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Abstract .

We examine two iterative methods for solving rectangular systems of linear equations :
LSQR for over-determined systems Ax ~ b, and Craig's method for under-determined
systems Ax = b . By including regularization, we extend Craig's method to incompat-
ible systems, and observe that it solves the same damped least-squares problems as
LSQR. The methods may therefore be compared on rectangular systems of arbitrary
shape .

Various methods for symmetric and unsymmetric systems are reviewed to illustrate
the parallels. We see that the extension of Craig's method closes a gap in existing
theory. However, LSQR is more economical on regularized problems and appears to
be more reliable if the residual is not small .
In passing, we analyze a scaled "augmented system" associated with regularized

problems . A bound on the condition number suggests a promising direct method for
sparse equations and least-squares problems, based on indefinite LDLT factors of the
augmented matrix .

AMS subject classification : 65F10, 65F20, 65F50, 65F05 .
Key words : Conjugate-gradient method, least squares, regularization, Lanczos pro-

cess, Golub-Kahan bidiagonalization, augmented systems .

1 Introduction.

Many iterative methods are known for solving square and rectangular systems
of linear equations . We focus here on LSQR [21, 22] and Craig's method [5,
8, 18, 21], and examine their relationship when a regularization parameter 6 is
introduced .
LSQR and CRAIG (as we shall denote the implementations) solve compatible

systems of the form

(1.1)

	

Ax = b

	

or

	

min II xll 2 subject to Ax = b,
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where A is an m x n real matrix and b a real m vector. Typically m < n, though
not necessarily. Both methods are based on the Golub-Kahan bidiagonalization
of A [11] with starting vector b . CRAIG is of interest because it is slightly simpler
and more efficient . LSQR has an advantage if (1 .1) has no solution : it solves the
least-squares problem

(1.2) min llAx -b112,

where typically m > n, though not necessarily.

1.1 Damping or Regularization

LSQR also solves the damped least-squares problem

(1.3)

	

min IIAx - bII2 + 116x11 2

	

= min
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Min IIx112 +
11 8 112

2

min (J

(6 )
x-

( 1 )

subject to Ax + bs = b,

subject to (A 6I) ( :) = b .

2

where 6 is a small scalar parameter that regularizes the problem if rank(A) < n
or A is ill-conditioned . Almost no additional work or storage are needed to
incorporate regularization [22] . (We assume throughout that 6 > 0 is given .
Methods for choosing 6, such as generalized cross-validation, form a separate
and important field .)
Note that under-determined systems may be incompatible (e.g ., in the case of

image reconstruction when there is noise in the measurements) . Problem (1.3)
covers such cases, and LSQR may be applied . However, our original motivation
was to extend CRAIG to incompatible systems in the hope that it might perform
better than LSQR when m << n . For this purpose we study the problem

Since this is a compatible system for any 6 > 0, Craig's method may be applied .
In Section 4 .4 we take advantage of the structure of (A 61) to develop a
specialized version of CRAIG . Some additional work and storage are required,
but the method should be reliable if s is not too large compared to x .
Suppose Ax = b has a solution (i .e ., the system is compatible) . If 6 > 0, it is

easy to show that a solution of (1 .3) does not satisfy Ax = b . Similarly for a
solution of (1 .4) . However, if 6 is rather small, IIAx - b1l may be negligible .

1 .2 Equivalent Problems

If 6 > 0, problems (1.3) and (1 .4) are both well-defined for any A (with
arbitrary dimensions m and n) . Somewhat surprisingly, they turn out to be the
same problem. To see this, define r = bs = b - Ax and eliminate s from the
first line of (1 .4) . The extended LSQR and CRAIG algorithms may therefore be
compared .
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The equivalence of problems (1 .3) and (1.4) was observed by Herman et al .
[14], who used it to solve damped least-squares problems by applying Kaczmarz's
method for compatible systems to (1 .4). Dax [6] has recently improved the
rate of convergence of this SOR-type approach, and extended it to least-squares
problems with general linear constraints . Here we explore the equivalence from
the viewpoint of conjugate-gradient-like methods .

1 .3 Summary

To give some assurance that the equivalent formulation is justified numerically,
Section 2 examines the eigenvalues and condition numbers of the systems defining
r, s and x, and suggests a promising direct method . Section 3 reviews CG-like
methods for symmetric systems . Section 4 discusses methods for unsymmetric
or rectangular systems and presents the extended form of CRAIG . An overview
is given in Section 5 .

2 Eigenvalues of Augmented Systems .

The solution of the least-squares problem (1 .3) is well known to satisfy the
augmented system

(2.1)

	

AT

	

S I (x) - (0)'

where 6 > 0 . If S > 0, problems (1 .3) and (1 .4) are both solved by the alternative
augmented system

61

	

A )

AT -SI
(x,)

-

(
0

b) ,

where r = Ss. It is interesting to find that the latter system may be more
favorable when A is ill-conditioned . To see this, we regard both systems as
special cases of

al

	

A ) s 1

AT - sI (x) - (O) '

where a > 0, S > 0, and r = as . We then extend the analysis of Golub and
Bjorck (see [2, 4]) by expressing the eigenvalues of the augmented system in
terms of the singular values of A .

If A has rank p < min(m, n), let its nonzero singular values be a2 7 i = 1, . . . )P ,

with IIAII = a l and cond(A) = al/ap .
RESULT 1 . LetA be an m x n matrix of rank p with singular values a2 . Assume

a > 0 and S > 0 . The eigenvalues of the matrix in (2.3) are given by

2

al A 1 (a-b )~
2

	

«

2 )Z,or? +1(a+
%

	

4

	

a

K«s AT - 62 I A(K«s) _ a m - p times,
s 2 n - p times.«
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When 6 = 0 and p = n, cond(Kab) varies greatly with a : from approximately
cond(A)2 when a ti al to about cond(A) when a P:~:: an, . Considerable work
has been done on choosing a to improve the numerical performance of direct
methods when A is ill-conditioned ; see [2, 1, 4] . (In [4], a is chosen to minimize
not cond(Kab) but a bound on the error in x.) In practice, accurate least-squares
solutions may be obtained even if a is not especially close to its optimum value,
though a safe choice remains problematical ; e .g,, see [17] .

When 6 > 0, the difficulty of choosing a seems to vanish if we set a = 6, since
the eigenvalues of Kab then simplify and the condition of Kab is readily seen .

RESULT 2 . Let A be an m x n matrix of rank p with singular values a2 . Assume

RESULT 3 . If A is square and nonsingular, cond(Kb) = \(al + S 2)/(a2n + 62) .

If 0 < 6 < al , cond(K6) < / cond(A) .
If a,,, < 6 < al, cond(Kb) = IIAII/S •

RESULT 4 . If A is rectangular, cond(K5) _ /o + 62/S .
If aP < 6 < a 1 , cond(K5) < Vcond(A) .
If 0 < 6 < 0, 1, cond(K5) ~ IIAII/6 .

For rectangular A, we see that cond(K6) ;~-- IIAII/S regardless of the condition
ofA. Hence, (2.2) should be a reasonable system on which to base our extension
of Craig's method, as long as 6 is not too small .

Note that if IIsII is very large, good accuracy in the combined solution (s,x)
may not imply good accuracy in x, although the error should be acceptable if
IIsII < 10011x11, for example . In system (2.1), we therefore recommend that 6 be
large enough to satisfy Ir I I <_ 10061) x I I

2.1 A Direct Method

The bounded condition of K6 suggests a direct method for sparse linear equa-
tions and least-squares problems, based on factorizations of K6 and the use of
iterative refinement .

In principle, we could apply a stable, sparse factorizer to any of the augmented
systems (2.1)-(2 .3), as in [1] . A suitable package is MA47 [7], which computes
sparse LBLT factorizations (where B is block-diagonal with blocks of order 1 or
2) . Iterative refinement may be used to recover precision if the factorizer is run
with a loose stability tolerance to improve the sparsity of L .

More importantly, we focus on the fact that Kb is "symmetric quasi-definite"
when 6 > 0, so that Cholesky-type factorizations PK6PT = LDLT exist for
arbitrary permutations P (with D diagonal but indefinite) [24] . MA47 is able
to compute such factors, and they are typically more sparse (but less stable)
than LBLT factors. A stability analysis for solving K 6z = d follows from [12],

6 > 0 . The eigenvalues of the matrix in (2.2) are given by

61 A ±\/a2 + 62 i - 1, . . . , p,
K6 A(Kb) = b m - p times,

AT -6I '
-b n - p times .
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as shown in [10] . The key result is that the error in z is bounded by an effective
condition number Econd(K8), which is larger than the usual condition number .
When A is square and nonsingular, we find from [10] that the effective condi-

tion of K6 is about (IIAII/S) cond(K8), and hence from Result 3,

Iterative refinement may be used to restore precision as before, and also to
eliminate the effect of 6 . For example, if we really want to solve Ax = b, we
could apply refinement to the system

AT
A )

(x) = ( bcc) ,

using LDLT factors of KS to solve for corrections (with some convenient S and c) .
In exact arithmetic, refinement will converge with any 6 > 0, and the convergence
is rapid if S < 0 .5a-,,,, say. In practice, convergence to a solution of (2.4) seems
to occur reliably if cond(A) < 1// (and 6 < 0.5a,,,), where e is the machine
precision.
When A is rectangular, Econd(Kb) .: (IIAII/S) 2 , and similar comments apply .

The approach has been pursued elsewhere [23], with promising results .

3 Iterative Methods for Symmetric Systems .

To provide further background, we review three methods for solving symmetric
systems Bx = b. As described in [20], the methods CGM, MINRES and SYMMLQ
are based on the Lanczos process [16] for tridiagonalizing B. A helpful framework
for viewing such methods has been suggested by Paige [19] :

An iterative process generates certain quantities from the data . At
each iteration a subproblem is defined, suggesting how those quanti-
ties may be combined to give a new estimate of the solution . Dif-
ferent subproblems define different methods for solving the original
problem. Different ways of solving a subproblem lead to different
implementations of the associated method .

Typically the subproblems may be solved efficiently and stably (though stabil-
ity questions are sometimes overlooked) . The numerically difficult aspects are
usually introduced by the process .

The framework also applies to eigenvalue problems, but for Bx = b we em-
phasize the additional idea of taking orthogonal steps, and the ability to transfer
from one method to another (see Section 3.4) .

3.1 The Lanczos Process

Let Tridiag(B, b) -* (Tk, Vk) denote the following process . Given a symmetric
matrix B and a starting vector b, the Lanczos process generates vectors vk and

Econd(KS) ti I (IIAII/S) cond(A) 0 < 6 < rte ,

l (11A 1116)2 6 > an .
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positive scalars cxk, 13k (k = 1 ; 2, . . .) such that after k steps,

(3.1)

	

BVk = VkTk +/3k+1Vk+1ek = Vk+lHk,

where ek is the kth unit vector, Vk = (v 1 v2 . . . vk ), Tk is tridiagonal, and
Hk is also tridiagonal with one extra row :

/ a1 132

	

\
02 a2 J33

	

Tk
Hk =

~k+l ek

l3k ak f

The starting condition is j3 1v 1 = b, and with exact arithmetic the columns of Vk
would be orthonormal for each k until /3k+1 = 0-

3.2 Lanczos with Shifts

Let 6 be a given scalar . The next result is well known and follows directly
from (3.1) . We state it to motivate the unsymmetric case in Section 4 .2 .

RESULT 5 . If Tridiag(B, b) -~ (Tk, Vk), Tridiag(B + SI, b) -> (Tk + SI, Vk) .

3.3 CGM, MINRES and SYMMLQ

At each iteration, CGM, MINRES and SYMMLQ use various subproblems to
define vectors yk, from which estimates of x could be obtained in the form
xk = Vkyk . Table 3 .1 shows the subproblems and the factorizations needed to
solve them .

Since Yk may differ from Yk_1 in all elements, each method computes certain
quantities Wk and zk, allowing the solution estimates to be updated in the form
xk = WkZk = xk_1 + (kwk . Table 3.2 shows the possibilities .
Key numerical facts are that (3.1) holds to working precision, Vk(/3 1e 1 ) = b

exactly for all k, and the subproblems can be solved accurately . Residual norms
may be estimated as the algorithms proceed (to provide stopping criteria) . In
practice, the residuals do eventually become small even when the columns of
Vk are not reorthogonalized, but the convergence of each algorithm awaits full
explanation .

3.4 Preferences

If A is positive definite, so is Tk; CGM can then obtain Cholesky factors of
Tk for all k . MINRES uses the QR factorization of Hk, and is applicable to any
symmetric B, including cases where Bx = b is incompatible . SYMMLQ uses the
same QR factorization (disguised as the LQ factorization of Hk ), and is again
applicable to any symmetric B, except that Bx = b must be compatible.
Let rk = b - Bxk be the residual vector for a given xk, and let dk = x - xk be

the error in the solution . The different algorithms have numerous properties .
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Table 3.1: Subproblems defining Yk and xk = Vkyk for three algorithms .

Table 3.2: Definition of Wk and zk such that xk = Vkyk = Wkzk.

For example, the MINRES point xk solves the problem "min t' IIrk II such that
xk = Vky", so that IIrkll decreases monotonically, and there is no difficulty if the
system is incompatible .

In contrast, SYMMLQ's point xk solves "mint IldkII such that xk = AVkt"
[9, 15], so that IIdkII decreases . It also solves "mint' IlxkII such that xk = Vky and
Vkrk = 0", so that IjxkII increases, and the system must be compatible .

Note that SYMMLQ accumulates xk as a sequence of theoretically orthogonal
steps. The columns of Vk and Wk are not orthonormal in practice, but at
least IIwkII ~ 1 for SYMMLQ . On ill-conditioned systems, forming WkZk should
involve less cancellation error than in MINRES (and perhaps even in CGM),
where the columns of Wk could be very large .

Note also that f f rk II is often much larger for SYMMLQ than for the other
methods. Since the residual norms can be estimated cheaply, SYMMLQ has
provision for transferring to the CGM point upon termination if the residual is
then smaller . Thus, if II rk+1 II < IIrk II, SYMMLQ takes a final step of the form

x+1 = xk + (k+lwk+l, where the last two items are already known. MINRES
could transfer cheaply to the same CGM point if so desired .

Wk Zk Estimate of x

CGM Vk L-T LkDkZk = /31e1 xC = WkZk

MINRES VkRk 1 Qk
~30

1 _
rzk

xk = WkZk

SYMMLQ
I

Vk+iQk 0

bk+ li /

Lkzk = N
q
iei xk = Wkzk

Method Subproblem Factorization Estimate of x

CGM Tkyk = B1e1 Tk = L kD k Lk xk = Vkyk

MINRES

SYMMLQ

min 11 Hkyk - Rlel11

min ~IYk+1II

QkHk = RO

HkQk _ (Lk 0)

xk = Vkyk

xk = Vk+lyk+1

s.t . Hkyk+l = 0lel



4 Iterative Methods for Rectangular Systems .

The preceding thoughts carry over to the methods we are interested in for
solving problems (1 .2)-(1 .4) . As described in [21, 22], LSQR and CRAIG are
based on the Golub-Kahan bidiagonalization procedure [11], which we should
now call a process .

4.1 The Golub-Kahan Process

Let Bidiag(A, b) -* (Bk, Uk+1 i Vk) or (Lk, Uk, Vk) denote the following process .
Given a general matrix A and a starting vector b, the Golub-Kahan process
generates vectors Uk, vk and positive scalars ak, /3k (k = 1, 2, . . .) such that
after k steps,

AVk = Uk+1Bk = UkLk+/3k+luk+1 e k

ATUk+1 - VkBk + ak+lvk+lekk+l - Vk+IL +1,

where Uk = ( u1 u2 . . . Uk ), Vk = ( v1 V2

	

vk ), Lk is lower bidiagonal,
and Bk is also bidiagonal with one extra row :

Lk =

The starting condition is 31 u 1 = b, and with exact arithmetic the columns of Uk
and Vk would be orthonormal for each k until ak+1 = 0 or /3k+1 = 0-

4.2 Golub-Kahan with Regularization

Let S be a given scalar (> 0 without loss of generality), and define

(4.2)

	

A
A =

6I
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/ a1

	

1
032 a2

A ak j

During Bidiag(A, b), orthogonal matrices
plane rotations to form the quantities

k(B1)=(BOk)'

,

Qk

Bk =

	

Lk

0k+1ek

A=(A SI) .

may be constructed from 2k - 1

(Uk+l Yk) =
(

Uk+1

where Bk (like Bk) is lower bidiagonal with dimensions (k + 1) x k . Alternatively,
orthogonal matrices Qk may be constructed from 2k - 1 plane rotations to form

T

	

Vk

	

T
(Lk SI )Q = (Lk 0),

	

(Vk Yk ) =

	

Uk Qk ,
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where Lk (like Lk) is lower bidiagonal and k x k . The following results are
obtained straightforwardly from (4.1)-(4 .4) .

RESULT 6 . If Bidiag(A, b) -3 (Bk, Uk+1, Vk), Bidiag(A, b) -* (Bk, Uk+1, Vk) .
RESULT 7 . If Bidiag(A, b) - (Lk , Uk, Vk), Bidiag(A, b) -> (Lk, Uk, Vk)

In short, the bidiagonalizations of A = ( A) and A = (A 61) may be obtained81
efficiently from the bidiagonalization of A itself . The mechanism is less trivial
than in the symmetric case. It motivates the subproblems used next .

/F.3 LSQR and CRAIG

As in the symmetric algorithms, LSQR and CRAIG use certain subproblems
to define vectors Yk and solution estimates xk = Vkyk . Table 4.1 shows the
subproblems and the factorizations needed to solve them. Table 4 .2 shows how
the factorizations are used to obtain updatable estimates xk = Wkzk .
Note that Bidiag(A, b) is used in all cases . The subproblem that allows LSQR

to incorporate regularization was first proposed by Bjorck [3] . Result 6 helps to
confirm that the resulting algorithm is equivalent to applying the original LSQR
to A and b . (Working backwards, the proof of Result 6 reveals the need for the
orthogonal factorization (4.3), which in turn suggests the subproblem .)

Similarly, the subproblem that allows CRAIG to incorporate regularization was
originally just "written down", but Result 7 and its derivation now confirm that
the resulting algorithm is equivalent to applying the original CRAIG to A and b .

4.4 The Extended CRAIG Algorithm

At last we have enough background to state the extended Craig-type algorithm
for solving the regularized least-squares problem (1 .3) in its equivalent form (1 .4),
namely

min ~IxlJ 2 + 118112 subject to Ax + 6s = b .

At stage k of Bidiag(A, b), we solve the subproblem

(4 .5)

	

min JIM
112 +

~ Itk
112 subject to Lkyk + 6tk = /31e1,

using the LQ factorization in (4.4) :

(4 .6) (Lk 6I )QT = ( Lk 0),

	

LkZk = 131e1,

We then define solution estimates (xk, sk) as follows :

(Yk
tk

xk \1 _ Vkyk \1 _ Vk

	

( Vk
yk \1 _

	

zk \1
) Sk

/

	

Uktk
/

	

Uk

	

tk
/ -

	

6 /
-V

k
(4 .7

	

zk.

Since sk is not really needed, we use the top of half of VkZk to obtain xk =

WkZk, where Wk is defined in Table 4 .2 . Note that Yk is not needed either,
but computation of Wk from Uk and Qk requires additional work and storage .
(In contrast, LSQR does not need (Tk+l or Yk in (4.3), so incurs little cost with
regularization .) Table 4 .3 compares the algorithms .
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Table 4.1 : Subproblems defining yk and xk = Vkyk for four algorithms .

Table 4 .2 : Definition of Wk and Zk such that xk = Vkyk = Wkzk .

Table 4.3 : Comparison of algorithm costs with and without regularization .

597

Wk Zk

LSQR 6 = 0 VkRk 1 Q0161

	

zk
=

~k+1

6 > 0 VkRk 1 Qk
~Lel

} = Sk+I
4k

CRAIG 6 = 0 Vk zk = yk

6 > 0 ( Vk 0 )Q
( Ik

)k

O /
Lkzk = 0lel

Method Subproblem Factorization

LSQR

	

6 = 0 min Bkyk - 01e11QkBk
Rk

=
C )

0

6 > 0 min
Bk

	

~
1 el Bk

-
Rk

QkSI yk

	

0/

	

/
061

	

0

CRAIG 6 = 0

6>0

Lkyk = /31e1

min Iyk112+ It k ll2 (Lk 6I)Qk =(Lk 0)

s .t . Lkyk + Stk = 131e1

Storage Work per iteration

LSQR, any 6
CRAIG, 6 = 0
CRAIG, 6 > 0

m + 3n
m + 2n
m + 3n

3m + 5n
3m + 4n
3m + 8n
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4.5 Residuals

The solution of (4.5) satisfies

(4.10)

	

min

(4.11)

	

min

(

61

	

Lk

	

tk

	

e
Lk _6I )

)( tk'
yk - ( X0 1 )

From (4.1) and (4 .8), we find that

(Si

	

A

	

sk

	

b+?/k/k+lUk+1
AT -SI

	

Xk

	

0

where rtk is the last element of yk . Since Qk is computed as a product of plane
rotations,

Qk = (Ql,k+lQk+2,k+1) (Q2,k+2Qk+3,k+2) . . . (Qk-1,2k-lQ2k,2k-1) Qk,2k,

we have

Ilk = ekyk - eTN
( 0)

- ekQk,2k
(

0 ) = Ckekzk = Ck(k,

where ck is the cosine defining Qk,2k, and bk is the last element of zk . Thus,
CRAIG may terminate when ICkCk/3k+lI is suitably small . (The analogous quan-
tity when S = 0 is I(k,3k+1l [21] .)

4 .6 Transferring to the LSQR Point

Just as (1.4) is equivalent to (1 .3) when S :?~ 0, we see that the extended CRAIG
subproblem (4.5) is equivalent to the regularized least-squares problem

2

(SI) yk- ( 30l )
which is very similar to the LSQR subproblem in Table 4 .1 :

( 5 )yk -

(

/3

0

2

,

This in turn is equivalent to the minimum-length problem

(4.12)

	

min Ilyk
11 ' + Iltk+ll12 subject to Bkyk + Stk+1 - /31e1,

which we can easily solve using the LQ factorization (4.6) already available. A
final step from the CRAIG point to the corresponding LSQR point can therefore
be taken if desired, just as SYMMLQ can transfer to a final CGM point .
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4.7 Preferences

Let rk = b - Axk be the residual for a given Xk, let dk = x - xk be the error,
and first suppose that there is no regularization .
LSQR chooses xk to solve the problem "min t' 1Irk!j such that xk = Vky", so

that lirk jj decreases and the system may be incompatible .
The properties of CRAIG are similar to those of SYMMLQ. The CRAIG point

solves "mint 11dk11 such that xk = ATUkt" and also "min5 !Ixk 1 ! such that xk =
Vky and Ukrk = 0", so that IIdkI I decreases, IlEkI I increases, and the system must
be compatible. A benefit is that xk is formed as a sequence of orthogonal steps .

Similar properties hold when regularization is introduced . However, for CRAIG
it is estimates of the combined vector (s) that are formed via orthogonal steps .
We cannot expect good accuracy in the final estimate of x if jjxjj << I1s1l .

5 The Broad Picture .

For completeness we state the following results, linking the regularized LSQR
and CRAIG algorithms to hypothetical ones based on the symmetric Lanczos
process. The equivalences are algebraic, and they generalize known results for
the case S = 0 . Result 9 closes a gap in existing theory .

5.1 Equivalence to CGM on Positive Definite Systems

RESULT 8 . The LSQR iterates xk are the same as the CGM iterates xk for the
problem (ATA + 521)x = ATb .
RESULT 9 . The Extended CRAIG iterates xk are related to the CGM iterates

for the problem (AAT + 62I)t = b according to xk = ATtk .

5.2 Equivalence to CGM Subproblem for Indefinite Systems

As noted in Section 2, the augmented system

= ( 61

	

A ) (5.1)

	

KS ( s ) b,

	

KS

	

AT -S , b (0 )

is of interest when S > 0. From the Golub-Kahan process (4.1) we have

Kb
(

and

SI Bk

Vk

	

BT -SI
0

	

T+

	

ek+l
ak+lvk+1

Uk

	

_ Uk

	

61 Lk

	

13k+luk+l TKS

	

Vk

	

Vk

	

LT
-sI +

	

0

	

) ek ,
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which are equivalent to the Lanczos process Tridiag(K5, b) -- (T2k+1, V2k+1) and

(T2k, V2k) respectively, where

/ 6 a l

T2k+1 =

and

02
S a2

ak -S

,3k+1

/3k+1
6 1

V2k+1

	

u2

	

uk

	

uk+1
2k+1 =

V1

	

V2

	

Vk

RESULT 10 . Subproblem k in LSQR is equivalent to subproblem 2k+1 in CGM
for the indefinite system (5.1) .

RESULT 11 . Subproblem k in Extended CRAIG is equivalent to subproblem 2k
in CGM for the indefinite system (5.1) .

5 .3 Alternative Implementations

The equivalence of problems (1 .3) and (1.4) reveals that there are two dis-
tinct ways of solving the regularized least-squares problem, based on distinct
orthogonal factorizations . We may call these two implementations :

LSl Form
Q ( 61 / _

( R ), set
(d ) = Q ( / ,

and solve Rx = c .

LS2 Form (A SI )QT = (L 0), solve Lz = b, and form (X) = QT( z
s

	

0

Similarly, there are two possible implementations of LSQR (when S > 0) and two
options for extending CRAIG, based on two ways of solving the subproblems in
Table 4 .1 :

LSQR1

	

Use QR factors of Bj , as in the standard LSQR .

LSQR2

	

Use LQ factors of (Bk SI ) .

CRAIGI Use QR factors of LkSI
CRAIG2 Use LQ factors of (Lk SI ), as in Section 4 .4 .

Experiments with Matlab indicate that the LSQRI matrix is typically better
conditioned than the other three shown . Hence, the standard LSQR implemen-
tation is probably the most reliable (and fortunately also the most efficient) .

T2k

0 /3k+1

Uk+l

0

1

l



6 Numerical Tests.

We have compared LSQR and the extended CRAIG method on a range of
regularized least-squares problems in which A has one of the forms

A=Y(o )Z,

	

YDZ,

	

or Y(D 0)Z,

where D is a diagonal matrix containing specified singular values, and Y and
Z are Householder matrices. (The problems are regularized versions of those in
[21] .)
Figure 6.1 shows how 11A'rk - S`xk 11 and the error I1 x - xk 11 varied on a

particular under-determined problem with A reasonably ill-conditioned (m =
100, n = 200, cond(A) ;~_- 106, 11A11 = 1, jIblj ~~ 1, llxI ;z,- 1, 1Iril .:: 5 x 10_4 ,

6 = 10 -6 , machine precision c : 10-16 )

The plots for LSQR seem considerably preferable at first sight, and suggest that
transferring to the LSQR point may often be desirable . Since CRAIG minimizes
the error in the combined vector (x, s), the error in x itself may not be monotonic .
The effect is exaggerated by the fact that 1 s 1l = 1 r 1l 16 ti 500 >> 11 x l l .
In general, CRAIG performed well on systems of all shapes if (jrlj was not

too large and 6 was not too small (say lrlJ/6 < 104) . After transfer to the
LSQR point, the final solution agreed closely with LSQR . Under more extreme
conditions, it was apparent that I xk Il may exceed the exact 1IxI by a large factor,
and cancellation can occur during transfer to the final LSQR point . This is a
definite disadvantage .

It was observed that LSQR also performed reliably on systems of all shapes (in-
cluding ones that were strongly under-determined), with no apparent restriction
on jjrjj or 6 . We checked for cancellation in the LSQR update xk = (VkRk 1 )zk =
xk_1 + (kwk by monitoring (k, lwkll and their product (at no cost, since jlwkIl
is already needed for one of LSQR's stopping criteria) . We found that lwkjj was
indeed often large, but the corresponding ck was invariably small. (The largest
change to xk was always for k = 1!) Thus, we have not yet found cases to
illustrate CRAIG's potential advantage . Future tests on the examples proposed
in [13] may be more revealing .

7 Conclusions .

Since Craig's method is efficient and reliable for compatible systems Ax = b, it
has long seemed desirable to extend it to least-squares problems . The extension
given here is equivalent to applying the existing method to a compatible system
Ax + 6s = b. It should therefore retain good numerical properties when 11s11/IIxI1
is not too large . (Thus, 11b - Ax 11 should not be very large, and 6 should not be
too small.) Incompatible under-determined systems are likely candidates .
The extended method is slightly more expensive than LSQR . A potential

advantage exists on problems for which the LSQR iterates are much larger than
the solution : 11xkjj >> 11x11 . However, we have not yet found examples of such
problems .
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Figure 6 .1: Residuals II ATrk - S 2xk it for normal equations (A TA + 62I)x = ATb,
and corresponding errors lix - xk 11 . LSQR -, CRAIG • • . .

A benefit of this research has been to observe that LSQR's reliable performance
on over-determined systems seems to hold for under-determined systems also
(with or without regularization) .
A further benefit has been to focus on the augmented system (2.2) and the

fact that cond(K8) : IIA11/S, suggesting a direct method for sparse equations
and least-squares problems based on indefinite Cholesky factors (see Section 2) .

The presentation has followed Paige [19] (and [20]) in emphasizing the sepa-
ration of the Lanczos and Golub-Kahan processes from the subproblems used to
define particular solution methods . It also illustrates the parallels between the
algorithms for symmetric and unsymmetric equations, and unifies the bidiago-
nalizations of A, ( S7) and (A SI ) .
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