5c and d. The resolving power of the latter 
method appears to be higher than that of traditional "homog- 
enization", and net-dependence of the topology is restricted 
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Fig. 5. Some results by an analytical method, by "homogeniza- 
tion" and by the SIMP procedure. 

to a change in the number of "members". Finally, Fig. 5e 
shows a SIMP solution by T. Birker for two alternate loads 
(P1 and P2), which was also obtained analytically (Rozvany 
1992) and by a discretized optimality criteria method (Zhou 
and Rozvany 1991). The SIMP procedure is also being used 
currently for three-dimensional continua subject to combina- 
tions of stress and deflection constraints, with the following 
physical interpretation. The permissible stress and Young's 
modulus of a materiM are proportional to the density, which 
varies between a maximum value and a very small minimum 
value, intermediate densities being penalized. 
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