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Abstract  Necessary conditions of optimality for maximizing 
the buckling load for single or multimodal structures are derived 
using generalized gradients. The possible design dependence of the 
pre-buckling displacement is taken into account and implies the 
appearance of a number of adjoint problems not normally present 
in, for example, standard vibration problems. The relation to 
other equivalent forms of the necessary conditions are pointed out 
and the formulae are demonstrated on simple example problems. 

1 I n t r o d u c t i o n  

Optimal structural design with eigenvalue criteria (vibration 
and stability problems) is an important class of problems 
that has the complication of the non-differentiabihty of the 
eigenvalues at multimodal solutions [see, for example, Zy- 
czkowski and Gajewski (1988), and Olhoff (1987) for sur- 
veys]. The occurrence of multimodal optimal designs is now 
well-established (cf. Olhoff and Rasmussen 1977), as is the 
derivation of directional derivatives for eigenvalues in vibra- 
tion problems [see e.g. Haug et al. (1986)]. An overview of 
recent developments can be found in the report of Seyranian 
el al. (1994). 

In this note we employ tools of nonsmooth analysis to 
derive necessary conditions of optimality for maximizing the 
buckling load for structures. With the use of mathematical 
programming methods for the nondifferentiable problems in 
mind, the conditions are obtained by use of the generalized 
gradient concept (Clarke 1983). The results obtained are 
generalizations of necessary conditions for vibration problems 
and have an additional complication in the appearance of a 
number of adjoint problems, which are associated with the 
design dependence of the pre-buckling displacement field. As 
for the simpler cases, we can also here show, by using some 
basic facts from linear algebra, the equivalence between a 
number of different formulations of the necessary conditions. 

The approach we take is similar in concept to recent work 
by Overton (1993), and Overton and Womersley (1993), and 
as such is geared towards the application of algorithms for 
nonsmooth optimization (see e.g. Kiwiel 1985; Schramm and 
Zowe 1992). The application of such algorithms is not dealt 
with here, but the reader is referred to the literature. 

We emphasize here that eigenvalue problems are just 
one class of nondifferentiable problems arising naturally in 

structural optimization, and for these problems the non- 
differentiability is directly associated with the optimization 
criterion employed. Another more subtle type of nondif- 
ferentiability can arise indirectly from an underlying anal- 
ysis model which results in displacements that are non- 
differentiable as functions of design. Example problems 
are elasto-plastic problems and contact problems (see e.g. 
Sokolowski 1988). 

2 T h e  eigenvalue p r o b l e m  

Let us consider the generalized eigenvalue problem, 

K ( b ) ¢ -  PG(b ,  u ) ¢  = 0, (1) 

where b = {be} E R M denotes the vector of design variables 
and u = {ui} E R. N is the displacement vector solution of a 
finite element approximation of a linear elasto-static problem, 

K(b)u  = f .  (2) 

This set of equations can be easily identified with, for exam- 
ple, a finite element model for the classical buckling problem 
of structures where K is the stiffness matrix, G the geometric 
matrix, the eigenvalues P are the buckling load factors, and 
u the pre-bifurcation nodal displacements vector, due to the 
applied load f. It should be recognized that the geometric 
matrix G is given indirectly as a function of displacement 
through the pre-bifurcation stress field. 

For this model we assume that for all the admissible de- 
signs b the matrices K and G are real, symmetric and smooth 
functions of the displacement u and design variables b. Fur- 
thermore K is assumed (uniformly) positive definite for all 
allowed designs and the eigenvalues P are different from zero. 

3 The  op t im iza t i on  p r o b l e m  

The optimization problem is stated as the maximization of 
the buckling critical load of a structural component. To limit 
the amount of resource, a scalar global constraint on the de- 
sign variables is introduced and we also assume that we im- 
pose simple bound constraints on the design variables 

V ( b ) < 0 ,  _b e_<be <_-be, e = l , . . . , M .  (3) 

The optimal design problem is then to maximize the lowest 
positive eigenvalue of (1), (2) (the critical load factor Per), 



subject to the constraints (3). This is equivalent to minimiz- 
ing the maximum of the inverse (of all) eigenvalues. With 
this in mind and using the Rayleigh variational principle the 
optimal design problem is thus stated as 

e T G ( b ,  u ) ¢  
min max (4) 
b,u ,#o ¢ T K ( b ) ¢  ' 

V(b)_<0, b_<b_<b 4,6R N 
K(b)u=f 

where the minimization with respect to b and u is subject to 
the constraints (3) as well as the pre-bifurcation equilibrium 
constraint (2). Note that we in (4) also achieve that the nor- 
malization of the eigenvectors is performed with respect to 
the positive definite matrix K. It is implicitly assumed that  
the design constraints (3) will ensure a bounded and positive 
definite stiffness matrix K and that  the stiffness and geomet- 
ric stiffness matrices are smooth matrix functions. The opti- 
mization problem defined above is a nonsmooth optimization 
problem in b, u, if Pcr is a multiple eigenvalue. To overcome 
this problem we will in the following use the generalized gra- 
dient concept (Clarke 1983) . 

We emphasize here a basic difference between this model 
and other models for structural eigenvalue optimization (see 
e.g. Haug et al. 1986). The present model assumes that G 
also depends implicitly on design via the pre-bifurcation dis- 
placement u, thus explaining the additional equilibrium con- 
straint (2). This constraint is not present in optimization 
models for natural frequency optimization problems without 
membrane forces [with such forces, (4) covers this case also, 
with G being the stiffness matrix, K the mass matrix and 
the problem stated as a max-rain problem]. 

4 N e c e s s a r y  cond i t i ons  for  t h e  o p t i m a l  so lu t ion  

The necessary conditions for the optimization problem (4) 
are obtained via the associated Lagrangian for the outer min- 
imization in the design and equilibrium variables (b, u), 

L =  [max ¢ T G ( b ' u ) ¢ ]  + v T [ K ( b ) u - f ]  + 
L,¢=o eTK(b)~b J 

N 
A[V(b)] + Z [ ~ ( b e  - -be) - ~(be - ~ ) ] .  (5) 

e----1 

In this augmented functional, v is the adjoint displacement 
vector [Lagrange multiplier of the equilibrium constraint (2)] 
and the Lagrange multipliers associated with the design con- 
straints (3) satisfy the inequalities A _> 0; ~ _> 0, y~ _> 0, 
e = 1 , 2 , . . . , N .  

Based on this Lagrangian, the necessary conditions for a 
minimum can be identified with the condition of stationarity 
at the optimal solution l~, fi, stated in terms of generalized 
gradients for nonsmooth functions (Clarke 1983). The sta- 
tionarity condition is thus expressed as 

0 6 0b ,un ,  (6) 

where the generalized gradient Ob,uL is the convex set in 
1% M × R N defined by 
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(Y)/ 10K 
Ob,uL = co , xe = TO G eTK~ 

y i -  CTK¢ 

v T K  

r, A + T]~ - •i} and with l~, fi con- with z = (ze} = k Obe 
nected via the equilibrium equation (2) [see Clarke (1983) 
and Kiwiel (1985, Lemma 2.5) for the derivation of the gen- 
eralized gradient of a maximum function]. In (7) and in the 
following the dependence of the G and K matrices on u and 
b is implicitly assumed. 

In the previous expression "co" denotes the convex hull, 
i.e. the convex combinations of all elements in the set, the 
indices "e" and "i" range over all the design variables (M) 
and the displacement degrees of freedom (N), respectively, 
and F(l~, fi) is the subspaee of all the eigenvectors associated 
with the critical load factor. Note that  this set includes all the 
eigenvectors for which the maximum of the Rayleigh quotient 
(A1 = 1/Per) is achieved. To characterize the generalized 
gradient 0b,uL one needs only to consider the eigenvectors 

in r(l~, fi) normalized with respect to the stiffness matrix K, 
i.e. ~bTK~b = 1. This follows from the fact that  proportional 
eigenvectors will give rise to the same element in 0b,uL. 

Let us assume now that, at the optimal solution, the crit- 
ical load factor has multiplicity "m" and let ep,  p = 1 , . . . ,  m 
be any set of m orthonormal (with respect to K)  eigenvectors 
corresponding to the critical load factor Per. Any normalized 
eigenvector ¢ E r(l~, fi) can be represented as a linear com- 
bination of the eigenvectors ~bp, p = 1 , . . . ,  m in the form 
(summation over repeated indices apply here and in the fol- 
lowing) ¢ = apep, (~ 6 R m and IIo~11 = 1. Substituting this 
in the Lagrangian generalized gradient (7) one obtains 

0b,uL = 

( (a a T[OG 1 OK 

co _ f T OG ] 

v T K  

The optimality condition (8) can be further simplified by 
solving it, partially, for the adjoint displacement v (i.e. the 
Lagrange multiplier for the pre-bifureation equilibrium con- 
straint). With this in mind let us consider the solutions 
vPq 6 R N ,  p,q= l , . . . , m o f  

( ¢TOG ) KvPq= ! p ~ ¢ q ~ .  (9) 
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these adjoiiat 
condition (6) 

ObL = co{x,  

p 0K oej } v -~--, u t  : ~ • a m, I1'~11-- 1 + ~ ,  

Because of symmetry, vPq = vqP, and we must solve (9) 

~ m ( m  + 1) to adjoint However, times find all fields. this 

only involves different right-hand sides of the equation. With  
fields, we see that  we can write the necessary 
as 0 E abL, where, 

Per Cq - 

(10) 

where we should not forget that  the adjoint displacements 
are solutions of the adjoint problems (9). Note that the first 
term in (10) is actually the generalized gradient of the inverse 
of the critical load as a function of the design variables only. 

Finally, the condition (10) should be supplemented by the 
usual complementary slackness conditions, which we do not 
state here for the sake of brevity. 

Before we describe some examples let us see how (10) par- 
ticularises for two special cases. For the first case, we assume 
that we have a simple eigenvalue. Then the generalized gradi- 
ent has only one element, the gradient of L and the necessary 
condition is ~7bL = 0, where 

(XTbL) e c T ( 0 G  1 (9K) 0K . OV e e 
= ~ Pcr3b-~ ¢-vb-bT~+A~-~ + " l o e  e - " 2  

(11) 

In this expression the first two terms represent the e-th com- 
ponent of the simple eigenvalue gradient vector, the last three 
terms the components of the volume and bound constraint 
gradients, ~ is the normalized mode associated with the sim- 
ple eigenvalue and the adjoint displacement v is the solution 

of the linear equation K v  = ( e T a / ¢ }  - 

For the second case we consider a situation where the ma- 
trix G is only explicitly dependent on the design variables b. 
Then the adjoint displacements v pq are all equal to zero and 
(10) reduces to the gradient expression of a simple natural 
vibration frequency or of a buckling load factor for a struc- 
ture with design independent pre-bifurcation stress field (see 
e.g. Haug et al. 1986). 

Another aspect worth noting is that  the necessary con- 
dition (10) can be given other equivalent forms, which gen- 
eralizes the optimality condition presented by, for example, 
Seyranian et al. (1994) (for the case where G is independent 
of u). First note that  the set of convex combinations of sym- 
metric matrices of the form (zot T, [Ic~[I = 1 is the same as the 
set of all positive semi-definite matrices with trace equal to 
1. Thus 0 E ObL is equivalent to the existence of a positive 
semi-definite m × m matr ix H = {Hpq} with t rH = 1, so 
that 

~ e  Pcr 0-b'~ ~ e U J  + z e = 0 '  

e = 1 . . . .  , M .  (12) 

Moreover, (12) can be "diagonalized" in the following sense. 
Let Q = {Qrs} be an orthonormal matrix, so that  Q T H Q  
is a diagonal matr ix of the eigenvalues #i of H, with Pi > O, 

m 

Pi = 1. By considering the (orthonormal) eigenvectors 
i=1 

~ 

Cr = QsrdZs, we can write (12) as 

) j 
i=1 

e = l , . . . , M .  (13) 

where summation over repeated indices does not apply. 
Observe that  ~ii is now the adjoint displacements given 

by (9), hut from the eigenvectors (~r. Also note that  the 
necessary condition (12) is a condition for any initial choice 
of orthonormal eigenvectors, while (13) is a condition for a 
specific choice of orthonormal eigenvectors Cr. In this sense 
(12) and (13) are equivalent .  The condition (13) is a gen- 
eralization of the optimali ty conditions first stated by O1- 
hoff and Rasmussen (1977), for bimodal isostatic buckling 
[the derivation for the general (isostatic) problem is carried 
out by Bendsce et al. (1983), using a bound formulation]. 
The interested reader is also referred to Overton (1993), and 
to Overton and Womersley (1993), who discuss the various 
forms of the necessary conditions. 

5 E x a m p l e s  

5.1 Example 1 

Let us consider the problem (5) with data, M = 1, N = 2, 
_b = -0 .2 ,  b = 0.4, no volume constraint (3) and 

0 

The generalized eigenvalue problem has eigenvalues A 1 = 
1 2 b + l  1 1 

P1 - ( l + b )  2 and A 2 - 1°2 - l + b '  and the eigenval- 

ues plotted as functions of the design variable b are shown in 
the graph in Fig. 1. 

1.2 

- 0 . 6  - 0 . 4  ~~0,8 ~6 
Fig. 1. Graphical representation of the eigenvalues Ai (i = 1, 2) 
in dependence of the design variable b 

From Fig. 1 it is clear that  the point b = 0 is a multi- 
modal stationary point, which is not a local minimum. The 
global minimum is attained at b = 0.4 with the upper bound 
constraint active, and this is a unimodal design. Let us now 
verify the necessary condition at these two candidate points. 

At /~ = 0 the eigenvalue has multiplicity m = 2, A1 = 
A 2 = 1, the displacement vector is ft = {1 0} T, and two 
orthonormal eigenvectors are ¢1 = (1 0) T, ~2 = (0 1) T. 
The adjoint displacement vectors v 11, v 12 = v 21, v 22 are 
solutions of 



1 0  "' { C T T [ O 1 0 0 ] ¢ J  } = ~ , v 1 1 = { O 1  } [0 x]v,  0,[0 0 
1] CJ 

so for the generalized gradient one obtains 

aiajv ijT [~ 01] { : } : a • R 2 , [ [ a [ [ -  - 1 } =  

c o { - ~  : 1~21 _< 1}, 
and the necessary condition is satisfied for a 2 -- 0. 

On the other hand, at upper bound constraint/~ = 0.4 the 
45 

eigenvalue is simple, m = 1, A 1 -- ~-~, the displacement vector 

is fl = ~ 0 and the objective function is differentiable 

since the eigenvalue is simple. The necessary condition is 

VLb=°'4--[ 49 [  0 ) [ ~  0 1 ] { V ~ } -  

v T [ ~  011(5~7} } +7/1 = 0 ,  for t / l_>0,  

with the adjoint displacement vector v given as the solution 
to 

[°0 °1] "{;:}= 
Thus substituting in the necessary condition we obtain 

100 
VLb=o. 4 = 0 for ~1 ---- 343 " 

In this example we have shown that a multimodal point 
can be stationary without being a local minimum. One can 
also generate examples where such multimodal points are not 
even stationary points. 

5.2 Example 2 
Let us now consider an example with M -- 2, N --- 2 and 

K =  [ ( 1 + b l ) 2  0 ] 
0 (1 + 51) 2 ' 

G = u2 Ul 
b_22 2(1 - bl) ' f = " 

Ul ~2  a 
The generalized eigenvalue problem has eigenvalues A 1 = 

1 
l - ~ / ( b l )  2 + (b2) 2 and A2 = 1 ~/ - -  = - -  = 1 +  ( 5 1 )  2 + (52 )  2 

P1  P 2  ' 
each of which are non-smooth, and for which it is clear that 
1~ = {00} T is a double eigenvalue stationary point (see Fig. 
2). Let us check the necessary condition at this point. 

1 0 . 5  0 - 0 . 5  - 1  
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Fig. 2. Graphical representation of the eigenvalues )q (i = 1,2) 
in dependence of bl and b2 

F o r l ~  {00} T w e h a v e f i =  {12} T ,A 1 = A  2 = l a n d  
orthonormal eigenvectors ¢1 = (1 0) T, ¢2 = (0 1) T. So the 
generalized gradient becomes for this case 

o ([01  ][00 00]) ° 

:c~ • R 2,[1~11 = 1 , 

o o,v,J  [: :] {:} 
with the adjoint displacement vectors v 11, v 12 = v 21, v 22 
given as solutions of 

i100 { 
{ 0 }  {00} 0 } 

- 1 / 2  ' ' - 1 / 2  ' 
Substituting this in the generalized gradient we obtain 

COLb--O : C°~ f (°Q)2 - (a2)2~ } [ [  2 a l a  2 j : a • R  2,~12+a 2 = 1  , 

and the necessary condition is satisfied if we in the generalized 
gradient take the convex combination (combination factor of 
0.5) for the choices c~ 1 = {1 0} T, a 2 = {0 1) T. 
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