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Review Paper 

Multiple eigenvalues in structural optimization problems* 

A.P. Sey ran i an t ,  E. L u n d  a nd  N. Olhoff  

Institute of Mechanical Engineering, Aalborg University, DK-9220 Aalborg, Denmark 

A b s t r a c t  This paper discusses characteristic features and in- 
herent difficulties pertaining to the lack of usual differentiability 
properties in problems "of sensitivity analysis and optimum struc- 
tural design with respect to multiple eigenvaiues. Computational 
aspects are illustrated via a number of examples. 

Based on a mathematical perturbation technique, a general 
multiparameter framework is developed for computation of design 
sensitivities of simple as well as multiple eigenvalues of complex 
structures. The method is exemplified by computation of changes 
of simple and multiple natural transverse vibration frequencies 
subject to changes of different design parameters of finite element 
modelled, stiffener reinforced thin elastic plates. 

Problems of optimization are formulated as the maximization 
of the smallest (simple or multiple) eigenvalue subject to a global 
constraint of e.g. given total volume of material of the structure, 
and necessary optimality conditions are derived for an arbitrary 
degree of multiplicity of the smallest eigenvalue. The necessary op- 
timality conditions express (i) linear dependence of a set of gener- 
alized gradient vectors of the multiple eigenvalue and the gradient 
vector of the constraint, and (ii) positive semi-definiteness of a 
matrix of the coefficients of the linear combination. 

It is shown in the paper that the optimality condition (i) can 
be directly applied for the development of an efficient, iterative 
numerical method for the optimization of structural eigenvalues 
of arbitrary multiplicity, and that the satisfaction of the necessary 
optimality conditioli (ii) can be readily checked when the method 
has converged. Application of the method is illustrated by sim- 
ple, multiparameter examples of optimizing single and bimodal 
buckling loads of columns on elastic foundations. 

1 I n t r o d u c t i o n  

Multiple eigenvalues in the form of buckling loads and natu- 
ral frequencies of vibration very often occur in complex struc- 
tures that depend on many design parameters and have many 
degrees of freedom. For example, stiffener-reinforced thin- 
walled plate and shell structures have a dense spectrum of 
eigenvalues, and multiple eigenvalues are found very often. 
Also, symmetry of structural systems may lead to the ap- 
pearance of several linearly independent buckling modes and 
vibration modes with multiple eigenvalues. 

In 1977, Olhoff and Rasmussen discovered that the opti- 
mum eigenvalue of a clamped-clamped column of given vol- 
ume is bimodal. This optimization problem was first consid- 
ered by Lagrange, and its interesting history was presented 
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in a recent paper by Cox (1992). Olhoff and Rasmussen 
(1977) showed that the bimodality of the optimum eigen- 
value must be taken into account in the mathematical for- 
mulation of the problem in order to obtain the correct op- 
timum solution. They first demonstrated that an analytical 
solution obtained earlier by Tadjbakhsh and Keller (1962) 
under the tacit assumption of a simple buckling load is not 
optimal, then presented a bimodal formulation of the prob- 
lem, solved it numerically, and obtained the correct optimum 
design. The optimum bimodal buckling load obtained was 
later confirmed to be correct to within a slight deviation of 
the sixth digit# by analytical solutions obtained indepen- 
dently by Seyranian (1983, 1984) and Masur (1984). The 
discovery in 1977 of multiple optimum eigenvalues in struc- 
tural optimization problems, and the necessity of applying a 
bi- or multimodal formulation in such cases, opened a new 
field for theoretical investigations and development of meth- 
ods of numerical analysis and solution. 

Prager and Prager (1979) and Choi and ttaug (1981) pre- 
sented unimodal and bimodal optimum solutions for systems 
with few degrees of freedom, confirming the appearance of 
multiple eigenvalues in optimization problems. A wealth of 
references on multimodal optimization problems and specific 
results for columns, arches, plates and shells can be found in 
comprehensive surveys by Olhoff and Taylor (1983), Gajew- 
ski and Zyczkowski (1988), Zyczkowski (1989) and Gajewski 
(1990). A survey of other problems of optimum design with 
respect to structural eigenvalues was earlier published by O1- 
hoff (1980). 

One of the main problems related to multiple eigenvalues 
is their non-differentiability in the common (Frdchet) sense. 
This was revealed by Masur and Mroz (1979, 1980) and Haug 
and Rousselet (1980). The non-differentiability creates dif- 
ficulties in finding sensitivities of multiple eigenvalues with 
respect to design changes and derivation of necessary opti- 
mality conditions in optimization problems. Choi and Haug 
(1981) used a Lagrange multiplier method for bimodal prob- 
lems and showed that this method, which is very useful for 
differentiable criteria and constraints, may yield incorrect re- 
sults. 

Haug and Rousselet (1980) proved the existence of direc- 
tional derivatives of multiple eigenvalues and obtained ex- 
plicit formulae for derivatives. Bratus and Seyranian (1983) 
and Seyranian (1987) presented sensitivity analysis of mul- 

#This  accuracy of the numerical result in the paper by OLhoff and 
Rasmussen (1977) was obtained by solving the problem for different 
values of the mesh length d, and extrapolating the result to d -- 0 by 
means of Newton's forraula. 
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tiple eigenvalues based on a perturbation technique and de- 
rived necessary optimality conditions. The main advantage 
of these necessary optimality conditions is that, when com- 
pared with those obtained by previous researchers, they do 
not contain variations of design variables. Similar develop- 
ments were presented by Masur (1984, 1985). It was with 
the use of these necessary optimality conditions that Seyra- 
nian (1983, 1984) and Masur (1984) independently of each 
other obtained the analytical solution to the bimodal opti- 
mum clamped-clamped column problem mentioned above. 

Overton (1988) considered the minimization of the max- 
imum eigenvalue of a symmetric matrix. This problem is 
similar to the problem of maximizing the minimum eigen- 
value. Derivation of necessaTy optimality conditions using 
a so-called bound formulation of such problems had earlier 
been presented by Bendsee et al. (1983) and Taylor and 
Bendsee (1984). In a recent paper Cox and Overton (1992) 
presented new mathematical results for optimization prob- 
lems of columns against buckling. They derived necessary 
optimality conditions using advanced nonsmooth optimiza- 
tion methods. Their results for optimum columns are in 
good agreement with the results obtained earlier by Olhoff 
and Rasmussen (1977), Seyranian (1983, 1984), and Masur 
(1984). 

Numerical algorithms for the solution of structural opti- 
mization problems with multiple eigenvalues have been sug- 
gested and discussed by, among others, Olhoff and Rasmussen 
(1977), Choi et al. (1982), Olhoff and Plaut (1983), Bendsoe 
el al. (1983), Myslinski and Sokolowski (1985), Zhong and 
Cheng (1986), Plaut et al. (1986), Gajewski and Zyczkowski 
(1988), Overton (1988), and Cox and Overton (1992). 

The present paper is devoted to the development of effi- 
cient methods for design sensitivity analysis and optimization 
of simple as well as multiple eigenvalues of complex struc- 
tures. Section 2 presents the mathematical basis of the de- 
velopment which is a perturbation technique that allows us 
to obtain sensitivities of both multiple eigenvalues and cor- 
responding eigenvectors. We first consider the case where 
only a single design parameter is changed and then present a 
method for efficient calculation of design sensitivities of sim- 
ple and multiple eigenvalues when all design parameters are 
changed simultaneously. 

It is shown that the design sensitivities of multiple eigen- 
values of finite element modelled structures can be computed 
within the framework of the semi-analytical approach for sen- 
sitivity analysis. This approach can be easily augmented to 
yield "exact" numerical sensitivities by a new technique pub- 
lished by Olhoff el al. (1993) and Lund and Olhoff (1993). 
By this technique, which is computationally inexpensive and 
very easy to implement as an integral part of the finite el- 
ement analysis, we completely avoid the often severely er- 
roneous shape design sensitivities of beam, plate, and shell 
structures that may result from application of the tradi- 
tional method of semi-analytical sensitivity analysis (see e.g. 
Barthelemy and Haftka 1988). 

The efficiency of the new method of sensitivity analysis 
of multiple eigenvalues is demonstrated and illustrated by 
studies of problems of changes of different types of design 
parameters for free, transversely vibrating stiffener reinforced 
elastic plates. It is found that the method is very reliable 

and accurate, and that it constitutes an excellent basis for 
the solution of structural optimization problems. 

Sections 3, 4 and 5 are devoted to the optimization of mul- 
tiple eigenvalues. Section 3 contains three simple examples 
that illustrate the main ideas. Then, in Section 4, we formu- 
late the structural eigenvalue optimization problem as the 
maximization of the smallest eigenvalue and derive the nec- 
essary optimafity conditions, first for bimodal optimization, 
and then for the general case where the smallest eigenvalue 
has arbitrary multiplicity. The optimality conditions express 
(i) linear dependence between a set of generalized gradient 
vectors of the multiple eigenvalue and the gradient vector of 
the constraint condition (given total volume of structural ma- 
terial), and (ii) positive semi-definiteness of a matrix of the 
coefficients of the linear combination. 

Section 5 shows that these optimality conditions are very 
useful for the construction of an iterative numerical proce- 
dure for optimization of structural eigenvalues of arbitrary 
multiplicity. Thus, we develop a numerical method of solu- 
tion in which the condition (i) is directly used to determine an 
ascent direction in the design space for the smallest (simple 
or multiple) eigenvalue, and in which the satisfaction of (ii) 
can be readily checked when the method has converged. The 
application and efficiency of this method of optimization of 
simple or multiple fundamental eigenvalues is demonstrated 
for examples of the optimum design of the columns on elastic 
foundations. 

2 Sensit ivity analysis for eigenvalue problems 

In this section we seek general formulations for sensitivity 
analysis of finite element discretized structural eigenvalue 
problems. These problems appear in structural vibration and 
stability ane]~.~es. For conservative systems without damp- 
ing these problems lead to real eigenvalues representing free 
vibration frequencies or buckling loads. We will confine the 
analysis to seeking sensitivities of eigenvalues only. 

2.1 Introduction 

The finite element formulation for the real, symmetric, struc- 
tural eigenvalue problem is 

K~)j = )~ j M e j ,  j = 1 , . . .  , n ,  (1) 

where K and M are symmetric positive definite matrices, ,~j 
is the eigenvalue and e j  is the corresponding eigenvector. 
The dimension of the problem is denoted by n, so (1) has 
n solutions consisting of eigenvalues Aj and corresponding 
eigenvectors e j .  The eigenvalues are all real and can be 
ordered in the following manner after magnitude: 

0 < ~1 -< ~2 < .. .-< ~j _<... < '~n .  (2) 

In the following it is assumed that the eigenvectors have been 
M-orthonormalized, i.e. 

¢ T M ¢ k = ( i j k  , j , k =  1 , . . . , n ,  (3) 

where ~jk denotes Kronecker's delta. 

If we premultiply (1) by eT  we obtain 

t T K t k  =~ j~ jk ,  J , k =  1 , . . . , n ,  (4) 

meaning that the eigenvectors are also K-orthogonal. 
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So far we have not mentioned multiple eigenvalues and 
eigenvectors. In this case the eigenvectors are not unique. In 
fact, an infinite number of linear combinations of the eigen- 
vectors corresponding to the repeated eigenvalue will satisfy 
(1) aad (3). However, we can choose a set of M-orthonormal 
eigenvectors which span the subspace that corresponds to a 
multilS!e eigenvalue. In other words, if we assume that ,~j has 
multlpllcity N (i.e. ~j = ,kj+ 1 . . . . .  )~j+N-1), then we 
can choose N eigenvectors ~bj which span the N-dimensional 
subspaee corresponding to the eigenvalues of magnitude ~j 
and hatisfy the orthogonality conditions in (3) and (4). 

2.2 DeSign sensitivity analysis of simple eigenvalues 

We assiitne that the shape and size of the structure are gov- 
erned by a set of design variables aj ,  i = 1 , . . . , I  and the 
goal is to obtain expressions for eigenvalue sensitivities with 
respect to these design variables. It is also assumed that the 
components of the K and M matrices are smooth functions 
of design variables a i. 

The direct approach to obtaining the eigenvalue sensitiv- 
ities is to differentiate (1) with respect to a design variable 
aj, Assuming that ,~j is simple, we have 

~aidpj . Oq~j O~j OM + (g 
~jM) Oa i = Oa i MCj + )~j~aiCj , 

i = 1 , . . . , I .  (5) 

By premultiplying (5) by ¢T  and making use of (1) and the 
normalization of (3), the following expression is obtained for 
the eigenvalue sensitivity in the case of simple eigenvalues ,~j 
(see e.g. Courant and Hilbert 1953; Wittrick 1962): (oK 
Oa i ~a i j Oa---T] dpj, i =  l , . . . , I .  (6) 

The most important point here is that the only unknown 
quantities in (6) are the derivatives of the K and M matri- 
ces. These derivatives are normally calculated at the element 
level, i.e. 
OK Ok 
-~ai = ~n ~ai , i =  l , . . . , I ,  (7) 

o M  = E , i =  1 , . . . ,  I ,  (8) 
Oai ne 

where k and m are element matrices and ne is the number 
of finite elements. 

These element derivatives Can be either calculated ana- 
lytically, if possible, or by using first-order finite difference 
approximations as known from the method of semi-analytical 
sensitivity analysis of finite element discretized structures 
with linearly elastic, static response, i.e. 

0k(a) ,~ Atk(al , . . .  ,a i )  
Oa i -- Aa i 

k ( a l , . . . , a  i + A a i , . . . , a i )  -- k ( a l , . . .  , a i , . . . , a I )  
Aa i 

, (9)  

0 m ( a )  ZXm(al  . . . . .  a I )  _ 

Oa i -- Aa i 

m ( a l , . . . , a i + A a i  . . . .  , a i ) - - m ( a l , . . . , a i , . . . , a i )  

These finite difference approximations can be upgraded t o  
"exact" numerical derivatives (exact except for round-off er- 
rors) by using the method of exact semi-analytical sensitivity 
analysis (see Olhoff et al. 1993; Lund and Olhoff 1993). 

If all the design variables a i are changed simultaneously 
then we can find the linear increment of the simple eigenvalue 
~j in the form 

,,As = oK 
i=1 -~a/ J ~ a / J  CjAai"  (11) 

This equation is valid due to the differentiability of simple 
eigenvalues with respect to design variables. 

The expression obtained in (11) ean be written in the form 
of the scalar product 

A)~ i = v T ) ~ j A a ,  (12) 

where V)tj  denotes the gradient vector of Aj and Aa  is the 
vector of changes of the design variables a i 

v: s = " O a ) ]  ' A a =  ( , a a a , . . . , A a l ) .  (lZ) 

These notations are useful for parametric studies of eigenval- 
ues as well as for formulation of optimization problems. 

2.3 Design sensitivity analysis of multiple eigenvalues 

When the solution of the generalized eigenvalue problem in 
(1) yields an N-fold multiple eigenvalue 

=,Xj,  j = l  . . . .  ,N~ (14) 

where, for convenience, the repeated eigenvalues have been 
numbered from 1 to N, the computation of the sensitivi- 
ties of this eigenvalue is not straightforward. This is due 
to the fact that the eigenvectors ~bj, j = 1 , . . . , N  of the 
repeated eigenvalues are not unique. Thus, any linear combi- 
nation of the eigenvectors will satisfy the original eigenvalue 
problem (1). We assume that the eigenvectors ~bj have been 
M-orthonormalized, i.e. 

c T M f k = S j k  , j , k = l , . . . , N .  (15) 

In the following sensitivity analysis we shall use such eigen- 
vectors ¢ j  that remain continuous with design changes, see 
Courant and Hilbert (1953). For this purpose we introduce 
linear combinations of eigenvectors ~b k 

N 
$J = E t 3 J  kekk' j = 1 , . . . , N ,  (16) 

k=l 
where fljk are unknown coefficients to be determined. 

Works by Courant and Hilbert (1953), Wittrick (1962), 
and Lancaster (1964) have provided a basis for calculating 
the sensitivities of multiple eigenvalues. It is shown that the 
design sensitivities of multiple eigenvalues can be found by 
formulation and solution of a subeigenvalue problem. 

Let us first consider a change Aa i of one arbitrarily chosen 
design parameter a i. Due to the change of this parameter the 
K and M matrices will be incremented, i.e. the new matrices 
become 

OK OM Aa" 
K+__-~a Aai and M +  Oa i z, i = l , . . . , I .  (17) 

Then multiple eigenvalues and corresponding eigenvectors for 
the perturbed design can be written as 

)~j(a i + eAai) = ~ + et2j(ai, Aai)  + o(e), j = 1 , . . . , N ,  zaai (lO) 
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~bj(ai+¢Aai) = e j + e v j ( a i ,  Aai)+o(¢), j = 1 , . . . ,  N ,  (18) 

where ]~j and v j  are unknown eigenvalue and eigenvector 
sensitivities, respectively. 

Substituting (17) and (18) into the main eigenvalue prob- 
lem in (1), we obtain in the first approximation 

~ a / ]  ~1 + ( g  - k M ) v / =  # j M ~ j .  (19) 

Premultiplying this equation by e T  gives 

( O K  _ x S M  ~ 

s = 1 . . . .  , N .  (20) 

Here the term e T ( K  - AM)vj  = v T ( K  - AM)¢s drops out 

because gbs is an eigenvector corresponding to A. 
Recalling that  e j  is the linear combination in (16) of the 

original eigenvectors ek ,  we obtain from (20) the system of 
linear algebraic equations of unknown coefficients ~jk 

njk ek -#j sk : 0, 
k=l 

s - - 1 , . . . , N ,  (21) 

where the M-orthonormalization (15) has been used. 
A nontrivial solution to these equations only exists if the 

determinant of the system is equal to zero 

det[+T(~ai-AO~ai)+k-#'sk] =O, 
s ,k  = l , . . . , N  , i = l , . . . , I .  (22) 

This is the main equation for determining the coefficients 
# j ,  j = 1 , . . . ,  N in (18) which represen t the sensitivities of 

the multiple eigenvalue A with respect to changes Aai of a 
single design parameter a i. As in the case of simple eigenval- 
ues, the derivatives of the K and M matrices, respectively, 
must be calculated first, and then the eigenvalue problem of 
(22) is easily formulated and solved. 

If the off-diagonal terms in the quadratic matrix of dimen- 
sion N in (22) are equal to zero, the eigenvalues of this ma- 
trix, i.e. the directional derivatives of the multiple eigenvalue 
A, are equal to the traditional Fr~chet derivatives obtained 
by using (6). 

Let us consider the general case when all the design vari- 
ables ai, i = 1 , . . . ,  I are changed simultaneously. It should 
be noted that multiple eigenvalues are not differentiable in 
the common sense, i.e. not Fr~chet-differentiable (see e.g. 
Haug et al. 1986). This means that the expressions for the 
eigenvalue increments in (11) and (12) are no longer valid. 
Thus, to find the sensitivities of multiple eigenvalues we must 
use directional derivatives in the design space. 

For this purpose, for the vector of design variables a = 
( a l , . . .  , ai) , we consider a variation in the form a+ee ,  where 
e is an arbitrary vector of variation e = ( e l , . . .  ,eI)  with 

the unit norm lie N = q e2 + ' "  + c~ = 1 and ¢ is a small 
positive parameter. The vector e represents a direction in the 
design space along which the design variables a i are changed, 
and e represents the magnitude of the perturbation in this 
direction. 

As a result of perturbation of the vector a, the matrices 
K and M are incremented and become 

I OK I 0 M  
K+¢Z--ei, M + ¢ ~ - ' ~ - - e i .  (23) 

i=1 cgai cgai i=1 
Using expansions for Aj and ~bj in the form 

Aj = k + c~j + o(~), 

eJ  = ~1 +¢~'j  + o(e), j = 1 , . . . , g ,  (24) 

and performing the same manipulations as earlier, instead of 
(22) we obtain the following N-th order equation for deter- 
mining the sensitivities # = # j ,  j = 1 , . . . ,  N of the eigen- 
values Aj: 

det ¢~ ~ Oai 2 Ckei-~sk = O, 
/ = 1  . 

s ,k = 1 , . . . , N .  (25) 

If we introduce the generalized gradient vectors fsk of dimen- 
sion I 

fsk : 

Oai  ' 

then (25) can be written in the form 

[ f T e - i ~ s k ]  = 0 ,  s , k = l , . . . , N .  (27) det 

Note that fsk = fks due to the symmetry of the matrices 
K and M. Note also that although equipped with two sub- 
scripts, the generalized gradients fsk are vectors (of dimen- 
sion I); the two subscripts refer to the modes from whith the 
generalized gradient vector is calculated. Thus, in (27) fsTe, 
s, k = 1 , . . . ,  N,  denotes scalar products. 

Thus, knowing the eigenvectors e k ,  k = 1, . . .  , N  corre- 
sponding to the multiple eigenvalue A, we can construct the 
generalized gradient vectors fsk and determine the sensitivi- 
ties # = # j ,  j = 1 , . . . ,  N for any vector of variation e, i.e. 
for any direction in the space of the design variables. The 
quantities #j  = A A j / A ~  depend on e and constitute the di- 

rectional derivatives of the multiple eigenvalue A, cf. (24). In 
this form (27) was obtained by Bratus and Seyranian (1983), 
and Seyranian (1987), see also Haug and Rousselet (1980), 
Masur (1984, 1985), and Haug et al. (1986). 

In many cases it is expedient to eliminate the unit vector 
e from (27) and establish a formula for determining the incre- 
ments AAj, j = 1 , . . . , N  of the N-fold eigenvalue A subject 
to a given vector A a  = ( A l l , . . . ,  AaI )  of actual increments 
of the design variables ai, i = 1 , . . . ,  I. To this end, we mul- 
tiply each of the components in (27) by ¢, note from the 
foregoing that ¢e - Aa  and ettj : AAj,  j = 1 , . . .  ,N ,  and 
obtain 

det [ f T A a - - 5 s k A A ] : 0 ,  s , k = l , . . . , N .  (28) 

If we solve this N-th  order algebraic equation for A%, we 
obtain the increments AA = AAj, j = 1 , . . . ,  N of the N-fold 
eigenvalue corresponding to the vector A a  of increments of 
the design variables. 



2.4 Numerical example 1: design sensitivity analysis of a 
vibrating plate with ribs 

To illustrate how the results of Sections 2.2 and 2.3 can be 
used in eigenfrequency design sensitivity analysis, we consider 
a square plate as shown in Fig. 1. 

I :1!ha j 

~ ~ _ _ v e r t i c a l  ~ ~ horizontal 
ribs ribs 

Fig. 1. Square plate with ribs 

The plate is clamped at all edges and reinforced by two 
horizontal and two vertical ribs. The length a = 0.5 m, 
b = 0.05 m, the thickness of the ribs is 0.05 m, and the 
thickness of the plate is 0.005 m. Both the plate and the ribs 
are made of steel with the following material properties: 

Young's modulus = 210000 MPa 
Poisson's ratio = 0.3 
mass density = 7800 kg/m 3 

The structure is symmetric and therefore multiple eigen- 
frequencies are expected. We want to find sensitivities of both 
the simple and the multiple eigenfrequencies with respect to 
6 different design variables. 

The finite element model consists of 1156 4-node isopara- 
metric Mindlin plate elements and the model has 5445 d.o.f. 
The lowest eigenfrequencies f j  are found by the subspace 
iteration method (see Bathe 1982). All eigenvectors are M- 
orthonormalized, see (3), and we will consider the 4 lowest 
eigenfrequencies. From the analysis it is found that the low- 
est eigenfrequency is simple and has the value 92.20 Hz, but 
the second and third eigenfrequeneies are identical and have 
the value 161.71 Hz. In this example, the eigenfrequencies 
are considered to be identical when the relative difference 
between the values is < 10 -4 .  The fourth eigenfrequency is 
simple and equal to 175.03 Hz. The eigenmodes correspond- 
ing to the 4 eigenfrequencies can be seen in Figs. 2-5, and the 
influence of the ribs is very clear. 

AS the second eigenfrequency is multiple, an infinite num- 
ber of linear combinations of the eigenvectors shown in Figs. 
3 and 4 corresponding to the multiple eigenfrequency will 
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Fig. 2. First eigenmode, fl = 92.20 Hz 

Fig. 3. Second eigeumode, f2 = 161.71 Hz 

Fig. 4. Third eigenmode, f3 = 161.71 Hz 

Fig.  5. Fourth eigeumode, f4 = 175.03 Hz 

satisfy the general eigenvalue problem in (1) and the M- 
orthonormalization condition in (3). 

The design sensitivities with respect to changes of single 
design variables will be computed by two different methods, 
namely the overall finite difference (OFD) method and the 
semi-analytical (SA) method using (6) and (22). The OFD 
method implies that the design is perturbed, a new eigen- 
frequency analysis performed, and that the eigenfrequency 
sensitivities pj  are then found by 

A f j ( a l , . . . , a I )  
#j ~-- Aa i 

f j ( a l , . . . , a i  + A a i , . . . , a I )  -- f j ( a l , . . .  , a i , . . . , a I )  
Aa i 

The OFD method is used as a reference method whose 
limit with regard to design sensitivity accuracy is known to 
be set only by the solution procedure, the discretization and 
the usual accuracy capabilities of the applied finite element, 
when the design perturbation Aa i is sufficiently small. 

In the usual SA method, the derivatives of the element 
stiffness and mass matrices [see (7), (8), (9) and (10)] are 
calculated by simple finite difference approximations. It has 
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been shown by Barthelemy and Haftka (1988) that the usual 
SA method is prone to severe inaccuracy problems when 
used for calculation of design sensitivities of beams, plates 
and shells, so we apply a new, recently developed version 
of the SA method (see Olhoff et al. 1993; Lund and Olhoff 
1993). In this new method, the element matrix derivatives 
are upgraded to "exact" numerical derivatives (exact up to 
round-off errors). Then the eigenfrequency sensitivities # j  
are determined by using (6) for the simple eigenfrequencies 
f l ,  f4 and using (22) for the multiple eigenfrequ¢ncy f2 = f3 
as we consider the case of change of single design variables. 
Furthermore, we shall calculate the sensitivities of all four 
eigenfrequencies regarding them as simple in order to see the 
consequences of this erroneous assumption. 

The first design sensitivity analysis is with respect to the 
thickness of the plate as shown in Fig. 6. 

Fig. 6. Design variable 1: plate thickness 

The sensitivities are shown in Table 1 and it is seen that 
the same results are obtained by the OFD method and the 
SA method using (6) and (22). 

Table 1. Eigenfrequency sensitivities with respect to design vari- 
able 1: plate thickness 

Frequency 

J 

OFD method 

-1551.6 
14093.2 
14093.2 
31407.9 

(6) and (22) (6) ! 
0f. 

-1551.6 -1551.6 
14094.1 14094.1 
14094.1 14094.1 
31406.8 31406.8 

Increasing the plate thickness is a symmetric design 
change and therefore we may expect that the multiple eigen- 
frequency remains multiple. Note that while the sensitivities 
of the other eigenfrequencies are positive, the sensitivity of 
the lowest eigenfrequency is negative, i.e. the first eigenfre- 
quency will decrease if the thickness of the plate is increased. 
These results require some explanation. 

The eigenmode corresponding to the lowest eigenfre- 
quency can be characterized as a global mode while all higher 
order eigenmodes can be regarded as nearly-local modes for 
each of the nine subdomains of the plate, see Figs. 2-5. Thus, 
increasing the plate thickness will have little effect on the 
overall stiffness of the structure because it is mainly governed 
by the ribs, whereas the thickness of the plate has a large in- 
fluence on the total mass, i.e. the inertia forces. Therefore, 
increasing the plate thickness will decrease the lowest eigen- 
frequency which mainly depends on the overall stiffness and 
total mass of the structure. 

The higher order eigenmodes, on the other hand, mainly 
depend on the local stiffness and mass of each of the nine 
subdomains, and increase of the plate thickness has a larger 
effect on the local stiffness than on the local mass of each sub- 
domain. This is the reason why the higher eigenfrequencies 

will increase with increasing plate thickness. 
For this design change, the erroneous assumption of using 

(6) to the double eigenfrequency (see last column in Table 1) 
in fact gives the same sensitivities as obtained by (22). This 
shows that the influence of the off-diagonal terms f T e  = 

f T e  in the sensitivity matrix in (22) is very weak for this 
symmetric design change. 

Next, the eigenfrequency sensitivities are found with re- 
spect to the thickness of the ribs as shown in Fig. 7. The 
results are shown in Table 2. 

Fig. 7. Design variable 2: rib thickness 

Table 2. Eigenfrequency sensitivities with respect to design vari- 
able 2: rib thickness 

Frequency 

J 

OFD method 

Aa 2 

1878.6 
1714.2 
1714.2 
304.7 

(6) and (22) (6) 

1878.6 1878.6 
1714.2 1714.2 
1714.2 1714.2 
305.1 305.1 

It is seen in Table 2 that again the same results are ob- 
tained by the OFD method and the SA method using (6) and 
(22). All the sensitivities are positive, and again the multiple 
eigenfrequency remains multiple with this design change. 

Next we want to determine sensitivities of the eigenfre- 
queneies when the position of the horizontal ribs is changed. 
The design variable is the distance between the horizontal 
ribs, see Fig. 8. The results are shown in Table 3. 

Fig. 8. Design variable 3: position of horizontal ribs 

Table  3. Eigenfrequency sensitivities with respect to design vari- 
able 3: position of horizontal ribs 

Frequency 

J 

OFD method 
asj 
Aa 3 

-40.9 
-380.6 
186.9 

-169.1 

(6) and (22) (6) 

PJ 0as 

-40.9 -40.9 
-380.6 -287.5 
186.9 93.7 

-168.6 -168.6 

It is seen from Table 3 that the multiple eigenfrequency 
] = f2 -- f3 will split when the distance between the hori- 
zontal ribs is increased. Now we can also see differences be- 
tween the two last columns in Table 3 showing the influence 
of off-diagonal terms in (22), which implies that calculation 
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of sensitivities of the double eigenfrequency by means of the 
single-modal formula in (6) gives erroneous results. 

Next the distance between the vertical ribs is used as a de- 
sign variable as shown in Fig. 9, and the results ar e presented 
in Table 4. 

Fig. 9. Design variable 4: position of vertical ribs 

Table 4. Eigenfrequency sensitivities with respect to design vari- 
able 4: position of vertical ribs 

Frequency 

J 

OFD method 

Aa4 
-40.9 

-380.6 
186.9 

-166.0 

(6) and (22) (6) 

PJ Oa4 
-40.9 -40.9 
186.9 93.7 

-380.6 -287.5 
-167.0 -167.0 

The sensitivities for this design variable should be the 
same as those obtained for design variable 3, the distance 
between the horizontal ribs, except that the sensitivities for 
the multiple eigenfrequency f2 = f3 should be interchanged 
when using (22). It is seen that the OFD method does not 
display this situation because the eigenfrequencies are or- 
dered by magnitude in each analysis when using the OFD 
method. More importantly, we again note that application 
of the single-modal equation (6) yields erroneous sensitivities 
of the multiple eigenfrequency f2 = f3" 

The next design variable is the width of the horizontal 
ribs, see Fig. 10, and the results are shown in Table 5. 

Fig. 10. Design variable 5: width of horizontal ribs 

Table 5. Eigenfrequency sensitivities with respect to design vari- 
able 5: width of horizontal ribs 

Frequency 

J 

1 
2 
3 
4 

OFD method 
Af.  

-273.4 
-866.2 
26.4 

-401.4 

(6) and (22) (6) 
0$. 

-273.4 -273.4 
-866.2 -719.7 

26.4 -120.1 
-400.9 -400.9 

Again the results obtained by the OFD method and the 
SA method using (6) and (22) are very similar, and it is 
seen that the multiple eigenfrequency splits with this design 
change. Furthermore, the sensitivities of the double eigenfre- 
quency obtained by using (6) even have a wrong sign, so using 
the erroneous assumption of regarding the eigenfrequencies 

as simple leads to completely wrong results for this design 
change. 

The last design variable is the width of the vertical ribs 
as shown in Fig. 11. 

Fig. 11. Design variable 6: width of vertical ribs 

Table 6. Eigenfrequency sensitivities with respect to design vari- 
able 6: width of vertical ribs 

Frequency 

J 

OFD method 

ass 
Aa6 

-273.4 
-866.2 
26.4 

-399.5 

(6) and (22) (6) 
0I. 

-273.4 -273.4 
26.4 -120.1 

-866.2 -719.7 
-399.8 -399.8 

As before, the sensitivities with respect to this design vari- 
able should be the same as those obtained for design variable 
5, the width of the horizontal ribs, except that the sensi- 
tivities for the multiple eigenfrequency f2 = f3 should be 
interchanged when using the SA method and (6) and (22). 

Again it is seen that very similar results are obtained by 
the OFD and SA methods when (6) and (22) are used prop- 
erly, whereas the last column again witnesses a shortcoming 
of (6) when applied to the double eigenfrequency f2 = f3. 

Up to now the eigenfrequency sensitivities have been 
found with respect to single design dhanges of each of the 
6 design variables: thickness of plate, thickness of ribs, po- 
sition of horizontal ribs, position of vertical ribs, width of 
horizontal ribs, and width of vertical ribs. 

Let us finally show that it is possible to determine sensi- 
tivities for any direction in the space of the 6 design variables 
when some of them are changed simultaneously. The posi- 
tion of both the horizontal and vertical ribs, see Figs. 8 and 9, 
will be changed simultaneously and again the OFD method 
is used as a reference. The two design variables will be given 
unit increments. 

All the generalized gradient vectors fsk in (27) have been 
calculated and (28) is used for determining the increments 
A f  = A f2 and AS = A f3 of the multiple eigenfrequency 
f2 = f3. Equation (12) is used for determining increments of 
the simple eigenfrequencies f l  and f4. The sensiti,~ities for 
this simultaneous design change are shown in Table 7. 

Table 7. Eigenfrequency sensitivities for unit increments of de- 
sign variable 3: position of horizontal ribs and design variable 4: 
)osition of vertical ribs 

Frequency OFD method (12) and (28) 

j asj 
1 -81.7 -81.7 
2 -193.8 -193.8 
3 -193.8 -193.8 
4 -335.5 -335.5 
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It is seen that  very accurate results are obtained by using 
(12) and (28) for determining sensitivities of single and bi- 
modal eigenfrequencies, respectively, in any direction in the 
space of design parameters. 

2.5 Numerical example 2: ribbed plate with a cluster of 
eigenfrequencies 

Next we shall illustrate how important  it is for sensitiv- 
ity analysis to decide correctly from the numerical results 
whether some eigenvalues coalesce and become multiple or 
remain distinct. 

We consider the same example as before, i.e. the square 
plate with ribs shown in Fig. 1, but now the thickness of 
the plate is 2 1/2 times less, i.e. 0.0020 m. This causes the 
9 lowest eigenfrequencies to become very close because their 
corresponding eigenmodes can be regarded as local modes for 
each of the nine subdomains of the plate, see Figs. 12-21. 

The first eigenfrequency is 70.404 Hz and the second 
through the ninth eigenfrequency are close to 72.2 Hz. These 
9 eigenfrequencies are so close that  it is difficult to decide 
which of them are multiple. 

If we use as a criterion for identical eigenfrequencies that 
the relative difference between the frequencies must be < 
10 -3 ,  then the 8 eigenfrequeneies from the second to the 
ninth should be considered as multiple, but if we use a tighter 
criterion such as 10 - 4  then the second and third should be 
considered as a double eigenfrequency and the sixth, seventh, 
eighth, and ninth should be considered as a 4-fold multiple 
eigenfrequency. If the criterion 10 - 5  is used, the second and 
third should be considered as a double eigenfrequency, and 
similarly with the seventh and eighth. 

Fig. 12. First eigenmode, fl = 70.40406 ttz 

Fig. 15. Fourth eigenmode, f4 = 72.24689 Hz 

Fig. 16. Fifth eigenmode, f5 = 72.27588 Hz 

Fig. 17. Sixth eigenmode, f8 = 72.31243 Hz 

Fig. 18. Seventh eigenmode, f7 = 72.31890 Hz 

method which is used as reference, (ii) using (6) and (22) 
and assuming two double eigenfrequencies, (iii) using (6) and 
(22) and assuming one double and one 4-fold multiple eigen- 
frequency, (iv) using (6) and (22) and assuming one 8-fold 
multiple eigenfrequency, and (v) only using (6) which is only 
valid in cases of simple eigenvalues. The results are shown in 
Table 8. 

It is seen that  we obtain the same results by the SA 
method assuming either two double eigenfrequencies f2 = f3 
and f7 = f8, or one double eigenfrequency f2 = f3 and one 
4-fold multiple eigenfrequency f6 = f7 = f8 - f9- These two 
columns are in excellent agreement with the OFD method, 

Fig. 13. Second eigenmode, f2 = 72.17485 Hz 

Fig. 14. Third eigenmode, f3 -- 72.17485 Hz 

We will determine sensitivities of the eigenfrequencies 
when the width of the horizontal ribs is changed as shown 
in Fig. 10. The sensitivities are calculated (i) by the OFD 

Fig. 19. Eighth eigenmode, fs = 72.31890 Hz 

Fig. 20. Ninth eigenmode, f9 = 72.32089 Hz 



Fig. 21. Tenth eigenmode, flo = 109.96799 Hz 

Table 8. Eigenfrequency sensitivities with respect to design vari- 
able5: width of horizontal ribs, see Fig. 10 

Freq. OFD (6) and (22) (6) and (22) (6) and (22) and 
method f2 = fa and 

~ = ~  

j ,a/j 
Aa~ ttJ 

1 -247.7 -247.7 
2 -270.6 -270.6 
3 -1.1 -1.1 
4 -145.5 -145.1 
5 -174.7 -175.1 
6 -0.9 -0.9 
7 -20.6 -20.6 
8 -0.8 -0.8 
9 -14.4 -14.5 
10 -146.5 -146,5 

f2 = f 3  and 
f6= f7 = 

fa = f9 

#J 

-247.7 
-270.6 

-1.1 
-145.1 
-175.1 
-0.9 

-20.6 
-0.8 

-14.5 
-146.5 

.¢~ =f3  = f ,  = 
f5 = f s  = f r =  

f s = f 9  

#J 

-247.7 
-290.2 
-1.1 
-44.6 
-289.0 
-0.9 
-1.1 
-0.8 
-0.9 

-146.5 

(6) 

oyj 
Oa5 

-247.7 
-270.2 
-1.5 

-145.1 
-175.1 

-0.9 
-11.4 
-10.0 
-14.5 
-146.5 

but it is not a general situation that  different choices of mul- 
tiplicity lead to the same results. This is also illustrated by 
the next column in Table 8 because if we assume having an 
8-fold multiple eigenfrequency f2 = f3 = f4 = f5 = f6 = 
f7 = f8 = f9, wrong sensitivities are obtained for several of 
the eigenfrequencies, e.g. f5 and fg. Finally, if we consider 
all eigenfrequencies as simple, i.e. use (6), then the results 
for the multiple eigenfrequencies f2 = f3 and f7 = f8 are 
erroneous while the other sensitivities are correct. 

This illustrates that  the influence of the off-diagonal terms 
in the sensitivity matr ix in (22) is quite small for this design 
change. This is also the reason why the same sensitivities 
are obtained for f6, fT, fS, and f9 using (22) independently 
of whether the assumption f7 = f8 or the assumption f6 = 
f7 = f8 = f9 is used. In both cases, the off-diagonal terms 
in the sensitivity matr ix in (22) are small compared to the 
diagonal terms for this design change, and therefore the same 
sensitivities are obtained for both assumptions. 

These results show the importance for the design sensi- 
tivity analysis of deciding correctly whether an eigenfrequency 
is multiple or simple. Thus, wrong assumptions concerning 
the multiplicity of an eigenfrequency may lead to erroneous 
sensitivity results. 

3 O p t i m i z a t i o n  p r o b l e m s  for  e igenva lues  

Before formulating optimization problems for eigenvalues, we 
consider three simple examples that  illustrate the main ideas. 
Only examples involving 2 × 2 matrices depending on two 
design variables x and y will be considered. 

3.1 Example 1 

The first example is described by the following K and M 
matrices: 
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K=[l+x,  20) 
The characteristic equation for this system is 

A 2 - 2A + 1 -  x 2 - y2 = 0, 

and 

A1, 2 = 1 ~ ~ .  (30) 

The level curves A = c, where c is a constant, for this function 
are described by the equations 

c = l i ~ x 2 + y  2, 

and 

z2 + y2 = ( c -  1) 2 . 

This surface is a circular cone, see Fig. 22. 
Bimodality occurs at x = 0, y = 0, for which we have 

A 1 = A 2 = 1. 
It can be seen immediately from (30) and Fig. 22 that  the 

eigenvalues A are not differentiable at the bimodal point in 
the usual (Frdchet) sense. Indeed, 

0~1,2 x 0)tl,2 y 

Oz - + ~ '  Oy - + ~ "  

As z --* 0 and y --+ 0, the two right-hand side expres- 
sions become undefined and have no limit. Furthermore, 
L'HSpital 's rule cannot help either because the derivatives 
of the denominators also tend to zero. 

....... t 

/ ................. X 

Fig. 22. Circular cone surface Ior eigenvalue ,~ 

Now we proceed to sensitivity analysis of the double eigen- 
value A = 1 at x = 0, y = 0, using the results of Section 2. 
Taking the variation ~e we have 

x = ~e 1, y = ce 2, ~ + e 2 = 1. 

For the sake of simplicity, we can introduce the angle a 
and write the directional vector e in the form 

e I = cosa,  e 2 = s i n s .  (31) 

Let us determine the directional derivatives #1, #2 for the 
double eigenvalue ~ = 1. The orthonormalized eigenvectors 
corresponding to A are 

q~l=- ( ; ) ,  ~b2= (01). (32) 

Using the expressions in (29) and (32), we obtain the 
generalized gradient vectors fsk according to (26) 

f l T l = ( ( X 0 ) ( ~  7 1 ) ( : ) ' ( 1 0 ) ( 0 1  1 0 ) ( 1 0 ) ) : ( 1 ' 0 ) '  
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f T =  ( ( 1 0 ) ( ~  0 1 )  (01),(1 0)(01 ~ )  ( ~ ) ) = ( 0 , 1 ) ,  

f T =  ( ( 0 1 ) ( ~  O 1 )  (01),(0 1 ) ( ~  ~ )  ( ~ ) ) = ( - 1 , 0 ) .  

Thus, (27) takes the form 

dee [ c o s a -  p s ins  ] 
sin a - cos s - # j = 0, (33) 

o r  

#~,2 = sin2 s + cos 2 s = 1. (34) 

So, #1 = i and #2 = -1 for any direction e = (cos a, sins).  
Hence, the double eigenvalue A splits into A1,2 = 1 4- ¢ for 
any variation ce. This means that the bimodal solution x = 
0, y = 0 is the optimum solution to the problem 

max min Aj. (35) 
x,y j=l ,2 

This result, of course, can be seen immediately from Fig. 22. 

3.2 Example 2 
Consider another example with the K and M matrices given 
by 

The characteristic equation for this system is 
A2 _A(2 + 3x) + (1 + 3 x  + 2x 2 -  y2) = 0, (37) 

and 

2 + 3 x +  V/~  + 4 y  2 
A,,2 = 2 (38) 

The bimodal solution )t 1 = A2 = 1 occurs at the point z 
= O , y = O .  

Let us study the level curves. Inserting A = c, where c is 
a constant, into (37) we obtain 

2 2 y2 
(x  3 ( c ~ 1 ) )  = ( ~ _ _ 1 )  + - 2 '  

If we denote b = - ~  this equation takes the simple form 

( x -  3b) 2 = b 2 + ~ ,  (39) 

which defines a hyperbola with the asymptotes y = -t-v~(z - 
3b) , see Fig. 23. 

y 

Fig. 23. Level curves for eigenvalue A 

If e = 1 then b = 0, and we obtain from (39) 

y = (40)  

Near the bimodal point x = 0, y = 0, according to (38) 
we have 

A1, 2- -  14-y when x = O ,  
and 

A 1 = 1 + 2 x  1 when y = 0  (41) A 2 = l + x  J 

The last equation implies that along the direction y = 0, 
x > 0 we have A1 > A, A2 > A, where A = 1. Based on 
(38)-(41) we can plot surfaces of the eigenvalues A1,2, see 
Fig. 24. 

i . . . . . . . . .  / / / ~~ ::, "/'J/ I; 
, /  

ii 
/ /  ~!: 

/ , / 

/ 
/ 

/ 

Fig. 24. Surface plot of eigenvalue )~ 

Let us proceed to sensitivity analysis near the bimodal 
point z = 0, y = 0 on the basis of the results of Section 2. The 
orthonormalized eigenvectors corresponding to A 1 = A 2 = 1 
are 

According to (26) and with use of (36) and (42), we can 
find the vectors fsk 

f T =  ( ( 1 0 ) ( ~  0 1 ) ( ~ ) , ( 1 0 ) (  0 1 10) 
f 5  ((1 0) ( ~  0 1 = 1 )  (01) ' (10)(01 0 ) ( 0 1 ) ) = ( 0 , 1 ) ,  

2 0 1 (,01) ,1,0, 
(43) 

Taking the directional vector e in the form e = 
(cos s,  sin s)  and using (43), we obtain from (27) the char- 
acteristic equation 

[ 2 c o s s -  # s ins  ] 
det / s ins  c o s a - # j  = 0 "  

From this equation we obtain 
#2 _ 3# cos s + 3 cos 2 a - 1 = 0, (44) 

o r  

3 cos s + X/1 + 3 sin 2 s 
~,,2 = 2 (45) 

Let us consider the term 3cos 2 s-1 in (44). According to 
the Vieta theorem, it is equal to the product of the roots of 
(44) 

#art2 = 3 cos 2 s -- 1. (46) 

This quantity can be positive as well as negative depend- 
ing on the value of s.  If s = 0 then #lit2 = 2 > 0. This 
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means that Pl and #2 are of the same sign for the directions 
e : (1, 0) and e -- (-1, 0), see also Fig. 24. 

For a = 0 we obtain from (45) 

~1 "- 1, ~u 2 = 2, (47) 

which is in good agreement with (41). 
if ~ = =t=~/2 then it follows from 46 that #1#2 = -1(0.  

This means that for the directions e -- (0, 1) and e -- (0, -1) 
the deiivatives p l  and #2 are of opposite signs, see also Fig. 
24. 

This  implies that in contrast to Example 1 the bimodal 
solution ~ -- 0, y = 0 does not constitute the optimum solu- 
tion $o the problem 

max. min A j ,  (48) 
x,y j--l,2 

because there exists an improving variation e = (1, 0) for 
which #1 > 0, #2 > 0. 

3.3 Example 3 

Let us consider another simple example in which the double 
eigenvalue does not split along some direction. 

The characteristic equation for this system leads to 

A1, 2 -~ 1 + x ± y. (50) 

Bimodality takes place at y = 0, where the eigenvalues 
remain double for arbitrary x. 

X 

Fig. 25. Surface plot of eigenvalue )~ 

The surfaces for )~ are plotted in Fig. 25. They represent 
two intersecting planes. 

If we put a constraint as illustrated in Fig. 25 

x 2 + y2 : .  1, (51) 

then the bimodal solution x = 1, y = 0 will constitute the 
optimum one for the problem 

max min )~j, subject to x 2 + y 2  = 1. (52) 
x,y j=1,2 

4 Fo rmula t i on  o f  t he  o p t i m i z a t i o n  p r o b l e m  

Consider again the eigenvalue problem 

Kd~j = A j M ¢ j ,  j = l , . . . , n ,  (53) 

where the components of K and M are smooth functions of 
the design variables ai, i = 1, . . . ,  I. 

The optimization problem is formulated as follows: 

max min A- (54) 
a l , . . . , a l  j ~ _ l , . . . ,  u Y 

under the constraint 

F ( a l , . . . , a i )  = 0, (55) 

where F is a smooth scalar function of the design variables 
ai, i=  l , . . . , I .  
In mechanical problems this constraint usually reflects a con- 
stant volume restriction. 

4.1 Simple optimum fundamental eigenvalue 

If the optimum is achieved at the simple lowest eigenvalue 
)~1 with A 1 < )~2 -~ .~3 ~- .. . ,  then the necessary optimahty 
condition implies linear dependence of the gradient vectors 
of A I and F 

VA 1 - 70f0 = 0,  (56) 

where 

VA 1 = 

 1 )01 .... 

, . . . , O n  i , (57) 
and 70 is a (Lagrangian) multiplier to be determined from 
(55). 

4.2 Example 

In this optimization example we consider the numerical ex- 
ample from Section 2.4 where the position of the ribs is taken 
as a design variable, see Fig. 26. We want to maximize the 
lowest eigenfrequency with a constant volume constraint, see 
(54) and (55). 

All data for the problem are given in Section 2.4. The 
iteration history for the 4 lowest eigenfrequencies is shown in 
Fig. 27 and the final design is shown in Fig. 28. 

The distance between the ribs has been reduced from 0.50 
m to 0.2835 m. It turns out that the optimum solution is 
characterized by a distinct lowest eigenvalue. This is natural 
to expect because one-parameter symmetric eigenvalue prob- 
lems usually possess simple eigenvalues (see Arnold 1989). 

4.3 Double optimum fundamental eigenvalue 

Consider now the case when the optimum is achieved at the 
double lowest eigenvalue )~1 = $2, where )~1 = )~2 < ~3 -~ . . .  
This is the nondifferentiable case and we must use directional 
derivatives. 

Taking the vector of varied design variables in the form 
a +  ee, [[ e [[= 1, according to (27), we obtain the directional 
derivatives Pl and #2 from 

[ f l T l e - #  -flT2e ] = 0 .  (58) 
det ~T e f T e _  p 
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!= a I I  a ktl u 
2! !: b --I !~ b 

Fig. 26. Design variable for square plate with ribs: position of 
horizontal and vertical ribs 
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Fig. 27. Iteration history 
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Fig. 28. Optimum design 

This is a quadratic equation in #. Solving it we obtain for 
any direction e 

fT  e -t- f T e  -4- ¢ ( f T  e -- fTe)2  + 4(fTe)  2 
(59) /11'2 = 2 

The necessary optimality condition for a maximum is 

min(/q, P2) - 0, (60) 

for any direction e satisfying the condition f i e  = 0. 
From (58) we see that if we take the direction as - e ,  then 

both #1 and ]~2 will change their signs to the opposite ones. 
This means that if for some direction e both derivatives Pl, 
/l 2 are negative, then the design point is not a maximum, 
since a change in sign of the direction e leads to / J l  > 0, 
#2 > 0, i.e. a better design. This means that the necessary 
optimality condition in the bimodal case is 

#1/~2 _< 0, (61) 

for any admissible variation e, i.e. a variatiori that satisfies 
the condition 

f T e  : o. (65) 

The optimality condition in (61) is fundamentally different 
from that of the differentiable case due to its nonlinear na- 
ture. The condition was first formulated by Masur and Mroz 
(1979, 1980). 

Using (58) and (59) we can express the necessary opti- 
mality condition of (61) in the form 

(fTe)(f2T2e) - (fTe)2 _< 0, (63) 

for any arbitrary direction e satisfying the condition in (62). 
Let us formulate the following lemma. 

L e m m a  1. If the vectors f l l ,  f12, f22, f0 are linearly indepen- 
dent, then there exists an improving variation e 
for which #1 > 0, P2 > 0. 

Proof. Consider the system of linear algebraic equations of 
the variables e l , . . . ,  e I 

flTle = u0 > 0, f T e  = 0, 

f T e  = u0 > 0, fTe  = 0. ( 64 )  

If the vectors f l l ,  f12, t"22, f0 are linearly independent, 
then a solution e to the system in (64) exists for arbitrary 
values of u 0 and u20. The vector ~ = ~ is then an improving 

variation since from (58) and (64) we have 

p l = f T ~ =  ~ > 0, p2 =f2T2~= ~ > 0 ,  (65) 

which proves the lemma. 
Now let us formulate the necessary optimality conditions 

for the bimodal case. 

Theorem 1. If the vector of design variables a constitutes the 
solution of the optimization problem, (54) and 
(55), with the double eigenvalue A 1 = A2 < A3 -< 
... .  then the vectors f11, f12, t"22, fo are linearly 
dependent 

711fll + 2712f12 + 722f22 -- 70fo : O, (66) 

with the coefficients 7sk satisfying the inequality 

711722 ~ 722 • (67) 

Here it is assumed that the rank of the matrix consisting 
of the vectors f l l ,  f12, t"22, f0 is equal to 3. Note that the 
linear independence of the four vectors mentioned above is 
possible only when the dimension I of the vector of design 
variables a is greater than 3. 
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Proof. Linear dependence of vectors fsk, f0 in (66) is 
a consequence of Lemma 1. To prove (67) we express, for 
example, f22 from (66) 

f22 : 711~ 0712~ , 70 -- ~7-~2t12 -1- - -  , (68) 722 xl 1 -- 722 f0 

and substitute this expression into (63). Then we obtain 

711/fT e)2 2712 fT e f T  e 7-~2 ~ 11 -4- ~ 12 11 -{- (flT2e) 2 -> 0. (69) 

This quadratic form of f T e  and f T e  is positive semidef- 
inite only if its coefficients satisfy the inequality in (67). 

Lemma 1 and Theorem 1 were formulated and proved for 
the fi~st time by Bratus and Seyranian (1983). 

4.4 N-fold optimum fundamental eigenvalue 

Consider next the general case when in the optimization 
problem, (54) and (55), the maximum is attained at an N- 
fold multiple lowest eigenvalue A1 -- A2 -- . . . .  AN ( 

AN+I _< ... .  
In this case, for any admissible direction e, i.e. direction 

satisfying the condition in (62), we find directional derivatives 
#j  from (27) 

det[ f T e -  #hsk] = O, s,k = 1 , . . . , N .  (70) 

If the maximum is attained then there must be no admissible 
direction e for which all # = ~tj, j = 1 , . . . , N  are of the 
same sign. This is an obvious generalization of the necessary 
optimality condition in (61). 

The lemma and the theorem for the general case can be 
formulated as follows. 

Lemma 2. If the vectors f0, fsk, s,k = 1 , . . . , N ,  k > s 
[the total number of these vectors is equal to 
( g  + 1)N/2 + 1] are linearly independent, then 
there exists an improving variation e for which 
I ~ j > O , j = ~ , . . . , N .  

Note that the linear independence of the vectors is only 
possible if I > (N + 1)N/2 + 1, where I is the dimension of 
the vector a of design variables. 
Proof. Consider the system of linear equations in e l , . . .  , e I 

fTe  = O, 

f T e = ~ s k V  O, s , k = l , . . . , N ,  k > s ,  (71) 

where v 0 are given positive constants. If the vectors f0, fsk 
are linearly independent, a solution to (71) exists for any Vs 0, 
in particular when Vs 0 > 0. Suppose the vector e is a solution 
to the system in (71) and let us normalize this vector as 

= He- ~ .  Then we obtain from (71) and (70) 

0 
g j : f T ~ : ~  > 0 ,  j : I , . . . , N ,  (72) 

which implies the existence of an improving variation. This 
proves the lemma (see also Seyranian 1987). 

When I < (N + 1)N/2 + 1, the vectors f0, fsk are always 
linearly dependent and hence an improving variation may not 
exist. 

Let us formulate the theorem for the necessary optimality 
conditions. 

Theorem 2. If the vector of design variables a renders a lowest 
N-fold eigenvalue ~1 = A2 = ...  = AN a max- 
imum, it is necessary that the vectors f0, fsk, 
s, k = 1 , . . . ,  N, k > s are linearly dependent 

N 
E 7skfsk - 70f0 = 0,  (73) 

s,k=l 
with the coefficients 70, 7sk satisfying conditions 
of positive semidefiniteness of the symmetric ma- 
trix 7sk, s,k = 1 , . . . ,N .  

Here it is assumed that the rank of the matrix consisting 
of the vectors f0 and fsk, s,k = 1 , . . . ,N ,  k > s, is equal to 
N(N + 1)/2, and tha t  this rank is less than I. 

Note that due to the symmetry fsk = fks we delimit our- 
selves to symmetric coefficients 7sk = "/ks such that the sum 
in (73) can be written in the form 

N N N 
E 7skfsk= E T s s f s s +  2 E 7skfsk" (74) 

s,k=l 3=1 s,k=l 
s>k 

Nevertheless, we prefer the form of (73) due to its conve- 
nience. 
Proof. Linear dependence of the vectors f0, fsk, s,k = 
1 , . . . ,N ,  k ~ s, is an obvious consequence of Lemma 2. 
Note that we have just assumed the rank of the matrix of 
these vectors to be N(N + 1)/2, i.e. one less than the total 
number of the vectors. Let us prove the necessity of positive 
semidefiniteness of the matrix 7sk. To this end, we choose 
a new basis of eigenvectors ¢ 1 , . . . ,  ~N for which the matrix 
7sk is diagonal, and show that if an optimum is attained then 
al l%s > 0 ,  s =  1 , . . . ,N .  

Let us transform the eigenvectors 
N 

~s = E gksek , s = I , . . . , N .  (75) 
k=l 

Here (~s are transformed eigenvectors satisfy!ng the or- 
thonormality condition in (15), and gsk is the transformation 
matrix. 

Using (75) in (15), we obtain 

~bTMej = gsi¢ M gk j fk  = 

N N 
g igk#'TMek = g igk 6 k = 

s,k=l s,k=l 

N 
E g s i g s J = h i J '  i , j =  l , . . . , N .  (76) 
s=l  
In matrix form this equation is equivalent to 

gTg = I and gT = g - l ,  (77) 

where I is the unit matrix. The last equation means that the 
transformation matrix g is an orthogonal matrix. Now let us 
express vectors ~b k from (75) by ¢s. Due to (77) we have 

N 
¢s = ~ gskek, s = l , . . . , Y .  (78) 

k=l 
Using the notation 



220 

OK OK 

~ a l " " '  Oa I ~al, ] ' 
and (26), we obtain 

N N 

E "/ksfks = E 7 k s O T ( v K - A V M ) ¢ s  = 
k,s=l k,s=l 

E 7ks gkt¢ ( V K  - A r M )  gsmq)m = 
k,s=l t= l  = 

E gktVksgsm ~T( V K -  AVM)(~m = 
t,m=l k,s=l 

N 

t,m=l 
So, in the new basis the matrix 7ks takes the form 

N 
= gk  ksg  . (80) 

k,s=l 
In matrix form we have 
,~ = gT,yg = g - l ,Tg  " (81) 

This means that there exists a basis in which the matrix 
is diagonal. Then the optimality condition in (73) takes the 
form 
N 

-  0f0 = o .  (82)  

s ~ - i  

The rank of the matrix of the vectors f0 and f'sk, s, k = 
1,... ,N, k >_ s, is equal to the rank of the matrix of the 
vectors f0 and fsk, s,k = 1 , . . . ,N ,  k >_ s, since the two 
sets of vectors are equivalent and can be expressed linearly 
in terms of one another (see Kurosh 1962), 

N N 

f,k = E gsigkJfiJ ' fsk = E gisgJkfij " (83) 
i,j=l i,j=l 

To show that the condition 7ss >_ 0, s = 1 , . . . ,  N is the 
necessary condition for optimality, let us consider an admissi- 
ble variation e, i.e. a variation satisfying the condition (62). 
Multiplying (82) by e, we obtain 
N 

= o .  (84) 

Suppose that in (82) the j- th coefficient ~jj ~ O. Let us take 
the admissible variation e such that 

f i e  = 0, 

f T e = 0 ,  s , k = l , . . . , N ~  k > s ,  

~T e =  .O, t =  1 , . . . , N ,  t e j ,  (85) 

where ,0  are arbitrary positive constants. 
Such a variation e exists for arbitrary , t  0 because the 

vectors f0, fsk, s,k = 1 . . . .  ,N, k > s, and the vectors 
ftt, t = 1, . . . ,N ,  t 7k j, are linearly independent. This is 
true because due to the assumption made earlier, and the 
equivalence of the set of vectors f0, f,k and the set f0, fsk, 
s, k = 1 , . . . ,  N, k > s, the rank of the matrix of the latter set 

of vectors is equal to N(N + 1)/2, i.e. one less than the num- 
~ 

ber of vectors in the set. The vector fjj  can be expressed as 

a linear combination of the remaining vectors tO, fss in (82) 
since q~j ~ 0. Then, if the vector fjj  is removed from the 

set f0, fsk, s, k = 1, . . . ,  N, k > s, the remaining vectors are 
linearly independent. 

Now, determining a vector of variation e from (85) and 
e 

normalizing this vector, 6 = [ -~ ,  we obtain 

[ j e l l > 0 ,  s = l , . . . , g ,  s # j ,  

(86) 

Thus we can find . j  from (84) taking the variation 

N 
, j  ~T.~ 1 

7jj ,=1 
,#j 

1 ~ ( Z / s s ~ u O .  (87) 

s#j 

Here we have used (86). 
If the maximum of the lowest N-fold eigenvalue is 

achieved, then for any admissible variation e the sensitivi- 
ties "k, k = 1, . . .  ,N  must not he of the same sign. Since 
we have chosen 6 such that all . s ,  s = 1, . . .  ,N,  s ¢ j ,  are 
positive, . j  must.be less than or equal to zero, i . e . . j  _< 0. 
Using (87) we obtain 

,=i \vi i /  
sCj 

for an arbitrary choice of the positive constants us 0, s = 
1 , . . . , N , s ~ j .  

The inequality in (88) can be satisfied only if 

~,__.~s_ _>0, s = l , . . . , N ,  s e j ,  (89) 
vii 
since, otherwise, the constants u 0 can be chosen such that 
the inequality in (88) is violated. This means that all Z/ss, 
s = 1 , . . . , N  must be of the same sign. Without loss of 
generality, all Z[ss can be regarded as nonnegative quanti- 
ties. So, we have proved that Z/s, >_ O, s = 1, . . . ,  N, which 
implies positive semidefiniteness of the matrix of coefficients 
7,k, s, k = 1 , . . . ,  N, and this constitutes the necessary opti- 
mality condition. 

Note that Masur (1984, 1985) formulated the condition 
of positive semidefiniteness of the matrix ~, as a necessary 
optimality condition. Unfortunately, the proof presented by 
Masur (1985) is true only for the bimodal case N = 2. The 
admissible variation, used by Masur, possesses two nonzero 
values "1 ¢ 0, "2 ¢ 0 and N -  2 zero values , s  = O, 
s = 3 , . . . ,  N. Masur assumed that at the optimum for this 
variation "1 and ,2  must be of opposite signs. This is not 
true when N > 2, since the necessary optimality condition 
m i n ( , 1 , , 2 , . . . , , N )  -< 0 is satisfied for arbitrary ,1  and ,2 .  
Above, we have proved the necessity of this condition in the 
general case. 



Similar results for minimizing the maximum eigenvalue 
were obtained by Overton (1988). Recently, Cox and Over- 
ton (1992) derived the necessary optimality conditions for 
discrete and distributed eigenvalue problems using Clarke's 
generalized gradient (see Clarke 1990), They also considered 
lower and upper bounds on design variables a i < a i < -5 i. 
These results confirm the optimality conditions suggested by 
Olhoff and Rasmussen (1977), and also used by many others 
(see e.g. Gajewski and Zyczkowski 1988). 

~.5 Example 

Let us consider the case of a diagonal matrix K 

//11 (a) 0 
/ /=  K22(a) (90) 

0 Knn(a)  

and suppose that M is the unit matrix. For these matrices 
we have 

As = K s s ( a l , . . . , a i ) ,  s =  l , . . . n .  (91) 

This is the case of n separate differentiable functions AAs = 
~7T K s s A a ,  s = 1,. .. ,n.  

Considering the optimization problem in (54) and (55), 
we have  

max min[ / / l l ( a ) , . . .  ,Knn(a)], F(a)  = 0. (92) 
a 

Suppose that the maximum is achieved at the N-fold mul- 
tiple eigenvalue A 1 = . . .  = A N < AN+ 1 _< , . .  _< An. The 
necessary optimality conditions of max-min are well-known 
(see Demyanov and Malozemow 1972) 
N 

E 7 s s V K s s  - 70f0 = 0,  (93) 
s----1 

7ss>_0,  s = l , . . . , N .  (94) 

These conditions cannot be directly derived from the 
results presented in Section 4.4 since fsk = O, s , k  = 
1 . . . . .  N, s ¢ k, whereby the vectors f0, fsk, s , k  = 1 , . . . , N ,  
k :> s, will always be linearly dependent [in the linear com- 
bination in (73) we may take 70 = O, 7ii = 0, i = 1 , . . . ,  N, 
and take 71j, i ~k j ,  arbitrarily]. 

However, it is obvious that Lemma 2 and Theorem 2 in 
Section 4.4 remain valid if we leave out the vectors fsk, s ~ k, 
and only retain the vectors f0, fss, s = 1 , . . . ,  N,  in the for- 
mulations. With fss = ~7Kss we then obtain (93). Assum- 
ing that the rank of the matrix of the vectors f0 and fss, 
s = 1, . . .  ,N,  is equal to N, we may construct an admissible 
vector of variation e from 

f T e = 9 0  > 0 ,  s =  1 , . . . , N ,  f 0T e = 0 ,  (95) 

and show that all the coefficients 7ss, s = 1 , . . . ,  N, are of 
the same sign, and this way establish (94). 

5 O p t i m i z a t i o n  o f  co lumns  on an  elastic f ounda t i on  

In this section the optimization of single and bimodal eigen- 
values will be exemplified by the maximization of the buckling 
load P of thin elastic columns of variable, but geometrically 
similar cross-sections with the relationship I (x )  = c~A2(x) 
between the second area moment I (x )  and cross-sectional 
area A(x )  with the constant ~ given by the cross-sectional 
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geometry. The columns are resting on an elastic founda- 
tion with the stiffness modulus C, are made of a material 
with Young's modulus E, and have a given total volume V 
and length L. Similar problems with a linear relationship 
between I(x) and A(x)  admit analytical solutions and were 
considered by Plaut et al. (1986). 

In the following, continuum and discrete problem formu- 
lations will be considered in Sections 5.1 and 5.2, respectively, 
a numerical solution procedure will be developed in Section 
5.3, and numerical examples will be presented in Section 5.4. 

5.1 Continuum problem 

Consider first a continuum formulation of the problem in 
nondimensional form. If we nondimensionalize the coordinate 
x by means of L and define the dimensionless cross-sectional 
area function a(x),  buckling load A and foundation modulus 
e by 

a(x) = A ( x ) L / V ,  ~ = p L 4 / ( E ( ~ V 2 ) ,  

c = CL6/ (Ec~V2) ,  (96) 

then the lateral deflection y(x) at buckling is governed by the 
eigenvalue problem consisting of the differential equation 
[a2(x)ytt (x)] t' :. -Ayt t  (oQ - cy(x) , (97) 

and a set of boundary conditions. We shall assume that the 
columns have "classical" boundary conditions, i.e. clamped, 
simply supported or free ends. If e.g. the column is clamped 
and simply supported at the ends x = 0 and x = 1, respec- 
tively, the boundary conditions are 

y(0) = y ' (0) - -  0, y(1) = ( a 2 y ' ) z = l  -- 0. (98) 

The continuum problem possesses an infinite number of 
eigenvalues Aj , 0 < A 1 < A 2 _< ..., and corresponding eigen- 
functions y j (x) .  It will be assumed in the following that the 
latter are orthonormalized 

1 

f =  jk. (99) 
0 

The nondimensional optimization problem consists in de- 
termining the cross-sectional area function a(x),  which for a 
given value of the foundation modulus e maximizes the small- 
est eigenvalue, 

max min ~ ,  (100) 
a(,~) j = l , . . . , ,  ~ 

subject to the condition of given column volume 
1 

a(x) = (101) dx 1. 

0 
If the maximized smallest eigenvalue ~1 is simple, ~1 < 

~2 <- A3 -< ..., then the necessary optimality condition takes 
the form of (56) with (see e.g. Tadjbakhsh and Keller 1962) 

VA 1 = 2a(x) [Ylt(x)] 2 , f0 = 1. (102) 

The positive real constant 70 in (56) is a Lagrangian multi- 
plier to be determined by the dimensionless volume constraint 
(lO1). 

Consider now the bimodal case where the smallest eigen- 
value ~1 = A2 < ~3 - . . .  is associated with two linearly 
independent eigenfunctions satisfying (97), the appropriate 
boundary conditions, and the orthonormality condition (99). 
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If we consider a varied cross-sectional area function in the 
form a(x)+ee(x),  then the double eigenvalue Ai = A2 = )t as- 
sociated with a(x) will generally split into two distinct ones, 
Aj .= ~ + ~#j, j = 1,2. By using a perturbation technique 
as m Section 2.3, we derive the following quadratic equation 
for determining the two directional derivatives (design sensi- 
tivities) # = #1 = AA1/A~ and p = #2 = AA2/A~ of the 
double eigenvalue, 

] det 2 ( )Ys( ) 9 k ( x ) e ( x ) d x - # 6 s k  = 0 ,  

s, k = 1, 2. (103) 

This equation is analogous to (27) (with N -= 2). 
In problems where the boundary conditions and the de- 

sign function a(x) are symmetric, a(x) = a(1 - x), it is 
useful to apply symmetric and antisymmetric eigenfunctions 
Yl (x) = Yl (1 - x) and Y2 (x) = -Y2 (1 - x) in (103). Since the 
otherwise arbitrary "direction" function e(x) must be sym- 
metric along with a(x), we see that the mixed term in (103) 
vanishes: 

1 
P 

/ a(x)y~'(x)y~(x)e(x) dx = 0, (104) 2 

0 

since its integrand will be antisymmetric for any arbitrary 
admissible function e(x). Hereby (103) gives the following 
simple expressions for the directional derivatives of the double 
eigenvalue: 

1 

Pl = 2 j a ( x )  [yi'(x)] 2 e(x) dx ,  

0 

1 

#2 = 2 f a(x) [yg(x)] 2 e(x) d x .  (105) 

0 

These expressions hold when the double eigenvalue can 
be treated as an intersection of two differentiable functionals, 
and are identical to those resulting from purely single modal 
formulations. However, in the general case of non-symmetric 
boundary conditions and designs, the mixed term in (104) 
does not vanish. 

5.2 Columns with piecewise constant cross-sections 

Let us now cast the optimization problem in discrete form 
by assuming the column to be composed of segments xi_ 1 < 
x ~ x i of prescribed lengths gi = x i -  x i -1 ,  i = 1 , . . . , I ,  
(where x 0 = 0 and x I .= 1), and individual constant values 
a i of the cross-sectioaal areas, i.e. a(x) - ai, x i_ 1 < x < xi, 
i = 1 , . . . ,  I. We treat the values of a i as design variables, 
assemble them in the vector a = ( a l , . . .  ,a l )  , and let e = 
(e l , . . .  , ei)  denote the corresponding unit direction vector of 
arbitrary variations. 

Defining the vectors fsk, s, k = 1, 2 as 

[ ! Y f k= . . . .  , 

xi-1 

1 ] 
2 a i  ys(x)yk~X)dx , s , k =  l ,2 ,  (106) 

Xl-1 

it is easily seen that the quadratic equation (103) for the 
two directional derivatives p = /~1 and # = #2 of the bi- 
modal eigenvalue precisely takes the form of (58) with solu- 
tions given by (59). Similarly, we easily identify the vector 
f0 in the volume constraint (101) as 

f0 = ( X l , . . . , x i - z i - 1 , . . . ,  1 - X i _ l )  = (t 1 . . . .  , g i , ' " , g I ) ,  

(107)  

for the discrete problem. In the examples in Section 5.4, the 
integrals in (106) are computed by numerical integration with 
the functions y~l(x) and y~l(x) being represented by their dis- 
crete values at sets of densely spaced mesh points embedded 
in each of the column segments. 

5.3 Method of optimization 

In order to exemplify the results in Section 4 and their appli- 
cability for design problems, we shall now develop an iterative 
numerical method for the solution of optimization problems 
for stepped columns on an elastic foundation. For these prob- 
lems it is unknown a priori whether the optimum buckling 
load is a simple or a double eigenvalue. Extension of the 
method to any degree of multiplicity of the optimum eigen- 
value is straightforward. 

Assume first that at a given iteration stage the  design is 
associated with a bimodal eigenvalue A 1 = A 2 = A, or that 
the two lowest eigenvalues A1 < A2 are very close such that 
A2 - A1 < 5 where 6 is a small tolerance which we assume to 
be specified. 

Guided by the results stated in Lemma 1 and Theorem 
1 in Section 4.3, we take the vector of increments z~a of the 
vector of design variables a as 

A a  : k(711fll + 2712f12 + 722t"22 - 70f0), (108) 

where k is a move-fimit type of scaling factor. We may only 
need to apply k in iteration steps in the beginning of the 
computational procedure where the vector resulting from the 
expression in the parenthesis may become sufficiently large 
to hamper convergence. Application of k is not necessary 
later where the expression in the parenthesis, and hence Aa, 
will tend towards the null vector, cf. (66), as we approach the 
optimum solution. 

In (108), the vectors f l l ,  f12, f22 are defined by (106), 
the vector f0 by (107), and 711, 2"/12, */22 and 70 are to be 
determined. Both (66) and (108) permit us to normalize the 
latter quantities as 

*/11 ~" */~1/II*/* II, 2"/12 = 2*/h/I1"/*11, 
*/25 = * / : h i l l <  II, */o = II, ( lO9)  
where 

(2./,~2 */,2 */~2 (110) I I* /* l l=v, l .  +, 12' -'1"- 2 2 " t -  • 

Equations for obtaining */51' 2712" ' */22" and */~ [and hence 
[] 7" [] by (110)] will be established below. 

Now, instead of using the unit vector e and the directional 
derivatives Pl = AA1/z~¢ and #5 ---- AA2/A¢ as in (58) and 
(59), we wish to work with the increments AA 1 and AA2 
of the double eigenvalue that directly correspond to a given 
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vector A a  of increments of the design variables. To this end, 
we multiply each component in (58) by e, and obtain' the 
following quadratic equation for the increments AA = AA 1 
and AA = AA2, 

[ f T A a - A ) ~  f T A a  ] 

det flT2Aa f T A a -  AA = 0 ,  (111) 

just as we earlier transformed (27) into (28). 
Obviously, the increments A a  for the iterative computa- 

tional procedure can be chosen in many ways. Equation (111) 
leads us to choose the following four simultaneous conditions 
as a basis for determining the four coefficients 711, 2712, 722 
and 70 in the expression for A a  in (108) (where we disregard 
the scaling factor k): 

AA 1 = fTAa----  1/[17" [I, 

ziA 2 = f T A a  = (1 + )~1 --"~2)/II7" II, 

flT2Aa = 0, 

f [ A a  = O. 

(112) 

(113) 

(114) 

(115) 
Here, (115) expresses the volume constraint (which is lin- 

ear in the design variables in the present case; the satisfaction 
of a nonlinear constraint requires a trivial modification of the 
approach). Equation (114) imposes a diagonalization of the 
matrix in (111), which reduces the solutions AA = AA 1 and 
A)~ = AA 2 of (111) to those expressed by the first equality 
signs in (112) and (113). These expressions imply that AA 1 
and AA 2 are precisely the increments of A 1 and A2, respec- 
tively, whose indices correspond to the directly identifiable 
modes yl(x)  and y2(x) obtained from the solution of the 
eigenvalue problem for the current design. 

It is seen from (112) and (113) that if A 1 = A 2 at a given 
iteration step, we specify AA 1 and AA 2 to be equal and pos- 
itive with a view to obtaining an increase of the bimodal 
eigenvalue. If the two lowest eigenvalues are different (within 
the small difference 5 defined earlier), we assign the index 1 
to the smallest eigenvalue and the corresponding mode, pre- 
scribe the value 1/ l] 7* [1 for its increment A~I, see (112), 
and assign a slightly smaller value to the increment AA 2 of 
the next eigenvalue A2, see (113), in order to increase A 1 
while diminishing the difference between )~1 and A 2. 

Now, by substituting (108) (where we disregard k) into 
(112)-(115) and making use of (109), we obtain the following 
system of equations for determining the unknown coefficients 

7~1, 27~2, 722. and 7~: 

f1T1f11 f1T1f22 

symm 

1 
1 + A 1 - A 2 

0 
0 

~f12 
fTf12 

r f12 

flTlf0 / 752 = 
27h 

(116) 

Having solved (116), we compute 117* II from (110), the nor- 
malized coefficients 711, 2712, 722 and 70 from (109), and 

substitute these into (108) to obtain the new vector A a  of 
increments of design variables. 

We note that the determinant of the coefficient matrix 
in (116) is nonnegative and that  it only vanishes if the vec- 
tors f l l ,  f12, f22 and f0 become linearly dependent, which 
is the necessary condition for an optimum bimodal solution, 
cf. Theorem 1 and (66) in Section 4.3. The latter implies, 
see (66), that the vector A a  in (108) vanishes at the bimodal 
optimum. In the above iterative computational procedure, 
the numerical values of 7~1, 27~2, 722. and 7~ obtained from 
(116), and hence the value of [I 7" [I from (110), rapidly in- 
creases as we approach the bimodal optimum point with lin- 
ear dependence of the vectors f l l ,  f12, f22 and f0. This im- 
plies that in addition to A a  ~ 0 in (108), due to [17" []~ c~, 
in (112) and (113)we have A)~ 1 ~ 0 and A)~ 2 ---* 0 as we 
approach the bimodal optimum solution. 

Let us finally consider the case where the column design 
obtained at a given iteration s~tage is associated with a simple 
buckling eigenvalue )~1 with A 2 - A  1 > 5. In this case we wish 
to increase A 1 by single modal steps of redesign. The eigen- 
value increment and the volume constraint are then expressed 
by 

= (117) 

f [ A a  = 0, (118) 

where f l l  and f0 are defined by (106) and (107), and the 
vector of increments of the design variables is taken in the 
single modal form 

A a  = k(fl l  - 70f0), (119) 
where k is again a positive scaling factor. The a priori un- 
known constant 70 is determined by substituting (119) into 
(118), which gives 

f [ f11  (120) 
7 0 -  f [ f 0 '  

and substitution of (119) and (120) into (117) yields the 
Cauchy-Bunyakowski inequality 

/ 

k (f1T1fxl - (q f l l ) ( f t~  f11)~ > 0 (121) AA 1 (f0 ] - '  \ 

for the increment A)q of the eigenvalue. Thus, each step 
of redesign increases the eigenvalue A 1 while satisfying the 
volume constraint, (118), and this continues until f l l  and f0 
become linearly dependent, i.e. 

f l l  - 70f0 = 0,  (122) 
which is the necessary condition for single modal optimality 
of the fundamental eigenvalue AI" 

If, during this single modal iterative procedure, the dis- 
tance between A 2 and ~1 decreases and we obtain )~2-A1 _< 5 
at a certain stage, then we perform subsequent iterations 
using the bimodal eigenvalue optimization procedure de- 
scribed earlier. This may give rise to a decrease of the dis- 
tance between the eigenvalues A 3 and the bimodal eigenvalue 
A 1 = A2, and if coalescence takes place, it is necessary to 
adopt a trimodal optimization scheme for subsequent iter- 
ations, and so on. Note that  in addition to the (single or 
multimodal) fundamental eigenvalue subject to treatment at 
a given stage of the iterative procedure, it is also necessary to 
know the value of the next (higher order) eigenvalue in order 
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to be able to capture its possible coalescence with the funda- 
mental eigenvalue and update the subsequent computations. 
As mentioned earlier, it is straightforward to construct a mul- 
timodal scheme for optimization of eigenvalues of any multi- 
plicity N by generalization of the method described above. 

5.4 Numerical examples 

Subject to some selected values of the elastic foundation mod- 
ulus c, see (96), we now solve the dimensionless buckling 
load optimization problem for a stepped column with I = 50 
segments of equal lengths li = 1/50 but individual cross- 
sectional areas ai, i -- 1 , . . . ,  I ,  which play the role as design 
variables of the discretized problem. No minimum or maxi- 
mum constraints are specified for the design variables. The 
optimization problems are solved by the method developed in 
Section 5.3, and we have chosen to determine the eigenvalues 
and eigenmodes in the steps of redesign by a finite difference 
procedure based on successive iterations (which involves fur- 
ther discretization of each of the segments of the column). 

Examples will be presented for (symmetric) clamped- 
clamped boundary conditions and for (non-symmetric) 
clamped-simply supported conditions. In each of the exam- 
ples, the initial column design (iteration 0) has been chosen 
to be uniform with a i = 1, i = 1 , . . . ,  I = 50, which meets 
the nondimensional volume constraint ~ aig i = 1. For each 
value of c and set of boundary conditions, the uniform design 
will also be used as a reference for the gain of the optimiza- 
tion, and we shall denote the fundamental buckling eigen- 
value of the uniform column by A u. 

Figure 29 illustrates optimum designs of columns with 
both ends champed. The designs are shown to suitable scale, 
and the linear dimensions perpendicular to the column axes 
are proportional to the square root of the cross-sectional ar- 
eas. 

3* 

(A) c = 0 

( B )  c = 8 7 6 . 7  

X > ~  • X, 

( C )  c = 1 5 0 0  

Fig. 29. Clamped-clamped optimum columns subject to differ- 
ent values c of modulus of elastic foundation. Columns have 50 
segments of equal lengths. (a) e = 0, optimum A = 52.105 is 
bimodal, )~/)~ = 1.320. (b) c = 876.7, optimum A = 102.55 is 
bimodal, )~/£~ ----- 1.039. (e) c = 1500, optimum A = 123.91 is 
bimodal, ) , /~  = 1.114 

All the designs in Fig. 29 are found to be symmetric and 
associated with a bimodal optimum buckling load. The buck- 
ling load of the optimum column without elastic foundation 
(c = 0) in Fig. 29a is A = A 1 = A 2 = 52.105 and we have 
A/A u = 1.320, i.e. the optimum (bimodal) buckling load is 
32.0% higher than the (simple) buckling load of a correspond- 
ing uniform column with both ends clamped and the same 
volume and length. 

It is interesting to note that the value A = 52.105 for the 
stepped optimum column design in Fig. 29a with 50 design 
variables, is only marginally less than the bimodal buckling 
load A = 52.356 for the classical clamped-clamped eonlinuum 
column (with, in principle, infinitely many design variables) 
determined by Olhoff and Rasmussen (1977). 

Figure 30 displays the iteration history behind the opti- 
mum solution in Fig. 29a, when using the method of Section 
5.3 and starting out from uniform design. We see that the 
initially distinct eigenvalues A 1 and A 2 coalesce after around 
10 iterations and that subsequent iterations are carried out 
by the bimodal eigenvalue optimization procedure. Figure 30 
also shows our monitoring of A 3 which turns out to remain 
distinct from A 1 and A 2. (This is the case for all the examples 
considered in this section.) 
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Fig. 30. Iteration history, optimization of clamped-clamped col- 
umn with c = 0. The optimum design is shown in Fig. 29a 

For the solution in Fig. 29a, the vectors f l l ,  f12, f22 and 
f0 are linearly dependent, i.e. satisfy (66). The (normalized) 
values of the coefficients 711, 2712 and 722 are determined 
to be 711 : 3.459.10 - 4  , 2712 = 0 and 722 = 9.250.10 -3  , 
which implies that the inequality for positive semidefiniteness 
in (67) is also satisfied. Thus, both necessary conditions (66) 
and (67) for a bimodal optimum are satisfied by the solution 
in Fig. 29a. The same holds true for the solutions in Figs. 
29b and 29c. Here, we again find 2712 = 0, which is not 
surprising since the optimum designs obtained and shown in 
Fig. 29 are symmetric. 

Figure 29b shows the optimum design of the stepped col- 
umn with two clamped ends when the modulus of the elastic 
foundation is taken to be c = 876.7. The design is associated 
with a bimodal optimum buckling load A = A1 = A2 = 102.55 
which is only 3.9% larger than the buckling load of the cor- 
responding uniform column with the same volume, length, 
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foundation modulus, and boundary conditions. The inter- 
esting point associated with c = 876.7 is that at this value 
of the foundation modulus, the buckling load of the uniform 
comparison column is bimodal, A u = A~ = A~ = 98.67. This 
implies, as can be seen in Fig. 31, that when starting the op- 
timization procedure from uniform design, the final optimum 
bimodal design in Fig. 29b will be obtained through an iter- 
ation history that exclusively encompasses steps of redesign 
involving himodal buckling loads. 
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Fig. 31. Iteration history, optimization of clamped-clamped col- 
umn with c = 876.7. The optimum design is shown is Fig. 29b 

Figure 29c illustrates the stepped optimum column de- 
sign for c = 1500. For this solution, the optimum bimodal 
buckling load is A = A 1 = A 2 = 123.91, which is 11.4% larger 
than the (simple) buckling load of the corresponding uniform 
column on the same foundation. The iteration history is qual- 
itatively similar to the one shown in Fig. 30. The solution in 
Fig. 29c illustrates the fact that the waviness of the optimum 
designs increases with increasing values of the modulus c of 
the elastic foundation. 

Next, we consider optimum designs of stepped columns 
with one end clamped and the other simply supported, see 
Fig. 32. It is characteristic that both for these boundary con- 
ditions and for doubly clamped boundary conditions, corre- 
sponding optimum solutions for continuum columns are as- 
sociated with bimodal buckling loads for any value c >_ 0 
of the modulus of the elastic foundation. However, for the 
stepped clamped-simply supported columns under considera- 
tion, with the finite dimension I = 50 of the design space, the 
optimum designs are associated with simple buckling loads 
for values of c up to a threshhold value of approximately 250, 
and only associated with bimodal optimum buckling loads 
for larger values of c. 

Figure 32a shows the stepped optimum column design 
for c = 50. Its buckling load A -- A 1 = 31.042 is simple, and 
27.8% larger than that of a corresponding uniform column on 
the same foundation. Figure 33 displays the iteration history, 
which entirely consists of single modal steps of redesign, and 
we have checked that the final solution satisfies the necessary 
condition in (56) for a single modal optimum solution. 

For c = 500, the stepped optimum column, see Fig. 32b, 
has a bimodal buckling load A = A 1 = A 2 = 66.296 which 

k 

( A )  c = 5 0  

> +777 J',, @ 
(B) c = 500 

k 

k 

( C )  c = I000 

Fig. 32. Clamped-simply supported optimum columns subject to 
different values c of modulus of elastic foundation. Columns have 
50 segments of equal lengths. (a) c = 50, optimum A = 31.042 
is simple, A/), ~ = 1.278. (b) c = 500, optimum A = 66.296 is 
bimodal, A/A ~ = 1.188. (c) c = 1000, optimum A = 90.420 is 
bimodal, A/A a = 1.214 
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Fig. 33. Iteration history, optimization of clamped-simply sup- 
ported column with c = 50. The optimum design is shown in Fig. 
32a 

is 18.8% larger than the (simple) buckling load of the cor- 
responding uniform reference column. The iteration history 
is qualitatively similar to that shown in Fig. 30, and the fi- 
nal solution satisfies the necessary conditions in (66) for a 
bimodal optimum solution. The (normalized) values of 711, 
2712 and 722 associated with the solution are found to be 
711 = 2.488'10-3, 2712 = 1.882'10 -3  and T22 = 1.319"10-2, 
so the necessary condition in (67) is also satisfied. We note 
that the value of 2712 is now non-zero as the optimum design 
in Fig. 32b is nonsymmetric. 

For c = 1000, we obtain the optimum design in Fig. 32c 
with the bimodal buckling load A = A1 = ~2 = 90.420, which 
is 21.4% higher than the (simple) buckling load of the corre- 
sponding uniform comparison column. The iteration history 
behind this optimum solution is also qualitatively similar to 
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that  in Fig. 30, and we again find that  the final solution sat- 
isfies the necessary conditions (66) and (67) for bimodal op- 
timality, and that  2712 i k 0. Figure 32b illustrates that also 
the clamped-simply supported optimum columns become in- 
creasingly wavy with increasing values of c. 

6 Conc lus ions  

Multiple eigenvalues often occur in symmetric structures and 
in complex structures that  depend on many design param- 
eters. Thus, multiparameter optimization'problems should 
always be considered in this perspective. Simple examples 
show that  multiple eigenvalues are not differentiable in the 
common sense. This creates serious problems for derivation 
of optimality conditions and numerical analysis in solving op- 
timization problems. 

The design sensitivity analysis based on a perturbation 
technique presented in this paper shows that directional 
derivatives of multiple eigenvalues are eigenvalues of a spe- 
cially constructed symmetric matrix with the components 
f T e .  The efficiency and accuracy of sensitivity analysis of 
simple and multiple eigenvalues with respect to six design 
parameters has been demonstrated by a thorough numerical 
study of a multiparameter vibration problem of an elastic 
square plate reinforced by stiffeners. 

We show that  linear dependence of the vectors fsk and the 
gradient vector f0 of the constraint with the coefficients 7ij 
and 70 respectively, constitutes the first necessary optimality 
condition, and that  positive semidefiniteness of the matrix of 
the coefficients 7ij is the second necessary optimality condi- 
tion for an optimum multiple eigenvalue. It is demonstrated 
and illustrated by examples of optimization of columns on 
elastic foundations that  these optimality conditions can be 
directly used in the development of a very efficient method 
for optimum design. 

It is shown in the paper that  there always exists a ba- 
sis of eigenvectors corresponding to the multiple eigenvalue 
in which the matr ix of the coefficients 7ij is diagonal. For 
this case, the necessary optimality conditions at tain the same 
form as those obtained by a Lagrange multiplier method ap- 
plied to different and differentiable functionals. This cir- 
cumstance, fortunately, confirms many papers on multimodal 
optimization which used a formal variational approach or a 
formal approach based on Pontryagin's maximum principle 
without taking care of the nondifferentiabifity of multiple 
eigenvalues. 
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