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A b s t r a c t  Truss topology design for minimum external work 
(compliance) can be expressed in a number of equivalent poten- 
tial or complementary energy problem formulations in terms of 
member forces, displacements and bar areas. Using duality prin- 
ciples and non-smooth analysis we show how displacements only as 
well as stresses only formulations can be obtained and discuss the 
implications these formulations have for the construction and im- 
plementation of efficient algorithms for large-scale truss topology 
design. The analysis covers min-max and weighted average mul- 
tiple load designs with external as well as self-weight loads and 
extends to the topology design of reinforcement and the topol- 
ogy design of variable thickness sheets and sandwich plates. On 
the basis of topology design as an inner problem in a hierarchical 
procedure, the combined geometry and topology design of truss 
structures is also considered. Numerical results and illustrative 
examples are presented. 

1 I n t r o d u c t i o n  

The optimization of the geometry and topology of trusses can 
conveniently be formulated in terms of the well-known ground 
structure method. In this approach, the layout of a truss 
structure is found by allowing a certain set of connections 
between a fixed set of nodal points as potential structural or 
vanishing members. Topology design is inherently a discrete 
optimization problem, but for the truss problem the geome- 
try allows for using the continuously varying cross-sectional 
bar areas as design variables, including the possibility of zero 
bar areas. This implies that the truss topology problem can 
be viewed as a standard sizing problem. Note that the basic 
combinatorial nature of topology design, namely finding the 
optimal set of vanishing truss members, remains in the siz- 
ing formulation. The sizing reformulation is possible for the 
simple reason that the truss, which is really a two- or three- 
dimensional continuum, is described geometrically as being 
one-dimensional. 

The ground structure approach thus allows the truss 
topology design problem to be viewed as a sizing problem. 
However, the topology problem is unusual as a structural op- 
timization problem as the number of design variables is typ- 
ically several orders of magnitude bigger than the number 
of displacement variables. For most structural optimization 
problems described in the literature the opposite is the case. 

Also, for truss topology design the stiffness matrix of the full 
ground structure with certain members at zero gauge can 
be singular. This implies that most optimal designs have a 
singular stiffness matrix when described as part of the full 
ground structure, thus excluding the possibility of invoking 
standard structural optimization techniques. 

It is broadly recognized that structural layout has an im- 
mense influence on structural performance, and recent years 
have seen a revived interest in this important area of struc- 
tural optimization (Kirsch 1989; Rozvany 1992; Bendsee and 
Mota Soares 1993). The study of fundamental properties of 
grid-like lay-outs was pioneered by Michell (1904); see also 
Hemp (1973), but this interesting field has only much later 
developed into what is now the well-established layout the- 
ory for frames and flexural systems (Rozvany 1976, 1989, 
1992). The last couple of years witnessed the development of 
the so-called homogenization method for generating optimal 
topologies of structural elements (Bendsee and Kikuchi 1988; 
Kikuchi and Suzuki 1991). The homogenization method pre- 
dicts grid- and truss-like structures for structures with a low 
amount of available material and thus the homogenization 
method supplements analytical methods for the prediction 
of layout (Diaz and Belding 1992; Kikuchi and Suzuki 1991). 
The application of numerical methods to discrete truss topol- 
ogy problems and similar structural systems, which is the 
subject of this paper, has a shorter history with early contri- 
butions by, for example, Dorn et al. (1964), Fleron (1964), 
Pedersen (1970, 1972, 1973). The numerical methods devel- 
oped for truss topology design over the period 1964 to 1990 
are described in the review papers by Kirsch (1989) and Top- 
ping (1992) with the former also containing a survey of layout 
theory. This paper thus concentrates on more recent devel- 
opments. 

Truss topology design problems were in early work typi- 
c.ally formulated in terms of member forces, ignoring kine- 
matic compatibility to obtain a linear programming (LP) 
problem in member areas and forces. The resulting topology 
and force field are then often employed as a starting point for 
a more complicated design problem formulation, with heuris- 
tics, branch and bound techniques, etc., being used to link the 
two model problems (Kirseh 1989; Ringertz 1986). Alterna- 
tively, when displacement formulations are used, then (small) 
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non-zero lower bounds on the cross-sectional areas have been 
imposed in order to have a positive definite stiffness matrix. 
This means that  s tandard techniques for optimal structural 
design can be used, albeit imposing very tight restrictions 
on the size of problem that  can be handled. Also, it allows 
for the use of standard optimality criteria methods for large 
scale design problems (Taylor and Rossow 1977; Zhou and 
t~ozvany 1992/1993). 

In the simultaneous analysis and design approach, the de- 
sign variables and state variables are not distinguished and 
the full problem is solved by one unified numerical optimiza- 
tion procedure. However, unless specially developed numer- 
ical solution procedures are used, only very small problems 
can be treated (Saka 1980; Ringertz 1988; Bendsee et al. 
1991; Sankaranaryanan et al. 1993). A recent interesting 
development is the use of simulated annealing and genetic 
algorithm techniques for the topology problems in their orig- 
inal formulation as discrete selection problems, but also these 
fairly general approaches are with the present technology re- 
stricted to fairly small scale problems (Fleury 1993; Grierson 
and Pak 1993; Hajela et al. 1993). 

In this paper, we will give a survey of classical truss topol- 
ogy methodology and investigate various new formulations of 
and numerical methods for truss topology design. We seek 
specifically to be able to handle problems with a large number 
of potential structural elements, using the ground structure 
approach. For this reason we consider the simplest possible 
optimal design problem, namely the minimization of com- 
pliance (maximization of stiffness) for a given weight of the 
structure. The analysis is general enough to encompass mul- 
tiple load problems in the worst-case and weighted-average 
formulations, the case of external load plus selfweight and the 
problem of determining the optimal topology of the reinforce- 
ment of a structure as, for example, seen in fall-safe design. 
It turns out that  for these problems a number of equivalent 
problem statements can be given, among them problems in- 
volving the nodal displacements only or in the member forces 
only. With  these reformulations on hand, it is possible to 
devise very efficient algorithms that  can handle large scale 
problems. The formulations are obtained through duality 
principles and the resulting formulations in displacements or 
stresses correspond to equilibrium problems for an optimal 
global strain energy and an optimal global complementary 
energy, respectively. Analogous formulations for continuum 
structures have been derived in analyses of the homogeniza- 
tion modelling for topology design (Allaire and Kohn 1993; 
Jog et al. 1994) as well as in analyses of the simultaneous 
design of material and structure (Bendsee et al. 1992). 

Since the positions of nodal points are not used as design 
variables in the ground structure approach, a high number of 
nodal points should be used in the ground structure in order 
to obtain efficient topologies. A drawback of the method is 
that  the optimal topologies are very sensitive to the layout 
of nodal points, at least if the number of nodal points is rel- 
atively low. This makes it natural  to consider an extension 
of the ground structure approach and to include the opti- 
mization of the nodal point location for a given number and 
connectivity of nodal points (see, e.g. Kitsch 1989). With 
very efficient tools on hand for the topology design with fixed 
nodal position it seems natural  to treat the variation of nodal 

position as an outer optimization in a two-level hierarchical 
formulation. As the objective function (i.e. the compliance) 
for the optimal topology depends on the geometry variables 
in a nonsmooth way, this outer minimization requires nons- 
mooth optimization techniques. It is shown how very efficient 
designs can be achieved by these means. 

2 Truss topology problem formulation 

In the ground structure approach for truss topology design, 
a set of n chosen nodal points (N degrees of freedom) and 
m possible connections are given, and one seeks to find the 
optimal substructure of this structural universe. In some pa- 
pers on the ground structure approach, the ground structure 
is always assumed to be the set of all possible connections be- 
tween the chosen nodal points, but here we allow the ground 
structure to be any given set of connectivities (see Fig. 1). 
This approach may lead to designs that  are not the best ones 
for the chosen set of nodal points, but the approach implic- 
itly allows for restrictions on the possible spectrum of pos- 
sible member lengths (see, e.g. Fig. 1B where only two bar 
lengths appear), as well as for the study of the optimal subset 
of members of a given truss-layout. 

XXXX 
A B 
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Fig. 1. Ground structures for transmitting ~ vertical force to a 
vertical line of supports. (A)-(C) Truss ground structures of vari- 
able complexity in a rectangular domain with a regular 5 by 3 
nodal layout. (D) All connections between the nodal points are 
included 

Let a i and £i denote the cross-sectional area and length 
of bar number i, respectively, and we assume that  all bars 
are made of linear elastic materials, with Young's moduli E i. 
The volume of the truss is 

m 

V = ~ ale i . (1) 
i= l  

In order to simplify the notation at a later stage, we introduce 
the bar volumes t i -- ai t i ,  i = 1, . . . ,  m ,  as the fundamental 
design variables. Static equilibrium is expressed as 

Bq  = p ,  (2) 

where q, p are the member force and nodal force vectors, re- 
spectively, of the free degrees of freedom. The ground struc- 
ture is chosen so that  the matr ix B has full rank and so that 
m > N, excluding mechanisms and rigid body motions. The 
stiffness matrix of the truss is written as 

m 

K(t )  = Z t i K i ,  (3) 
i=1 
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where t iK i is the element stiffness matrix for bar number 

i, written in global coordinates. Note that K i = 2 ui- i  
li 

where b i is the i-th column of B. 
The problem of finding the minimum compliance truss for 

a given volume of material (the stiffest truss) has the well- 
known formulation 

m 
m i n p T u ,  sub jec t to :  E t i K i u = P ,  
u,t  i= l 
m 

E t i = V ,  t i>O,  i = l , . . . , m  , (4) 
i=1 
where the design variable t i (control variables) and the dis- 
placements u i (state variables) appear as independent vari- 
ables. 

The problem (4) is well studied in the case of an imposed 
non-negative lower bound on the volumes t i (see, e.g. Svan- 
berg 1984). In this case the stiffness matrix K(t)  is positive 
definite for all t > 0 and the displacements can be removed 
from the problem. The resulting problem in bar volumes 
turns out to be convex and existence of solutions is assured 
(Svanberg 1984). Allowing for zero lower bounds complicates 
the analysis, but it also provides valuable insight. 

The zero lower bound on the variables t i means that bars 
of the ground structure can be removed and the problem 
statement thus covers topology design. It should be empha- 
sized that the basic combinatorial problem of topology design 
is still present in the problem formulation (4), even though 
it is not formulated as a 0-1 problem. In problem (4) the 
combinatorial problem is hidden in the non-negativity con- 
straint on the bar volumes. A solution procedure for (4) will, 
through the identification of the active constraints, solve the 
combinatorial problem as to which bars should be present in 
the optimal topology. 

The zero lower bound in problem (4) implies that the stiff- 
ness matrix is not necessarily positive definite and the state 
vector u cannot be removed by a standard adjoint method. 
Removing u from the formulation is not very important for 
the size of the problem, as typically, the number m of bars 
is much greater than the number of degrees o f  freedom. In 
the complete ground structure we connect all nodes, having 
m = n(n - 1)/9~, while the degree of freedom N is only of 
the order 2n or 3n (for planar and 3-D trusses); for this sit- 
uation we have a fully populated stiffness matrix lacking any 
sparsity and bandedness. 

Our aim in this paper is to study large scale truss topology 
problems and for this reason we employ the simplest possible 
design formulation as stated in problem (4). For more gen- 
eral problem statements involving, for example, stress and 
displacement constraints, a suitable formulation is to use a 
full parametrization of the state of the System in terms of in- 
dependent fields of member forces, member strains and dis- 
placements [an extended simultaneous analysis and design 
formulation for this case is discussed by Sankaranaryanan el 
al. (1993)]. Such an approach allows the incorporation such 
constraints in a consistent way (Cheng and Jiang 1992). Lo- 
cal buckling of the individual bars of the ground structure 
can also be treated in this framework, but the formulation of 
a suitable problem statement that covers global buckling and 
the shift of member lengths in the buckling expressions, when 

inner nodes can be removed from the truss, is yet to be seen. 
The extended problem statements can be solved by a number 
of methods, all of which presently suffer from the inability to 
handle large scale problems. For a moderate number of ac- 
tive displacement constraints an optimality criteria approach 
seems to be viable (Zhou and Rozvany 1992/1993). Use of 
a conjugate gradient method for a penalized version of the 
general statement has been investigated (Sankaranaryanan 
el al. 1993), as has the use of interior penalty methods to- 
gether with sparse matrix techniques (Ringertz 1988). For 
the case of a single loading, local stability constraints can 
be efficiently handled in a force formulation and solved by 
a modified SIMPLEX algorithm, as described by Pedersen 
(1993). 

Problem (4) can result in an optimal topology that is a 
mechanism; this mechanism is in equilibrium under the given 
load, and infinitesimal bars can be added to obtain a sta- 
ble structure (Dorn et al. 1964; Fleron 1964; Kirsch 1989; 
l~ingertz 1985). Also, if the optimal topology has straight 
bars with inner nodal points (hinges), these nodal points 
should be ignored. The resulting truss maintains the stiff- 
ness and the equilibrium of the original optimal topology. 

We can formulate the case of multiple loads by treating 
the problem of minimizing a weighted average of the com- 
pliances. Such a formulation has proven to be very efficient 
and useful in the homogenization method, (Diaz and Bendsee 
1992). For a set of M different load cases pk, k --- 1, . . . ,  M, 
and weighting factors W k, k = 1, . . . ,  M, we formulate the 
multiple load problem as 

M m 
min E WkpkTuk subject to : E t i K i u k  = pk 
u~ t ~ 

k=l i=l 

m 

k = l , . . . , M ,  E t i = V ,  ti>_O , i = l , . . . , m .  (5) 
i=1 

Let us introduce an extended displacement vector fi --- (u 1, 
..., u M) of all the displacement vectors u k, k = 1 . . . .  , M, 
an extended force vector 15 = ( W l p  1, ..., WMp M) of the 
weighted force vectors Wkp k, k = 1, ..., M, and the ex- 
tended element stiffness matrices as the block diagonal ma- 
trices 

W I K i  ] 

Ki W2Ki 
= "-. . (6) 

WMKi  
Then problem (5) can be written as 

m 

minlSTfi, subject to : E t i K i f i  = p, 
t l ,  t 

i=1 

m 
t >0, i = l , . . . , m .  (7) 

i=1 

which is precisely of the same form as problem (4). Note 
that in problem (7) it is possible to refer each loading case to 
a distinct ground sub-structure, and that it thus is possible 
to cover fail-safe design along the lines described by Taylor 
(1987). 
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We also note that the problem formulation (4) covers the 
finite element formulation of the minimum compliance design 
of continuum problems that exhibit a linear relation between 
rigidity and the relevant design variable, as exemplified by 
design of variable thickness sheets, the design of sandwich 
plates or the simultaneous design of structure and material 
(Rossow and Taylor 1973; Bendsee et al. 1992). In these 
cases the matrices K i should be interpreted as the specific 
element stiffness matrices, and the design variables t i are the 
element thicknesses (volumes). For these cases and for the 
multiple load formulation (7), the extended element stiffness 
matrices no longer have the form of dyadic products. In order 
to cover all three cases by one formulationi we shall write in 
the following (4) in a generalized form 

m 
m i n p T u ,  subject to :  E t i A i u = p ,  
u,t  i=1 

m 
E ti = V ,  ti >_ O , i = l , . . . , m ,  (8) 
i=1 
where A i are positive semi-definite, symmetric matrices that 
satisfy that the matrix A(t)  = ~m=l t i A  i is positive definite 
if all ti 's are positive. For trusses this means that the number 
of bars in the ground structure exceeds the number of degrees 
of freedom and that the compatibility matrix has full rank. 

Note that the formulations above lend themselves to natu- 
ral extensions, such as to the problem of finding the optimal 
topology of the reinforcement of a given structure and the 
optimal topology problem with self-weight taken into consid- 
eration. 

For the reinforcement problem (see, e.g. Olhoff and Tay- 
lor 1983), using the ground structure approach, we divide a 
given ground structure into the set S of bars of with fixed 
size and the set R of possible reinforcing bars. Typically S 
and R will be chosen as disjoint. We prefer here to choose R 
to contain S as a subset; in this way non-zero lower bounds 
on the design variables can easily be included in the general 
problem analysis. The bars (elements) of the given structure 
have given bar volumes si, i E S, and the optimal reinforce- 
ment ti, i C R, is the solution of the minimum compliance 
problem 

m i n p T u ,  subject to :  E t i A i u  + E s i A i u =  p '  
u,t iER iES 

t >o, i e R .  (9) 
i eR  
This problem can be solved by analogous means and can 
be used for the other topology design problems formulated 
above. Note that a reinforcement formulation in connection 
with a multiple load formulation with distinct sub-ground 
structures of a common ground structure will allow for a very 
general fail-safe design formulation. 

For the important case of optimization with loads due to 
the weight of the structure taken into account, we employ 
the standard assumption that the weight of a bar is carried 
equally by the joints at i ts ends, thus neglecting bending ef- 
fects. With gi denoting the specific nodal gravitational force 
vector due to the self-weight of bar number i, the problem 
of finding the optimal topology with self-weight loads and 
external loadings takes the form 

rain + rig i u , 
u,t 

m m m 

subject to :  E t i A i u  = p + E tigi  ' E ti = V ,  
i=1 i=1 i=1 

ti > O , i =  l, . . . ,  m .  (1O) 

Note that for the problem with self-weight, any feasible truss 
design (i.e. m ~ i = l  ti = V, t i >_ O, i = 1 . . . .  , m),  for which 
the self-weight load equilibrates the external load is an opti- 
mal design with compliance zero and zero displacement field 
(compliance is non-negative in all cases). Thus to avoid triv- 
ial situations, it is natural to assume that the set 

t i t i = V  , ti>_O , i = 1 ,  . . . , m ,  p +  t i g i = O  , 
i=1 i=1 

(11) 
is empty. 

We complete this exposition of problem statements by 
stating the reinforcement problem, with self-weight loads, 
and general stiffness matrices and loads, so that all cases 
above are covered as special cases, 

min p T u +  rig i u +  sig i u , 
u, t  \ i e s  / J 

iCR iES iER iCS 

i R. (12) 
iER 
For the developments to follow it is convenient to rewrite the 
problem statements in terms of a minimum potential energy 
formulation of the equilibrium constraint. Making use of the 
fact that the potential energy at equilibrium equals the neg- 
ative of one half the compliance, (12) can be rewrittcn as a 
max rain problem in the form 

maXt>o m i n [ ~ u T ( E t i A i + E s i A i )  \ i C R  iES 
~iER ti =V 

p + t igi  + s gi (13) 
iER iES I 

This is a saddle point problem for a concave-convex prob- 
lem, and we shall in the following use that the max and min 
operators in (13) can be interchanged. 

3 Optimality criteria methods  

For the sake of completeness of the presentation, we will 
in this section derive the optimality conditions for the gen- 
eral minimum compliance problem (10) with self-weight, and 
show how these conditions constitute the basis for the well- 
known optimality criteria method for the numerical solution 
of the general layout and topology design problem. 

In order to obtain the necessary conditions for optimality 
for problem (10), we introduce Lagrange multipliers 5, E, #i, 
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i = 1, . . . ,  rn, for the equilibrium constraint, the volume con- 
straint and the zero lower bound constraint, respectively. The 
necessary conditions are thus found as the conditions of sta- 
tionarity of the Lagrangian 

L =  p +  rig i u - f i T  t iA i  u _ p _  rig i + 
\ i=1 i=1 

Z t i -  V + # i ( - t i ) .  (14) 
\4=1 i=1 

By differentiation we obtain the necessary conditions 
m m 

E t i A i f i =  P +  E t i g i ;  f i T ( A / u - 2 g 4 ) = E - # i ,  
i=1 4---1 

Pi <- O, #iti  = 0, i = 1, . . . ,  m; F. > 0. (15) 

If we impose a small non-negative lower bound on the areas, 
the stiffness matrix A is positive definite and thus fi is the 
unique Lagrange multiplier for the equilibrium constraint, 
but the situation with a lower bound is not so straightfor- 
ward. 

Now let A(u) denote the maximal mutual energy with 
self-weight u T ( A i u  - 2gi) of the individual bars, i.e. 

A(u) = max {uT(A4 u -  2g4)1i = 1, . . . ,  m } ,  (16) 

and let J (u)  denote the set of bars for which the mutual 
energy attains this maximum level 

J(u)  = { i l u T ( A i u  - 2gi) = A(u)}  , (17) 

We also define non-dimensional element volumes ti = t i /V .  
Then the necessary conditions are satisfied with 

f i=u;  t i = t i  V, iEJ(u); t i=O,  i~J(u); E=A(u); 

tt 4 : 0 ,  i e J ( u ) ;  # i - - - A ( u ) - u T ( A 4  u - 2 g 4 )  , i ~ J ( u ) ,  

(18) 

provided that there exist a displacement field u with cor- 
responding set J (u)  and non-dimensional element volumes 
t i ,  i E J(u),  such that 

V E t i A i u =  p + V  E t4gi; E t i = l .  (19) 
4~J(~) 4~J(u) 4~J(u) 

The optimality conditions (19) state that a convex com- 
bination of the gradients of the quadratic functions 
V ( 1 / 2 u T A i  u - gTu), i C Z(u), equals the load vector p. 

It can be shown (see below) that there does indeed exist 
a pair (u, t) which is a solution to the reduced optimality 
conditions (19). This implies that there exists an optimal 
truss that has bars with constant mutual energies and the set 
J(u)  is the set of these active bars. Note that a pair (u, t) 
satisfying the necessary conditions (19) for problem (10) is 
automatically a minimizer for the non-convex minimum com- 
pliance problem. This can be shown by copying the proof of 
Taylor (1969), who treated the case with a uniform, positive 
lower bound on the areas. For any design si, i =- 1, . . . ,  m, 
satisfying the volume constraint and with corresponding dis- 
placement field v we have that 

(5)  p tig i u = 2  p +  t ig i u -  = 
4=1 / i=1 / i----1 

m m 

4=1 4=1 

m 

2pT  - VA(u) = 2 . T u  - s4 (u) .< 

i=1 

m 

2pTu - E s i u T ( A i u  - 2gi) _< 
i=1 

2 maXw P + sig i w - -~ E s i w T A i w  = 
i=1 i=1 J 

2 P + E s i g i  v - ~ - ~ s i v T A i v =  p +  sig i v ,  
\ 4=1 / i=1 "= 

(20) 

where we have invoked the extremum principle for equilib- 
rium. Finally note that the existence of solutions to the opti- 
mality condition (19) shows that there always exists an opti- 
mal solution with no more active bars than the degrees of free- 
dom (dimension of u) plus 1; this follows from Caratheodory's 
theorem on convex combinations (see, e.g. Achtziger et al. 
1992). 

The optimality criterion (19) allows us to devise a very 
simple and effective method for solving the truss topology 
problem; the approach is well-known and well-documented in 
the literature under the label "optimality criterion method" 
(Olhoff and Taylor 1983; Rozvany 1989). The method is iter- 
ative and assigns material to members proportionally to the 
mutual energy of each member in order to reach the situation 
of constant mutual energy in the active bars 
iteration step k: 

t~ -1  given, 

compute displacement Uk_ 1 from equilibrium eqs. 

[ .k-1  T -- u ) 
~k = max ~ i  U k - l A 4  k-1  , train_ , 

m 

v k =  ~ ( ~ ,  t ~ = ~ ( v / v k ) .  (21) 
4=1 

This method is an effective and general means for solving 
minimum compliance problems and has been used for topol- 
ogy as well as standard sizing problems (Bendsce and Kikuchi 
1988; Diaz and Bendsce 1992; Olhoff and Taylor 1983; Roz- 
vany 1989; Taylor and Rossow 1977; Zhou and Rozvany 
1991). The optimality criteria algorithm can for the single 
loading case be viewed as a fully stressed design.algorithm, 
and it can also be viewed as an implementation of a sequen- 
tial quadratic programming technique for the topology de- 
sign problem; this has been discussed in detail by Svanberg 
(1992a, b). The optimality criteria method involves assembly 
of the global stiffness matrix, as well as the solving the equi- 
librium problem at each iteration step, and this part of the 
algorithm is the most time-consuming. Note that the algo- 
rithm utilizes that the volume is linear in the design variables 
so that satisfying the volume constraint is just a rescaling of 
variables, but the algorithm does not take advantage of the 
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fact that also the stiffness matrix is linear in the design vari- 
ables. Also for the single load case truss topology problem 
(4) we have the coefficient matrices for the individual design 
variables in the form of dyadic products and this is also not 
taken into account. 

It is the provision of a lower bound on the bar volumes 
that allows for the use of the very effective optimality crite- 
rion method. A similar efficiency can be obtained by consid- 
ering the problem of taking the infimum of the compliances 
forall  truss structures with positive bar volumes 

itfpTn p ,  
ki=l .1 

m 

subject to :  E t i = V ,  t i>O, i = l , . . . , m .  (22) 
i=1 

As noted above this problem is convex; this follows from the 
fact that the compliance function, as a function of the design 
variables can be expressed as (see also Svanberg 1984) 

pT tiKi p = mvaX 2 p r y  - v r E t i K i v  . (23) 
i=1 J 

As the supremum (maximum) over a family of convex (linear 
in this case) functions is convex, the convexity of (22) fol- 
lows. Also, it is readily seen that convexity extends to the 
problem with self-weight loads and to optimization problems 
where stiffness is a concave function of the design• The latter 
property is seldom seen in practice. 

Problem (22) can be solved by, e.g. interior point bar- 
rier methods (Ben-Tal and Nemirovskii 1992, 1993; Ringertz 
1989, 1992), so that the positivity constraint on the bar vol- 
umes is automatically satisfied. Problem (22) does not lend 
itself to the use of sparse techniques, as the inverse of the 
stiffness matrix and the Hessian matrix of the compliance 
are full matrices• Sparsity can, however, be utilized if the 
original problem 

m 

inf pTu  subject to : E t i K i u = p ,  
u, t ' i=I 

m 

E ti = V, ti > O , i = l, ... , m, (24) 
i=1 
in both the displacement and design variables is solved using 
interior point methods. Although the latter problem is not 
convex, finding a stationary solution provides also a station- 
ary point for problem (22), and thus a minimizer for this con- 
vex problem (Ringertz 1992). This approach extends readily 
to all the problem types described above• The use of an 
interior barrier method for problems (24) or (22) involves 
the use of a suitable sequence of penalty parameters, which 
in effect corresponds to imposing a constraint of the type 
t i >_ tmi n > 0, i = 1, . . . ,  m for a suitable small lower bound 
value tmi n . 

4 F o r m u l a t i o n s  in  d i s p l a c e m e n t s  o n l y  

We will now use the max-rain formulation (13) of the truss 
topology design problem to derive a globally optimal strain 
energy functional that describes the energy of the optimal 

truss• This leads to an alternative, equivalent convex, but 
non-smooth formulation of the problem, for which a compu- 
tationally effective steepest descent algorithm can be devised. 

We recall that problem (13) has the form 

-.o 
~ieR ti=v \iER iES 

P+ E tigi + E s i g i  u , (13) 
iER iES ] 

and this problem is linear in the design variable and convex 
in the displacement variable. Thus the problem is concave- 
convex (with a compact t-constraint set) and we can inter- 
change the max and min operators, to obtain 

EiER ti=V \iER iES 

P + E t i g i  + E s i g i  u . (25) 
iER iCS / 

The inner problem is now a linear programming problem in 
the t variable. As 

E ti ( uTAiu -  2g/Tu) <- E ' imax( uTAiu -  2g~Tu) ----- 
iER iER iCR 

= V max (a TAiu - 2gTu~ ,  (26) 
iER \ 

when t >_ 0, ~iER ti = V, and as the equality holds for if all 
material is assigned to a bar with maximum specific energy 
u T A i u  - 2g/Tu, we see that the problem (13) can be reduced 
to (Ben-Tal and Bendsce 1992) 

• V 
mm max [ - -  ( u T A i u  - 2 g [ u )  - 
u iER[2 

P + E sigi-  E 5 siAiu u . (27) 
i6S iES 

This is an unconstrained, convex and nonsmooth problem in 
the displacement variable u only, with optimal value minus 
one half of the optimal value for the problem (12). For com- 
pleteness let us state the equivalent problems for the specific 
cases discussed in Section 2. For the single load case we have 

rn~n[ max ( V u T K i u - p T u ) ]  (28) 
ki=l,...,m 

for the truss case, and for the general problem (8) becomes 

rn~n[l.i=l,...,mmaX ( ~ u T A i u - p T u ) ] .  (29) 

For the multiple load case this can also be written as 

min/u k L i=l'''''mmax [k=~lWk(VukTKiuk--pkTuk)]} . (30) 

For the reinforcement problem, without self-weight the equiv- 
alent statement is 



147 

minu [~maxiER [ V u T A i u  + (ie~S l s i u T A i - p T ) u ] }  , (31) 

and for the full topology problem with self-weight the state- 
ment becomes 

min{i:m,a..X.,m[V ( u T A i u - 2 g T u ) - p T u ] } .  (32) 

One can think of the resulting displacements only problems 
(27)-(32) shown above as equilibrium problems for a struc- 
ture with a non-smooth, convex strain energy. This strain en- 
ergy is the strain energy for a self-optimized structure which 
automatically adjusts its topology and sizing so as to mini- 
mize compliance for the applied load(s). This feature is also 
prominent in studies of the simultaneous design of material 
and structure (Bendsce et al. 1992), as well as in the homoge- 
nization approach to optimum topology design of continuum 
structures, in which case the optimal structure will be a con- 
tinuum with a fine microstructure, see, for example, Allaire 
and Kohn (1993). 

It is possible to show existence of solutions to the prob- 
lems (27)-(32) and to prove the equivalence between problem 
statements of the form (4), (7)-(10), (12), (13) and (27)-(32) 
(Ben-Tal and BendsCe 1992). There is no uniqueness in the 
solutions and it is quite well-known that there are normally 
"many" solutions (subspaces). The equivalence of the prob- 
lems is understood in the sense that for a solution u to, for 
example, problem (29) and the corresponding set J (u)  of ac- 
tive bars, there exists a corresponding set of bar volumes t 
satisfying the optimahty condition 

t iAiu= P ~ t i = V, 
iEJ(u) iCJ(u) (33) 
t i=O, i~J(u)  t i>_O, i = l , . . . , m ,  

and these optimality conditions are precisely the optimality 
conditions for the min-max problem (29). 

It turns out that it is advantageous to consider algo- 
rithms for the equivalent problems (27)-(32) and we will 
here describe an "t-steepest descent" method for the non- 
smooth problems (Demyanov and Malozemov 1974; Ben-Tal 
and Bendsce 1992). The algorithm is not the most effective 
that can be devised (see later sections), but it is physically 
intuitive, and it is closely related to optimafity criteria type 
algorithms found in the literature. Also, it is an algorithm in 
the displacement variables only, as the design variables have 
been removed through a duality argument. Note that the 
standard procedure in design problems is to solve for the de- 
sign variables, with the displacements removed via the state 
equation and adjoint equation. The algorithm generates the 
solution u as well as the bar volumes t. For generality we 
describe the algorithm for the general reinforcement problem 
with external loads as well as loads due to self-weight. The 
algorithm consists of the following very intuitive steps. 

Algorithm (35) for the problem (27): 
V 

max (u TAiu - 2gTu)  + minu F ( u ) ,  with F ( u ) = ~ i 6 R \  

1 ( u T A i u  2gTu ) p T u .  -2 E si - - (34) 
iES 

O. Compute an initial guess of displacement field u, for ex- 
ample by solving the equilibrium equations for a feasible set 
of bar volumes t. 

= maxiE R ( u T A i u -  2gTu), 1. For present u, compute $(u) 
indices 

J ( u ) =  ( i E  R u T A i u -  2gTu_> ~ ( u ) - e )  , 

C ~ 10, (35) 

and the displacement dependent load f = p + ~iES sigi - 
~iES siAiu" 
2. Compute descent direction d as 

d = -  [ E t i ( A i u - g i ) - f ]  ' [ . i E J  (36) 

where ti, i E J are found from 

min[tEj [[[iejE ti  ( A i u  - gi)  - f 2 - iEjE tiuT (Aiu - 2gi)] ' 

subject to :  ~ t  i = V ; t i >_ O, i E J. (37) 
iEJ 

3. If ]d I _< 6, stop. Else go to 4. 
4. Compute a step size (~* for update, u := u + a d ,  by a line 
search with the function 

gr(a) = F ( u + a d )  = m a x ~ i ( a ) ,  ~i(a) = ai a2 + bia + ci , 
iER 

V T 1 a i = ~ d  A i d +  ~ E sidTAid' bi = [V (Aiu  - gi) - f]T d, 
iES 

= (A u- 2 g 0  - f + s Aiu u .  (3S) e i 

ies / 
5. Update, u := u + ~*d, and go to 1. 

Here, e is a relaxation on the activity set J which is crucial 
to guarantee the convergence of the algorithm, and 6 deter- 
mines the accuracy of the solution. Each iteration loop of the 
algorithm consists of first finding the set of almost active bars 
(Step 1). The descent direction (Step 2) is then found by first 
finding the bar volumes of these bars, which minimizes the 
error in equilibrium for the given estimate of displacement. 
This is a quadratic programming problem. The error is mea- 
sured in a least squares sense and the descent direction is 
given as the vectorial error with this best fit of bar volumes. 
For e small enough, the set of almost active bars equals the 
set of actually active bars, so it is natural to work with a 
decreasing sequence of the relaxation parameter e, as well as 
with a decreasing sequence of equilibrium errors 6. The line 
search for the non-smooth function ~(~)  (Step 4) is most con- 
veniently carried out using a Golden Section method,  using 
the set JU of almost active bars as the basis for the search. 
The full search is only invoked if the update with this re- 
duced set of bars does not result in an improvement of the 
functional. 

Note that the algorithm above lends itself to an imple- 
mentation that takes the fullest advantage of sparsity both 
in storage and computations. An efficient storage strategy is 
to store the bar-connectivity matrix (m by 2 matrix of inte- 
gers) and the bar cosines (m by 2 or 3 matrix of reals) for all 
information on the matrices Ai, i = 1, . . . ,  m, and to base 
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computations of the data such as Aiu,  u T A i u  on this infor- 
mation. Finally note that the least squares sub-problem of 
Step 2 are sparse problems in the t i variables. For a proof 
of the convergence of the algorithm, we refer to Ben-Tal and 
Bendsee (1993), where also the case of constrained bar areas 
is treated in full detail. 

The algorithm above is conceptually similar to the algo- 
rithm given by Taylor and Rossow (1977) for the single load 
case, the difference being in the update scheme, which here is 
based on the formal identification of the equivalence between 
problems (8) and (29). 

5 T h e  t russ  t o p o l o g y  p r o b l e m  as a l inear  program- 
ming p r o b l e m  

In the preceding section we saw how the minimum compli- 
ance truss topology problem can be reformulated as a non- 
smooth, convex problem in the displacements only, and we 
will here use this equivalent problem formulation as the basis 
for generating other equivalent problem statements. 

The truss problem (27) is, by introducing a bound for- 
mulation~ equivalent to the convex problem (Achtziger et al. 
1992), 

u,# 2 
iES 

subject to :  ~ u T A i u - 2 g T u  < # 2 ,  i e / ~ ,  (39) 

which is a smooth, quadratic, positive semi-definite optimiza- 
tion problem with a large number of constraints. This prob- 
lem lends itself to numerical treatment by invoking a sparse 
S Q P  method specially suited for problems with many con- 
straints. 

For the simpler case of the pure topology problem (no 
structure to reinforce), the problem becomes, up to a re- 
scaling, 

m~n ( - p T u )  , 

subject to : -~ uTAiu- 2g u < 1, i = 1, . . . ,  m.(40)  

Finally, if also selfweight is absent, the problem statement 
reduces further to 

min ( - p T u )  , 

subject to :  VuTAiu2 - < 1 '  i = l , . . . , m ,  (41) 

i.e. a maximization of compliance, with constraints on the 
specific strain energies (mutual energies). 

For the single load truss problem the element stiffness 
matrices are dyadic products and we obtain for the mutual 
energies 

uTK u : 2 
\ / 

This special form of the element mutual energies implies that 
(41) can be written in LP-form as (Achtziger et al. 1992) 

m~n ( - p T u )  , 

V~_E~b Tu 
subject to :  - I _ < v  2 ~ -<1 '  i = l , . . . , m .  (43) 

For suitable stress constraint values c~i, problem (43) is the 
dual of the traditional force formulation for single load, plas- 
tic design (cf. Dorn et al. 1964; Fleron 1964; Hemp 1973; 
Kirsch 1989, 19921 Pedersen 1970, 1972, 1973; Topping 1992) 

min f i ~ i  ( ) 
q + ' q - i = 1  a-'~" q/+ -t- qi- , 

subject to :  B T (q+ q - )  - = p ,  q + > 0 ,  q~->0  

i =  1, . . . ,  m.  (44) 

Here q+, q/- are the multipliers for the inequality constraints 
of (43). With a change of variables 

we obtain the minimum weight plastic design formulation 
m 

min ~ t i , 
q,t 

subject to :  B T q = p ,  - a i t i ~ - g i q i ~ - c r i t i ,  

i = l , . . . , m ,  t i>_O, i = l  . . . .  , m .  (46) 

The member force formulations (44) and (45) are the tradi- 
tional formulations for single load truss topology optimiza- 
tion. These are, of course, very efficient formulations and 
could be solved using sparse, primal-dual LP-methods. The 
force methods are at first glance problems in plastic design, 
because kinematic compatibility is ignored, and their use in 
elastic design is commonly justified by the possibility of find- 
ing statically determinate solutions. Note that the develop- 
ments described above show that the minimum compliance 
design problem for a single load case is equivalent to a mini- 
mum weight plastic design formulation, in the sense that for 
a solution t, q to the minimum weight plastic design problem 
with data V, o" i there corresponds a solution t c ,  x C to the 
minimum compliance problem with data VC, E i. The precise 
relations are (cf. Achtziger et al. 1992) 

where x is the dual variable of the minimum weight plastic 
design problem corresponding to the static equilibrium con- 
straint B T q  = p. 

Note that in problem (46) the stress constraints are writ- 
ten in terms of member forces, in order to give a consistent 
formulation. For some truss problems, the stress in a num- 
ber of members will converge to a finite non-zero level as 
the member areas converge to zero, but the member forces 
will converge to zero (Cheng and Jiang 1992; Kirsch 1992). 
This fact should be observed for any truss design problem 
involving stress constraints. 

The equivalence between the force methods and the min- 
imum compliance problem for the single load case shows that 
any solution to the force LP-formulation leads to a minimum 
compliance topology design, within the frame-work of elas- 
tic designs. Such designs are uniformly stressed designs, as 
well as having a constant specific energy in all active bars. 
The existence of basic solutions to the linear programming 
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problem (44) implies that there exist minimum weight truss 
topologies with a number of bars not exceeding the degrees 
of freedom. If there exists such a basic solution with only 
non-zero forces (areas), this is a statically determinate truss. 
Otherwise, the truss will have a unique force field for the 
given load but will be kinematically indeterminate; this may 
be the case even after nodes with no connected bars are re- 
moved [see also Kirsch (1992), for a discussion on this]. 

The equivalence between problems (44), (46) and (43) 
can also be found in the paper by Dorn et al. (1964), and 
the equivalence between problems (4) and (44) and (46) was 
indicated by Hemp (1973) and others. In the paper by Dorn 
et al. (1964), one can also find a lengthy discussion on how 
the force formulations are convenient for studying an eventual 
static determinacy of the solutions. 

The linear programming formulations above hold only for 
the case of pure topology truss design with unconstrained de- 
sign variables, a single loading case and excluding selfweight. 
Thus, the natural extension of the plastic design situation to 
an LP problem which caters for multiple loads and selfweight 
loads does not seem to have a natural equivalent statement 
in terms of displacements and compliances. Also, it is well- 
known that in this case it is most common that statically 
indeterminate solutions result, thus imposing a requirement 
for further redesign if kinematic compatibility is required, as 
for elastic design (Kirsch 1989, 1992; Topping 1992). 

For the sake of completeness of presentation, note that in 
the reinforcement case without selfweight, the single load case 
problem can be reduced to a quadratic optimization problem 
with linear constraints 

min u T s iK  i u - p T u  -t- I~ 2 
II,N ' 

subject to :  # _ _ _ V ~  b i b - < # '  i e R .  (48) 

Notice here that the matrix ~ i E s s i K i  is positive semi- 
definite, but usually not positive definite. The problem state- 
ment (48) also represents a simplification of the minimum 
compliance problem for a single load case (no selfweight) and 
with lower bounds on the variables; the vector s represents 
the vector of lower bounds on the design variables. 

6 T h e  r a in -max  mul t ip le  load t russ  t opo logy  prob-  
lem 

In this section we shall present a number of displacement 
based equivalent formulations for the worst case multiple load 
topology problem. This implies a min-max formulation of 
the minimum compliance problem. We shall use an infimnm 
type formulation, using that the strain energy as a function 
of design is convex, thus suggesting the use of interior point 
algorithms, as indicated in the introductory section on truss 
design formulations. For trusses, the dyadic structure of the 
stiffness matrix again implies that these problem statements 
in the displacements can be given a dual representation in 
terms of member forces, which, however, for more than one 
load case is not the simple linear programming formulation 
for a multiple load plastic design. 

In the following we will refrain from covering the problem 
of reinforcement, mainly to simplify notation. Also, the self- 
weight problem will play a minor role in the following. How- 
ever, we begin with a general treatment that covers truss, 
variable thickness sheet and sandwich plate design. 

The problem of worst case minimum compliance design 
for multiple loadings pk,, k = 1, . . . ,  M, reads 

rain max p k T u k ,  
u k t  k=l,...,M 

m 

sub jec t to :  E t i A i u k = p k ,  k = l , . . . , M ,  
i-=1 

m 

t i = V ,  t i>_O, i = l , . . . , m ,  (49) 
i=1 
where u k, k = 1, . . . ,  M, are the displacements correspond- 
ing to the different loading cases. The discrete optimization 
over the compliance values can be converted into a smooth 
maximization by introducing a convex combination of weight- 
ing parameters A k, k = 1, . . . ,  M, so that the problem be- 
comes 

M 
min max E AkpkTuk ' 
uk,t ),k k : l  

m 
subject to :  E t iA iuk  = pk , k = l, . . . , M , 

i---1 
m 

E A k = I ;  A k > o ,  k = l ,  
i=l 

m 

E t i = V ,  ti>_O , i = 1 ,  .. 
i=1 

. , M ,  

, m ,  (50) 

which is very similar in form to the weighted average formula- 
tion. As for the standard single load problem and by similar 
means (Achtziger 1992, 1993), it is possible to generate a 
displacements only formulation in the form 

min / max [ k = ~ l ~ k ( Y u k T A i u k - p k T u k ) ] } ,  
uk,)lk ( i=l,...,m 

M 
subject to :  E A k = I ;  A k > o ,  k = l , . . . , M .  (51) 

k=l 
Solutions to this problem can be proved to exist by consider- 
ing an equivalent smooth formulation in the form (Aehtziger 
1992, 1993) 

max~_~l pk u k 
uk  

M 
subject to :  E ukTAiuk  -~ 1, i =  1 . . . .  , m.  (52) 

k=l 
The optimal value of problem (51) equals minus one half the 
extremal value of problem (49), but the direct equivalence 
between the two problems (in the sense discussed earlier for 
the single load problem) may fail i fa  multiplier A k equals zero 
in the optimal solution to problem (51). If this is the case, 
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we cannot guarantee equilibrium for this loading condition. 
However, a set of bar areas can be identified by considering 
the loadings with non-zero multipliers, and a minimum com- 
pliance truss will be generated for these loadings. This makes 
it natural to consider a slightly perturbed version of (49) and 
(51), where the multipliers are constrained as ~k > ~ > 0, 
k = 1, . . . ,  M. For the resulting perturbed version of prob- 
lem (51) we can write 

min 

EM=I Nk=l 

min max [ k = ~ i A k ( V u k T A i u k - p k T u k ) ] } } ,  
u k (i=l,...,m 

(53) 
indicating that the inner problem in the displacements could 
be solved using the methods described in the preceding sec- 
tions, with the outer problem solved using algorithms for 
convex non-differentiable optimization problems (Achtziger 
1992, 1993). 

Let us now in light of the perturbation introduced above 
consider the topology optimization problem as a limes inferior 
problem for a series of optimal design problems with decreas- 
ing positive lower bounds on the design variables. Rewriting 
(49) and imposing positive element volumes, we can remove 
the displacement variables by solving for the now unique dis- 
placements and write 

inf max p kT pk tiAi 
t k-=l,...,M '4=1 ! 

m 
subject to :  E t i  = V ; t i > O, i = 1  . . . .  , m. (54) 

i=1 
Note that we have exchanged the min-operator with the inf.- 
operator as well as changing the constraint t i >__ 0 to t i > O. 
This problem is a convex problem as was also seen for the 
single load problem, ef. Section. 3. 

Problem (54) lends itself to the application of interior 
point algorithms which automatically will enforce the con- 
straints t i > 0, as described by Ben-Tal and Nemirovskii 
(1992, 1993). With a bound formulation of (54) with bound- 
ing variable a, a possible logarithmic barrier function for the 
problem is of the form 

m -1  

m i n ~ - ~ l n  a - t , a [  PkT ( E t i A i )  pk] 
k=l \i=.1 ! J 

i=1 
where amax is a suitable guaranteed upper bound on the op- 
timal value of problem (54). Further details on the use of such 
interior point methods can be found in the papers by Ben-Tal 
and Nemirovskii (1992, 1993). Note that for efficiency, sparse 
matrix techniques should be employed. It is straightforward 
to use sparse matrix techniques if the equilibrium conditions 
are maintained as equality constraints, so that the Hessian 
for the problem remains sparse (see also Ringertz 1988). 

Now returning to problem (53), we note that by a change 
of variables of u k to ~--~-u k, this problem can be stated as 

~ m i n . {  max [ ~  I V  1 kT k ) ] } }  t *i--yu  n k i=l~...,m 
k=l 

(56) 
which is now jointly convex on the feasible set in both the 
multipliers and the displacements. Here we have again used 
the inf-operator to indicate the use of a decreasing sequence 
of lower bounds on the multipliers ~k  as well as to indicate 
the natural choice of interior penalty methods for the numer- 
ical solving of this problem. It has turned out that the use 
of a so-calle'd "Penalty/Barrier/Multiplier Method" is a very 
effective means for the solving of the rain-max topology prob- 
lem with linear cost and stiffness (Ben-Tal and Nemirovskii 
1992, 1993). 

We describe briefly the "Penalty/Barrier/Multiplier 
(PBM) Method" for a general non-linear program (see 
Zibulevsky and Ben-Tal 1993), 

min[f0(x) Ifi(x) _< 0, i e I ] .  (57) 

Consider now the strictly increasing and strictly convex, 
smooth function 

, [ g~pt 2 + t if t >__ - 2 p  

~p ( t )=  ~ - p [ l o g ( _ - - ~ ) + 3 ]  i f t < - 2 p '  
(58) 

composed of a logarithmic branch and a quadratic branch. 
Since Tp(t) < 0 if and only if t < 0, it follows that the 
problem (57) is equivalent to the problem, 

m~n {/0(x)I~P [f~(x)] < 0, i e I} • (59) 

The Lagrangian corresponding to problem (59) is 

Fp(x,/~) = fo(x) + E#ig~ p [/i(x)] , (60) 
ieI 

and the PBM method consists in minimizing this combined 
penalty, barrier and multiplier function. At the j- th iteration 
step of the PBM method the penalty parameter pj > 0 and 

the current estimate of the Lagrange multipliers (#~:iG I) 
% 

] 

are given. The update of the variables xJ are computed by a 
Newton method for the minimization of (60), i.e. 

.j+l = argon (x, .J). (61) 

The multipliers are then updated by the rule ~ j + l  = 

i ~ J ~  [ f i (xJ+l)] , iEIand the penalty parameter by the 

update formula Pj+I = apj, with a parameter a, 0 < a < 1. 
For details on motivation, convergence properties and im- 
plementation of the PBM method we refer to Ben-Tal et al. 
(1992), and Zibulevsky and nen-Tal (1993). 

In order to apply the PBM method to the min-max mul- 
tiple load truss topology design problem, (56) is used in a 
form where the discrete maximization over bar numbers is 
removed by a bound formulation 

inf 
;@>0 

EkM=I ~k=l 



inf 
Ak>O,uk,r 

~f:l Ak=l 

subject to 

M Pk T uk ) V r -  ~ 
k=l  

M 1 k T k 
E o--~ -u Aiu - 7 _ < 0 ,  i = l  . . . .  ,m.(62) 
k=l 

Note that (62) is a smooth convex optimization problem. 
It can be shown from the Karush-Kuhn-Tucker conditions 
of problem (56), that the Lagrange multipliers for the con- 
straints on the mutual energies are precisely the optimal vol- 
umes of the bars in the optimal topology. Hence the optimal 
bar volumes are approximated at each iteration step of the 

PBM method by the multipliers ( # i : i  = 1 , . . . ,  m) .  
We shall now show that  by deriving the dual formulations 

of (56) one can for the truss case generate what amounts 
-to stress based min-max minimum compliance formulations. 
The basis for this derivation is again, as in the earlier develop- 
ment, the dyadic structure of the individual member stiffness 
matrices. Expressing the maximization over the bar numbers 
(the inner problem) with a bounding variable and using aux- 
iliary variables c k = bTuk  (member elongations), where b T 
is the i-th row of the matrix B, the equivalent convex dual 
problem can be derived to have the form 

inf min [ max (1/=~1 g2 (q/k)2) ] 
t qk k=l,...,M 2 Ei ti ' 

subject to :  B T q  T = p k ,  k = l ,  . . , M ;  
m 

E ti = V ,  ti > O , i =  l, . . . ,  m .  (63) 
i=1 

With ~k, ~k denoting the Lagrange multipliers for a bound 
constraint formulation of the maximization over k and the 
equilibrium constraint, respectively, we can for an opti- 

mum qk, t of (63) with ~k > 0, k = 1 , . . . , M ,  identify 

u k = ~k/-A k, t as a solution to our original problem state- 
ment (49) in displacements and bar areas. Also, we can 
show, from the Karush-Kuhn-Tucker optimality conditions 
that qk E__/.. - T .  k = ~ tiDi = , i.e. compatibility of stresses and dis- 

placements is automatically assured. 
The problem (63) is the minimum compliance problem 

formulated in terms of the complementary energy, written for 
the worst-case multiple load situation. This type of formula- 
tion has been used to great advantage for studies of minimum 
compliance problems of continuum structures using a homog- 
enization modelling (Allaire and Kohn 1993) but is usually 
not seen employed for truss design. For the single loading 
case we have the convex problem formulation 

1 (qi? 
inf rain - 
t q 2~=1E i t i ' 

subject to :  B T q : p ;  
m 

E t  i = V ,  
i=1 

t i > 0 ,  

i =  1 . . . .  , m .  (64) 
Finally, we will consider the elimination of the bar volumes 
from the problem (63), by directly solving for these variables. 
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This corresponds to the elimination of bar volumes in the 
displacements (strain) based formulation as carried out in 
Section 4. Expressing the maximization over loading cases 
by a maximization over a convex combination of weighting 
factors 

m i n i n f m a x { ~ A k [ ~ - ' ~ g ~ ( q k ) 2 . ] }  
q~ t Ak Ei t i J ' k=l i=1 

M 
subject to :  E Ak = l ;  A k>_0 ,  k = l , . . . , M ;  

k=l 

BTqk  = p  k, k = l , . . . , M ;  

m 
E t i = V ,  t i > O ,  i = 1  . . . .  , m ,  (65) 
i=1 
we can derive the optimal values of the bar volumes as 

1 [t~ M 
ti = ~ ~ Ei k=lE Ak(q/k)2" (66) 

Here A is a Lagrange multiplier for the volume constraint, 
which is uniquely determined by this constraint. Inserting in 
(65) we obtain the following problem in the member forces 
only: 

min max / 1 ~i 

M 

k=l 

subject to :  E Ak = 1 ;  A k_>0,  k = l , . . . , M ,  
k=l  

BTqk  = pk ,  k = l, . . . ,  M , (67) 

and the optimal bar volumes are given as 

t i = V EZ i=l  k=l  

For the single load case we recover the traditional linear pro- 
gramming formulation (44) in the disguised form 

mm q - ~  qi , 

subject to : B T q  = p .  (69) 

Rescaling the objective function and taking the square root 
of the objective function results in (44). Note that we have 
again seen that the stress constraint values for the plastic 
topology problem should be chosen as V@-i. Also, as (69) 
was obtained by direct duality without rescaling, one can 
see that the optimal value H of the optimal compliance will 
relate to the optimal value k~ of the minimum weight plastic 
design problem as 

= V ~2 • (70) / /  

This relation has also been reported recently by Rozvany 
(1992). 

Note that (69) is the natural formulation for the stress 
only reformulation of the minimum compliance problem 
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stated in terms of stresses and the complementary energy. 
Problem (69) can be viewed as a corresponding equilibrium 
problem for a structure with a non-smooth, convex comple- 
mentary energy. This energy arises from a truss for which 
the bars automatically adjust their sizing and conneetivities 
with the purpose of minimizing the compliance of the cur- 
rently applied loading. This is completely analogous to the 
situation for the displacement based problem and the simi- 
larly formulated continuum problems, as described, e.g. by 
Allaire and Kohn (1992); Jog et al. (1993). 

7 C o m b i n e d  t russ  t o p o l o g y  and  g e o m e t r y  opt imiza-  
t ion  

The "ultimate truss" should clearly be obtained by combining 
topology optimization with a possibility of optimizing simul- 
taneously the positions of the nodal points (or for a FEM 
model, a possibility of optimizing at the same time the shape 
of the finite elements and the distribution of material to these 
elements). For the combined topology and geometry problem 
we have the simplest formulation as 

rain pTu  
u ~ a ~ x  1 

m m 

subject to :  ~ a i i i ( x ) A i ( x ) u  = p ,  ~ a i l i ( x  ) = Y ,  
i= l  i=l  

ai > O , i - - 1 , . . . , m ,  

k < x k <  k bj _ cj , j - -  1 , . . . ,  n ,  k = 1 , 2 , ( 3 ) ,  (71) 

which is just problem (8) rewritten as a problem depending 
also on the nodal positions x j ,  j = 1, . . . ,  n. The nodal po- 
sitions are restricted to lie within certain bounds that should 
be chosen to make the resultant trusses realizable. Because 
the member volumes are dependent on the nodal positions, 
we have here reverted to the cross-sectional areas of the indi- 
vidual bars as design variables. Problem (71) can be solved 
as a combined problem considering the problem either as a 
combined analysis and design problem or as a standard struc- 
tural optimization problem, which can be solved through an 
adjoint method in the areas and nodal positions only (if small 
lower bounds on the cross sectional areas are applied). An 
alternative solution procedure is to apply a multilevel ap- 
proach to the combined problem, treating, e.g. the topol- 
ogy problem as the inner problem. Because of the size of 
the topology problem, earlier work has usually involved some 
form of heuristics to speed up the very significant amount of 
computations involved (Kirsch 1989; Topping 1992). By com- 
bining the effective truss topology design methods described 
above with appropriate tools from non-smooth optimization 
the multilevel approach can be put in a solid mathematical 
framework. 

For a fixed set of nodal positions we choose here the form 
(29) of the topology design problem and thus write (71) as a 
two-level problem, 

b<_x~c t. i-----1, ..., m 

The inner topology problem in the displacements u can effec- 
tively be solved (for fixed x) by one of the methods mentioned 

in the previous sections. The main part remaining is then, of 
course, the minimization of the so-called master function, 

max  

on the outer level. The number of variables (the nodal posi- 
tions) in this outer problem will usually be moderate. How- 
ever, there are two decisive drawbacks. There is no reason 
for F to be convex and F is not differentiable everywhere. 
Hence we cannot expect to find more than local minima of 
F and we have to work with codes from nonsmooth opti- 
mization [e.g. bundle methods (Schramm and Zowe 1992)]. 
These codes require that for each iterate x we can compute 
a so-called sub-gradient as a substitute for the gradient. Us- 
ing tools from nonsmooth calculus it is easily seen that this 
causes no difficulties for the above min-max function F. We 
add that it is straightforward to show that each local mini- 
mizer x* of F together with the associated t* and u*, which 
solve the to~)ology problem for the fixed nodal positions x*, 
gives a local minimizer (u*, a*,  x*) [with a*.z = t * / i i ( z * ) ]  for 
problem (71). 

The two-level approach becomes especially attractive if we 
consider the single load truss topology problem for which the 
member stiffness matrices are dyadic products. Then [com- 
pare (43) from Section 5] F(x) reduces to the parametrized 
linear programming problem 

 (x)=min-pru _ - ti(x) - 1 '  

/ - - - - 1 ,  . . . ,  . ( 7 4 )  

The sub-gradient in this case is basically the derivative with 
respect to x of the Lagrange function for this LP-problem. 
Hence we get a sub-gradient "for free" when solving (43) for 
a given set of nodal positions x. For details we refer to the 
paper by Ben-Tal et al. (1993). 

8 N u m e r i c a l  resul ts  

The availability of efficient methods to solve large (sparse) 
LP problems makes it natural to solve the single load truss 
topology design problem using the LP formulations (43) or 
(44)-(46). For problems with multiple loads and/or bounded 
bar areas, for the reinforcement problem as well as for the 
FEM case, we cannot obtain a linear programming formula- 
tion of the problem and we are forced to solve problems of 
the type (8)-(10), (12), (27)-(32) or (39) directly. Problems 
(8)-(10) generalize most easily to more general design situa- 
tions involving stress and displacement constraints but it is 
large scale and non-convex. Problems (27)-(32) and (39) are 
convex and have the size of the degrees of freedom of the 
ground structure; (27)-(32) are non-differentiable and uncon- 
strained and (39) is differentiable, but at the cost of a high 
number of constraints. The algorithm presented for solving 
problem (25) is a specialized algorithm and it has been im- 
plemented to take advantage of the sparsity of the matrices 
A i. General purpose algorithms for min-max optimization 
or non-differentiable optimization can also be employed, but 
comparison is difficult for problem sizes where sparsity plays 
an important role; also most general purpose methods have 



enormous computer storage requirements. Likewise, problem 
(39) can be solved by general purpose algorithms (SQP etc.), 
but again sparsity and the fact that the number of variables is 
much lower than the number of constraints should be utilized. 
Of the wide range of algorithms we have tried out we have 
found that the Penalty/Barrier/Multiplier (PBM) method 
gives the best performance as a general purpose method for 
both single load and multiple load worst-case design. This 
statement is generally true, but for certain problems with spe- 
cial geometry of ground structure and/or optimal topology 
other algorithms may be just as efficient, It is our experience 
that the truss topology design problem is a very challeng- 
ing mathematical programming problem with structure and 
properties that are a test for even the best of algorithm. 

Table 1 contains typical run-time results for solving sin- 
gle and multiple load truss topology design problems by the 
Penalty/Barrier/Multiplier (PBM) method. For the single 
load case the problem solved was the formulation (41) and 
for the multiple load, worst case design formulation the prob- 
lem solved was the following reformulation of problem (62) 

Table 1. Typical performance of the Penalty/Barrier/Multiplier 
method for truss topology design. The ground structures include 
all non-overlapping connections. For details, see text 

Example Degrees of Number Number 
~eedom of bars of load 

(number of cases 
variables) 

13 × 13 334 (334) 8744 1 
13 x 13 334 (334) 8744 1 
13 x 13 334 (1002) 8744 3 
3 x 33 194 (582) 2818 3 

21 x 11 458 (458) 16290 1 
21 x 11 458 (1374) 16290 3 

Number CPU see 
of Fig. 

Newton 
steps 

34 4' 4A 
34 4' 4B 
58 2 h 4B 
70 35' 5 
37 11' 7A 
69 6 h 4 J 7B 

) inf V r  - E skpkT xk  
sk>_o, xk, r 

E~=l(sk?=l k=l 

M 
subject to :  E x k T A i x k - 2 r - < 0 '  i = 1 , . . . , ~ .  (r5) 

k=l 
This problem is derived from (62) by the transformation 

s k = V/-~, x k = u k / V ~  of variables. For a truss with g 
degrees of freedom, m potential bars and M load cases, prob- 
lem (41) has N variables and m constraints, while problem 
(75) has N M  + M + 1 variables and m non-linear constraints. 
The main computational effort in applying the PBM method 
is the minimization of the unconstrained penalty/barrier 
function (Step 1 in the algorithm as described in Section 5). 
This is done using a Newton method. Therefore the number 
of Newton steps reported in Table 1 reflects well the number 
of main iterations; note that each Newton step corresponds 
to solving a linear system of equations, which for the single 
load case is comparable in size to the linear system solved for 
one full equilibrium analysis step of the "Optimality Criteria 
Method". For all problems the starting point was r = 0, 
u k = O and A k = 1/M for k = 1 , . . . , M .  The algorithm 
was stopped when 6 digits of accuracy of the objective func- 
tion was obtained. The Newton step was performed using 
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the routine EOLBF from the NAG Library. Computations 
were executed on a SUN-4-s.3 Mega-flops computer. The ex- 
amples used for the table are all for ground structures in a 
rectangular domain in the plane with a fairly regular layout 
of nodal points. As potential connections all non-overlapping 
connections were used. 

9 Examples  

We have chosen to illustrate some prominent features of truss 
topology design for single loads, for multiple loads and for the 
case of reinforcement as well as self-weight problems. The 
main purpose is to illustrate the effect of various modelling 
choices on the geometry of the lay-outs. Space does not per- 
mit an exhaustive discussion on this subject, as there are 
many features that influence the final designs, such as the 
choice of nodal points as well as the geometry and connectiv- 
ities of the ground structure, the geometry of the loadings, 
the geometry of the supports, etc. Also, for the combined 
geometry and topology optimization, the allowed movements 
of the nodal points play an important role. More examples 
of the efficiency of large scale truss topology optimization 
methods can be found in the work of, for example, Achtziger 
(1992, 1993); Achtziger et al. (1992); Ben-Tal and Bends0e 
(1992); Ben-Tal, Kocvara and Zowe (1993); Kocvara and 
Zowe (1992); Ringertz ( 1985, 1989); and Zhou and Rozvany 
(1991). 

In all but one of the examples the ground structures con- 
sist of all possible connections (as in Fig. 1D) or of only con- 
nections to the neighbouring points (as in Fig. 1B). For prob- 
lems with all possible connections, the possibility of redun- 
dant, overlapping bar members entering the ground struc- 
ture was avoided by removing overlapping bars, in the sense 
that for any two nodal points the straight line connection 
between the two points always consists of the connection 
through eventual other nodal points lying on the line connect- 
ing the two points. For problems with self-weight overlapping 
bars do not represent a redundancy, as a connection through 
an extra nodal point introduces the possibility of self-weight 
loads at such extra nodes. This underlines the weakness in 
the modelling of self-weight loads in trusses. 

For the truss topology problem with a single loading case 
it is possible to generate a catalogue of optimal topologies. 
Problem (4) is made up of expressions that are element wise 
linear in all variables, except geometric data. Thus, for a 
specific choice of ground structure geometry and load vector 
direction, the optimal topology needs only to be computed 
for one set of assigned values of Young's modulus E, volume 
V, load size, and one geometric scale; for any other values of 
these variables, the optimal values of the design variables t, 
the deformation u and the compliance pTu can be derived by 
a simple scaling; the non-dimensional parameter 

_ (pTu) V E  
]p]]2n 2 , (76) 

is a constant for optimal topologies generated with equivalent 
topologies of the ground structure, with L being a measure of 
scale. A similar non-dimensional parameter can be devised 
for the multiple load case, the case of self-weight loads, etc., 
but here the catalogue will depend on a further range of pa- 
rameters, such as the ratios between the sizes of the different 
applied loads. 
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Fig. 2. The ground structure geometry, loading and support con- 
ditions used for most of the examples 

A very important feature of the truss topology method 
is the prediction of Michell frame type lay-outs in certain 
cases, if such a structure is nature's best topology with the 
given loads, supports and ground structure, as illustrated in 
Figs. 3 and 13. These figures illustrate the varied topologies 
that can be created for the simple problem of transmitting 
a single vertical load to a vertical line of supports, through 
ground structures of rectangular lay-out of different aspect 
ratios. The range of topologies goes from the optimal two- 
bar truss with two bars at -4-45 ° to long slender Michell frame 
lay-outs Which at a global scale behaves like a sandwich beam 
in bending. The transition from "true" trusses to Michell 
truss continua for this setting has been studied by analytical 
means by Lewinski, Zhou and Rozvany (1993, 1994). Note 
that in these examples (as in all cases) we clearly see that 
the topology optimization not only predicts the optimal lay- 
out of the structures, but also finds the optimal use of the 
prescribed possible support conditions. 

It was mentioned earlier that truss topology compliance 
optimization under a single loading condition leads to stati- 
cally determinate solutions, but the resultant structures can 
in many situations be mechanisms, which are stable under the 
applied loading. This feature can in most cases be avoided by 
designing the truss for multiple loading cases, either in the 
weighted average formulation or in the worst case, min-max 
formulation. Figure 4 shows the difference between treating 
three nodal loads as one, combined load, or as three inde- 

A B 

m • • • • • • • 

D 

Fig. 3. The influence of the ground structure geometry on the 
optima] topology. Optimal truss topologies for transmitting a sin- 
gle vertical force to a vertical line of supports (see Fig. 2). The 
ground structures consist of all possible non-overlapping connec- 
tion between the nodal points of a regular mesh in a rectangle of 
varying aspect ratios R = a/b. A: 632 potential bars for 5 by 9 
nodes in a rectangle with R = 0.5. Optimal non-dimensional com- 
pliance • = 4.000. B: 2040 potential bars, 9 by 9 nodes, R = 1.0, 

= 5.975. C: 4216 potential bars, 13 by 9 nodes, R = 1.5, 
= 9.1676. D: 7180 potential bars, 17 by 9 nodes, R = 2.0, 
= 12.5756. See also Fig. 13 

pendent load cases. Note that we through the multiple load 
formulation avoid the mechanisms, at the expense of much 
more complicated topologies. Figure 4 also illustrates the 
differences that occur due to the relative position of the pos- 
sible supports and the applied loads. In Fig. 5. we show, 
for a similar load and support condition in a different ground 
structure, the (small) difference between multiple load de- 
signs achieved through the weighted average formulation and 
the min-max formulation. That  multiple loading conditions 
can also simplify the lay-out of the optimal topology is illus- 
trated in Fig. 6. In all our examples with multiple load, worst 
case design, the nature of the applied loads is such that all 
loads have compliance value at the maximal value. This is 
usually not the case for problems where the optimal structure 
for one of the applied loads can carry the other loads. 

Examples of large truss topology optimization results are 
shown in Figs. 7 and 8, again illustrating the effect of multi- 
ple loads versus single loads, as well as illustrating the very 
important effect of the type of possible supports. One of the 
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Fig. 5. The difference (and similarity) between multiple load case 
treated in the weighted average formulation (equal weights) (A) 
and treated in the worst case rain-max formulation (B). Opti- 
mal truss topologies for transmitting three vertical forces to two 
fixed supports as in Fig. 4A (cf. Fig. 2), but for a long slender 
rectangular ground structure of aspect ratio 16 (like a long span 
bridge), with 33 by 3 equidistant nodes and all 2818 possible non- 
overlapping connections. In the figures, the vertical scale has been 

C distorted in order to be able to show the results 

Fig. 4. The difference between multiple load and single load case * ' ~ ' /  
problems. Optimal truss topologies for transmitting three verti- ~ : t  ~ 
cal forces to two fixed supports. Various positions of the loads are ~ r /  
considered and the trusses are optimized with the loads treated 
as a single load as well as three individual load cases for a rain- 
max, worst case design situation. The ground structures consist of 
all 8744 possible non-overlapping connections between the nodal 
points of a regular 13 by 13 mesh in a square domain. The loads 
are vertical unit loads at three equidistant nodes along the lower 
line of nodes (A), across the middle of the ground structure (B) 
and at the top of the ground structure (C) (see also Fig. 2). The 
left-hand column shows the single load results, the right-hand col- 
umn the multiple load, worst case results. In (A) and (B) we do 
not show the uppermost rows of nodes, as these are not part of the 
optimal structure. A slight asymmetry of the ground structure is 
reflected in the optimal truss topologies 

interesting features of topology design is that  the extreme 
freedom of the design sett ing immediately reveals any weak- 
ness or misinterpretat ion of support  and loading conditions, 
thus underl ining the efficiency of topology design methods as 
an interactive tool in the ini t ial  steps of a design process. 

Finally, in Figs. 9 and 10 we show examples of truss topol- 
ogy design with self-weight loads included in the formulation. 
In Fig. 11 we show a opt imal  topology for a complicated 
lay-out of the ground structure and in Fig. 12 we show the 
results of a combined topology and geometry design for a 
three-dimensional  truss. 

Note that  in all i l lustrations we have chosen to show the 
individual  bars, so that  the plotted areas are proport ional  to 
the stiffness (i.e. area) of the bars. If we instead show the 
thicknesses as being proport ional  to the square root of the ar- 
eas of the bars, corresponding to the dimensions that  would 
be seen in a truss with circular cross-sections, we would ob- 
tain a more realistic plot but  the visual impression of the dis- 

A B 

Fig. 6. A case where the introduction of multiple loads simplify 
the optimal lay-out. Also an example of the optimal topology 
for a ground structure with only neighbouring nodes in a square, 
regular 15 by 15 lay- out being connected (see Fig. 1B); this results 
in only 788 potential bars. All nodes at the left-hand side are 
potential supports (see Fig. 2). A: The optimal topology for a 
single vertical load at the mid right hand node. B: The optimal 
topology for three loadings cases including the load of the single 
load problem. The load of the single load example is twice as 
large as the two other loads, one of which is a horizontal load at 
the mid right hand node while the last load is a vertical load at 
the centre of the ground structure. This is for a weighted average 
formulation with equal weights. The compliance for the load case 
number 1 increases by only 2.58%, as compared to A, which is 
optimal for this load only 

t r ibut ion of stiffness will be distorted as i l lustrated in Fig. 13. 

10 C o n c l u s i o n s  

We have given a survey of formulations, problem structure 
and algorithms used for opt imal  truss topology design for- 
mulated in terms of weight and  stiffness (compliance), or 
weight and strength.  The relation to topology problems for 
cont inuum structures is also outlined. The truss topology 
problems exhibit an algebraic s t ructure  that  allows for the 
generation of a sequence of equivalent problem statements  
in terms of displacements only, forces only, member  volumes 
only and combinations thereof. All of these formulations give 
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Fig. 7. A detailed study of the load and support situation of Fig. 
4A. The ground structure is restricted to a rectangular domain of 
aspect ratio 2, and with the number of nodes increased to a 21 by 
11 layout, with 16290 possible non-overlapping connections. As a 
single load problem we treat the case of only the mid- span load 
applied (A), while the multiple load situation covers the three 
loads of Fig. 4, in the min-max formulation (B). Note that the 
supports have been moved in by two nodes from each vertical side, 
in order to identify an eventual restriction of having the supports 
at the extreme points of the ground structure 

ii . . . . . . . . . . . . . . . . . . .  

• • • • i , • • w i • • • • • • • • • • • 

ib w • i • • 
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Fig. 8. The influence of the boundary conditions. A detailed 
study of the situation in Fig. 7A (single load case), but with the 
right-hand support changed from a fixed support to a "rolling" 
support which restricts movements in the vertical direction only. 
In (A) we use the ground structure of Fig. 7, in (B) the number 
of nodes is increased to a 29 by 15 lay-out with all 57770 possible 
non-overlapping connections 

very valuable physical insight and the topology design prob- 
lem can be viewed as an equil ibr ium problem for an opt imal  
truss with design independent  potential  or complementary 
energy. Finally, through a limited number  of examples vari- 
ous features of topology optimized truss structures have been 
indicated. 
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Fig. 9. The effect of self-weight loads. Optimal truss topologies 
for transmitting a single vertical force to a vertical line of sup- 
ports (see Fig. 2). The figures show the variation of the resulting 
topologies for increasing specific self-weight loads, corresponding 
to increasing real lengths of the structures. In (A) self- weight is 
ignored, in (B) moderate self-weight is present, increased by 15 
times to the design (C) and again 2 times more to the design (D). 
These designs are obtained for a 9 by 6 equidistant nodal lay-out 
in a rectangular domain of aspect ratio 1.6, and all 919 possible 
non-overlapping connections. If ALL 1431 possible connections 
are used the design (D) is modified to the design (E) 
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