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Abstract Necessary conditions of optimality for maximizing
the buckling load for single or multimodal structures are derived
using generalized gradients. The possible design dependence of the
pre-buckling displacement is taken into account and implies the
appearance of a number of adjoint problems not normally present
in, for example, standard vibration problems. The relation to
other equivalent forms of the necessary conditions are pointed out
and the formulae are demonstrated on simple example problems.

1 Introduction

Optimal structural design with eigenvalue criteria (vibration
and stability problems) is an important class of problems
that has the complication of the non-differentiability of the
eigenvalues at multimodal solutions [see, for example, Zy-
czkowski and Gajewski (1988), and Olhoff (1987) for sur-
veys]. The occurrence of multimodal optimal designs is now
well-established (cf. Olhoff and Rasmussen 1977), as is the
derivation of directional derivatives for eigenvalues in vibra-
tion problems [see e.g. Haug et al (1986)]. An overview of
recent developments can be found in the report of Seyranian
et al. (1994).

In this note we employ tools of nonsmooth analysis to
derive necessary conditions of optimality for maximizing the
buckling load for structures. With the use of mathematical
programming methods for the nondifferentiable problems in
mind, the conditions are obtained by use of the generalized
gradient concept (Clarke 1983). The results obtained are
generalizations of necessary conditions for vibration problems
and have an additional complication in the appearance of a
number of adjoint problems, which are associated with the
design dependence of the pre-buckling displacement field. As
for the simpler cases, we can also here show, by using some
basic facts from linear algebra, the equivalence between a
number of different formulations of the necessary conditions.

The approach we take is similar in concept to recent work
by Overton (1993), and Overton and Womersley (1993), and
as such is geared towards the application of algorithms for
nonsmooth optimization (see e.g. Kiwiel 1985; Schramm and
Zowe 1992). The application of such algorithms is not dealt
with here, but the reader is referred to the literature.

We emphasize here that eigenvalue problems are just
one class of nondifferentiable problems arising naturally in

structural optimization, and for these problems the non-
differentiability is directly associated with the optimization
criterion employed. Another more subtle type of nondif-
ferentiability can arise indirectly from an underlying anal-
ysis model which results in displacements that are non-
differentiable as functions of design. Example problems
are elasto-plastic problems and contact problems (see e.g.
Sokolowski 1988).

2 The eigenvalue problem

Let us consider the generalized eigenvalue problem,
K(b)¢ — PG(b,u)p=0, )]

where b = {b¢} € RM denotes the vector of design variables

and u = {y;} € R is the displacement vector solution of a
finite element approximation of a linear elasto-static problem,
K(bu=f. (2)
This set of equations can be easily identified with, for exam-
ple, a finite element model for the classical buckling problem
of structures where K is the stiffness matrix, G the geometric
matrix, the eigenvalues P are the buckling load factors, and
u the pre-bifurcation nodal displacements vector, due to the
applied load f. It should be recognized that the geometric
matrix G is given indirectly as a function of displacement
through the pre-bifurcation stress field.

For this model we assume that for all the admissible de-
signs b the matrices K and G are real, symmetric and smooth
functions of the displacement u and design variables b. Fur-
thermore K is assumed (uniformly) positive definite for all
allowed designs and the eigenvalues P are different from zero.

3 The optimization problem

The optimization problem is stated as the maximization of
the buckling critical load of a structural component. To limit
the amount of resource, a scalar global constraint on the de-
sign variables is introduced and we also assume that we im-
pose simple bound constraints on the design variables

V(b)<O0, b, <be<be, e=1,....,M. (3)

The optimal design problem is then to maximize the lowest
positive eigenvalue of (1), (2) (the critical load factor Pey),



subject to the constraints (3). This is equivalent to minimiz-
ing the maximum of the inverse (of all) eigenvalues. With
this in mind and using the Rayleigh variational principle the
optimal design problem is thus stated as

TG, u
min ¢ G(b,u)¢ (4)
bu w0 ¢TK(b)g
V(b)<0,b<b<hb seRN
K(b)u=f

where the minimization with respect to b and u is subject to
the constraints (3) as well as the pre-bifurcation equilibrium
constraint (2). Note that we in (4) also achieve that the nor-
malization of the eigenvectors is performed with respect to
the positive definite matrix K. It is implicitly assumed that
the design constraints (3) will ensure a bounded and positive
definite stiffness matrix K and that the stiffness and geomet-
ric stiffness matrices are smooth matrix functions. The opti-
mization problem defined above is a nonsmooth optimization
problem in b, u, if P¢r is a multiple eigenvalue. To overcome
this problem we will in the following use the generalized gra-
dient concept (Clarke 1983) .

We emphasize here a basic difference between this model
and other models for structural eigenvalue optimization (see
e.g. Haug et al 1986). The present model assumes that G
also depends implicitly on design via the pre-bifurcation dis-
placement u, thus explaining the additional equilibrium con-
straint (2). This constraint is not present in optimization
models for natural frequency optimization problems without
membrane forces [with such forces, (4) covers this case also,
with G being the stiffness matrix, K the mass matrix and
the problem stated as a max-min problem).

4 Necessary conditions for the optimal solution

The necessary conditions for the optimization problem (4)
are obtained via the associated Lagrangian for the outer min-
imization in the design and equilibrium variables (b, u),

- ¢ G(b,u)p T .
L= [#0 S TR ()6 ]+ [K(b)u —f] +

N
AV + >[5 (be — be) — n§(be — be))].- (3)

e= 1

In this augmented functional, v is the adjoint displacement
vector [Lagrange multiplier of the equilibrium constraint (2)]
and the Lagrange multipliers associated with the design con-
straints (3) satisfy the inequalities A > 0; n§ > 0,15 >0,
e=12,...,N.

Based on this Lagrangian, the necessary conditions for a
minimum can be identified with the condition of stationarity
at the optimal solution b, 1, stated in terms of generalized
gradients for nonsmooth functxons (Clarke 1983). The sta-
tionarity condition is thus expressed as

0€dpul, (6)
where the generalized gradient &y, ,ul is the convex set in
RM x R¥ gefined by
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nected via the ethbrlum equation (2) [see Clarke (1983)
and Kiwiel (1985, Lemma 2.5) for the derivation of the gen-
eralized gradient of a maximum function]. In (7) and in the
following the dependence of the G and K matrices on u and
b is implicitly assumed.

In the previous expression “co” denotes the convex hull,
i.e. the convex combinations of all elements in the set, the
indices “¢” and “¢” range over all the design variables (M)
and the displacement degrees of freedom (N), respectively,
and T'(b, @) is the subspace of all the eigenvectors associated
with the critical load factor. Note that this set includes all the
eigenvectors for which the maximum of the Rayleigh quotient
(A1 = 1/Pc) is achieved. To characterize the generalized
gradient O, L one needs only to consider the eigenvectors

+ 0§ — 77%} and with b, @t con-

in I‘(B, i) normalized with respect to the stiffness matrix K,
ie. qSTKqS = 1. This follows from the fact that proportional
eigenvectors will give rise to the same element in 6b,uL.

Let us assume now that, at the optimal solution, the crit-
ical load factor has multiplicity “m” and let ¢p,p=1,...,m
be any set of m orthonormal (with respect to K) eigenvectors
corresponding to the critical load factor Pe;. Any normalized
eigenvector ¢ € I‘(b 1) can be represented as a linear com-
bination of the eigenvectors ¢pp, p = 1,...,m in the form
(summation over repeated indices apply here and in the fol-
lowing) ¢ = ap¢p, a € R™ and [Ja|| = 1. Substituting this
in the Lagrangian generalized gradient (7) one obtains

6b,uL =
oG 1 0K
apagdy [ab Fc;a_be:l ¢q}

apaq¢£a—w¢q}

co

70K

aGRm,||a||=1}+ {vv%} +(g). (8)

The optimality condition (8) can be further simplified by
solving it, partially, for the adjoint displacement v (i.e. the
Lagrange multiplier for the pre-bifurcation equilibrium con-
straint). With this in mind let us consider the solutions
vwieRN pg= 1,...,mof

KvPd = {¢T3G p q} (9)
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Because of symmetry, vP9 = v9P and we must solve (9)

1
§m(m + 1) times to find all adjoint fields.

only involves different right-hand sides of the equation. With
these adjoint fields, we see that we can write the necessary
condition (6) as 0 € 9L, where,

G 1 0K
OpL = CO{x,d’e = aplyg ['ﬁg <6be Pex 3be> $a-

K
qua—ﬁ cae R |all=1) + 2z, (10)
Obe

However, this

where we should not forget that the adjoint displacements
are solutions of the adjoint problems (9). Note that the first
term in (10) is actually the generalized gradient of the inverse
of the critical load as a function of the design variables only.

Finally, the condition (10) should be supplemented by the
usual complementary slackness conditions, which we do not
state here for the sake of brevity.

Before we describe some examples let us see how (10) par-
ticularises for two special cases. For the first case, we assume
that we have a simple eigenvalue. Then the generalized gradi-
ent has only one element, the gradient of L and the necessary
condition is VL = 0, where

P (96 1KY, oK. ov
a0 =07 (5o - gy ) 4=V oo+ Agp T

Vb, Bbe
(11)

In this expression the first two terms represent the e-th com-
ponent of the simple eigenvalue gradient vector, the last three
terms the components of the volume and bound constraint
gradients, ¢ is the normalized mode associated with the sim-
ple eigenvalue and the adjoint displacement v is the solution
of the linear equation Kv = {d;T 9G ¢ ¢

For the second case we consider a 51tuat10n where the ma-
trix G is only explicitly dependent on the design variables b.
Then the adjoint displacements vP? are all equal to zero and
(10) reduces to the gradient expression of a simple natural
vibration frequency or of a buckling load factor for a struc-
ture with design independent pre-bifurcation stress field (see
e.g. Haug et al. 1986).

Another aspect worth noting is that the necessary con-
dition (10) can be given other equivalent forms, which gen-
eralizes the optimality condition presented by, for example,
Seyranian et al. (1994) (for the case where G is independent
of u). First note that the set of convex combinations of sym-
metric matrices of the form aal, ||| = 1 is the same as the
set of all positive semi-definite matrices with trace equal to
1. Thus 0 € §,L is equivalent to the existence of a positive
semi-definite m x m matrix H = {Hpg} with trH = 1, so

that

0 (0G 1 0K g OK
Hpq ["51” <6be Poob, ) PV mp ot T =0
e=1,...,M. (12)

Moreover, (12) can be “diagonalized” in the following sense.
Let Q = {Qrs} be an orthonormal matrix, so that QTHQ
is a diagonal matrix of the eigenvalues p; of H, with y; > 0,

m
~ > u; = 1. By considering the (orthonormal) eigenvectors

1=1
br = Qsrds, we can write (12) as

0K
Zuz[qﬁT(abe . >¢, iy

Pcrabe 8_be
e=1,....M. (13)

where summation over repeated indices does not apply.

Observe that ¥ is now the adjoint displacements given
by (9), but from the eigenvectors ér. Also note that the
necessary condition (12) is a condition for any initial choice
of orthonormal eigenvectors, while (13) is a condition for a
specific choice of orthonormal eigenvectors ¢r. In this sense
(12) and (13) are equivalent. The condition (13) is a gen-
eralization of the optimality conditions first stated by Ol-
hoff and Rasmussen (1977), for bimodal isostatic buckling
[the derivation for the general (isostatic) problem is carried
out by Bendsge et al. (1983), using a bound formulation].
The interested reader is also referred to Overton (1993), and
to Overton and Womersley (1993), who discuss the various
forms of the necessary conditions.

+2=0,

5 Examples

5.1 Ezample 1

Let us consider the problem (5) with data, M =1, N = 2,
b= —0.2, b= 0.4, no volume constraint (3) and
_J1
=%o(

_f1+b 0 _|2-u 0
K‘[ 0 1+b]’ G‘[ 0 1+u2]’
The generalized eigenvalue problem has eigenvalues A; =

1 26+ 1 1 1 .
p1 (1 ++b)2 and Ay = P—2 =17 and the eigenval-
ues plotted as functions of the design variable b are shown in

the graph in Fig. 1.
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Fig. 1. Graphical representation of the eigenvalues Xi (i = 1,2)
in dependence of the design variable b

From Fig. 1 it is clear that the point b= 0is a multi-
modal stationary point, which is not a local minimum. The
global minimum is attained at b = 0.4 with the upper bound
constraint active, and this is a unimodal design. Let us now
verify the necessary condition at these two candidate points.

At b = 0 the eigenvalue has multiplicity m = 2, A; =
Ag = 1, the displacement vector is @t = {1 O} , and two
orthonormal eigenvectors are ¢ = ( 0} ¢2 = (0 nT.
The adjoint displacement vectors vl v22 are
solutions of



-1 0
¢?[0 O]qb,-

[1 OJV,']'_
01 - 0 0
¢£p [0 1]¢j

#ofl o).

so for the generalized gradient one obtains

o= {21} [3 9] {22} -
ajoe v [(1) (1)]{0}:aER2,|[a||=1}=

cof—aj : [ag| < 1},
and the necessaty condition is satisfied for g = 0.
On the other hand, at upper bound constraint & = 0.4 the

eigenvalue is simple, m =1, Ay = 1 the displacement vector

5 T Lo .
isa= {? O} and the objective function is differentiable

since the eigenvalue is simple. The necessary condition is

- (0T BTN

5/7
T[(l) ?}{é}+m}=0, forp >0,

with the adjoint displacement vector v given as the solution
to

7/5 0 vi| _
0 7/5] \vof —
{\/5/7}T -1 0 '{\/5/7}
0 0 0 o F{ {vl} ~ {—25/49}
N V5T vy o )
{ 0 } 0 1 { 0 }
Thus substituting in the necessary condition we obtain
VLb=0'4 =0 for m = E .
In this example we have shown that a multimodal point
can be stationary without being a local minimum. One can

also generate examples where such multimodal points are not
even stationary points.

5.2 Ezample 2

Let us now consider an example with M = 2, N = 2 and

K:[(1+b1)2 0 ]

0 (14b1)2
2(14b1) by
1
G= u2 U1 f= .
by 2(1=by) |’ 2

The generalized eigenvalue problem has eigenvalues Ay =

Pil = 1—1/(b1)? + (b3)? and Ag = P% = 144/(b1)% + (b2)%,

each of whlch are non-smooth, and for which it is clear that
={0 0} is a double elgenvalue stationary point (see Fig.
2) Let us check the necessary condition at this point.
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Fig. 2. Graphical representation of the eigenvalues A; (i = 1,2)
in dependence of b; and by

For b = {0 0}7 we have 6 = {1 2}7, Ay = Ay = 1 and
orthonormal eigenvectors ¢ = (1 0)T, ¢y = (0 1)T. So the
generalized gradient becomes for this case

([t 0] 20
« [0 —1] [o 2| )”
T 01_00
@ [1 0] [0 0 "
-‘v.jT2 0f f1
a,a] 0 2 9
7 [0 0] f1
o [0 0] o}

with the adjoint displacement vectors v1 = v2
given as solutions of

OLy_g = co
aeR2 [l =1

00
1 0] 45 "5?[0 0]¢f 1
vi = =V =
01 r[-12 0 .
¢i[ 0 _1/2]¢,

{—3/2}’ V= {g} V= {—f/z}'

Substituting this in the generalized gradient we obtain

2 _ 2
OLy—q :co{{(al) (e2) } :aERz,a%+a%=1},

26!1(12
and the necessary condition is satisfied if we in the generalized

gradient take the convex combination (combmation factor of
0.5) for the choices al = {10}7, a2 = {0 1}7.
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