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Abstract .

Stability analysis of some representative numerical methods for systems of neutral
delay-differential equations (NDDEs) is considered . After the establishment of a suffi-
cient condition of asymptotic stability for linear NDDEs, the stability regions of linear
multistep, explicit Runge-Kutta and implicit A-stable Runge-Kutta methods are dis-
cussed when they are applied to asymptotically stable linear NDDEs . Some mentioning
about the extension of the results for the multiple delay case is given .
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1 Introduction .

Consider the systems of neutral delay-differential equations (NDDEs)

u(t) = f (t, u(t), u(t - T), u(t - T)) , t >_ 0,
u(t) = g(t), -T < t < 0

where f and g denote given vector-valued functions, T is a given positive constant
and u(t) is the vector-valued unknown function to be solved for t > 0 . Sufficient
conditions have been known for the unique existence of the solution of (1.1)
in the literature, e .g . [4] . Hereafter we assume the existence of unique exact
solution of the system. However, since analytical solutions can be computed only
in very restricted cases, many methods have been proposed for the numerical
approximation of the problem (1.1) .

It is the purpose of the present paper to investigate conditions for stability of
numerical methods for the linear test equation of the type (1.1), i .e .

ii(t) = Lu(t) + Mu(t - T) + Nit(t - T), t > 0
U(t) = g(t), -T < t < 0 .
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Here L, M and N are constant complex-valued matrices . The solution of (1 .1)
is said to be (asymptotically) stable if the solution u(t) tends to zero as t --+
oo. First we will state a sufficient condition for stability of the system (1 .2)
with respect to the triplet (L, M, N) . Next we will examine the corresponding
stability conditions of numerical solutions of the linear multistep and the Runge-
Kutta methods for (1 .2) under the assumption for (L, M, N) . This means a linear
stability analysis of the numerical methods for NDDEs .
An application of numerical method for NDDEs to the test equation (1 .2)

usually leads to a recurrence relation of fixed but arbitrarily high order . This
difficulty may cause few known results on linear stability analysis of numeri-
cal methods for neutral equations . Two exceptions are those by Brayton and
Willoughby [6], who analyzed linear stability properties of the 8-methods for
(1.1) in the case of linear test equation (1 .2) with symmetric real L, M and N,
and by Bellen, Jackiewicz and Zennaro [4] who considered similar properties
of one-step methods in the case when L, M and N reduce to scalar complex
parameters . However, recently Kuang et al . [14] studied the stability of the
8-method for (1 .2), and obtained a condition of the unconditional stability of
the method.

In Zennaro [18], Liu and Spijker [16], and in't Hout and Spijker [10], some
new techniques are introduced for stability analysis of numerical methods for
delay-differential equations (DDEs) in their application to test equation

(1.3)

	

it(t) = au(t) + bu(t -r), t > 0,
u(t) = g(t), -T < t < 0,

where a and b are complex constants, g is a given initial function and T > 0 .
Similar studies on the stability of numerical methods for (1 .3) can be found in
many other literature, e.g . [2, 3, 5, 11, 17] . However, in't Hout [9] and Koto
[13] recently treated stability analysis of 0- and implicit Runge-Kutta methods
when a and b are replaced by constant complex-valued matrices in (1.3) . But
they did not deal with the test equation (1 .2) .
The organization of the present paper is as follows. In the following section we

will derive a sufficient condition of the asymptotic stability of linear systems of
NDDEs (1 .2) . Assuming the sufficient condition, we will obtain a new result on
the stability region of the linear multistep method for (1 .2) in Section 3, while
Section 4 is devoted to the case of Runge-Kutta methods . We will introduce the
matrix Q(~) = (I-Z;N)-I(L+eM), whose eigenvalues with ~ of unit magnitude
are crucial for the stability criterion for numerical methods .
Furthermore, in Section 5, the results in the previous sections are extended

to the multiple delay case by the introduction of a matrix which corresponds to
Q(t) in the single delay case .

2 Stability of linear systems of NDDEs .

We will consider a sufficient condition of asymptotic stability of linear systems
of neutral delay-differential equations

(2_1)

	

46(t) = Lu(t) + Mu(t -r) + Nu(t - T),



506

	

GUANG-DA HU and TAKETOMO MITSUI

where L, M and N are d-dimensional constant complex-valued matrices, and
T > 0 .

THEOREM 2.1 . The system (1.2) is asymptotically stable if the conditions

(2.2)

	

RA j [(I - fN) -1 (L + EM)] < 0

for all i and ~ E C such that 1~1 < 1, and

(2.3) p (N) < 1

hold. Here . z(F) and p(F) stand for the i-th eigenvalue and the spectral radius,

respectively, of a complex-valued matrix F .

The Laplace transformation for Eq. (2 .1) implies

(2.4)

	

det [(sI - L) - (M + Ns) exp(-Ts)] = 0

as its characteristic equation . Hence the stability analysis of (2.1) reduces to the
root-locus problem for (2.4) . From this viewpoint we need the following lemma
for the proof of Theorem 2.1 .

LEMMA 2.1 . Define the following bivariate polynomial

(2.5)

	

P(s, z) = det [(sI - L) - (M + Ns)z] (s, z E C) .

If the conditions

(2.6)

	

P(s,0) 0 0 for s such as Rs > 0

and

(2 .7)

	

P(s, z) :A 0 for (s, z) such as IJRs = 0 and Izl < 1

hold, then we have

(2.8)

	

P(s, z) 54 0 for (s, z) such as IJRs > 0 and Izl < 1 .

PROOF: We perform the Mobius transformation

(2.9)
_ 1-w

s
l+w

on P(s, z). The transformation maps the right and left half planes of s to the
inner and outer regions, respectively, of the unit circle of w, while the imaginary
axis of s to the unit circle 1w1 = 1 .
The equation P(s, z) = 0 yields an algebraic function z = v(s) which has a

number of branches (see e.g . [1]) . If v(s) has singularities, they can be removed
with the usual detour similarity as in [12] . Hence v(s) can be regarded as a
holomorphic function on an appropriate Riemann surface .

Since Eq . (2 .6) implies z = v(s) = u(w) 0 whenever jwi < 1 holds, the
minimum of J u(w)I on the unit disk jwj < 1 attains on its boundary IwI = 1,
i .e ., Rs = 0. On the other hand, Eq . (2 .7) yields the inequality min[v(s)j =
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min I u(w) I > 1 whenever Rs = 0 and Iw~ = 1 . Therefore our conclusion (2.8)
holds .

	

0
PROOF of Theorem 2.1 . As a special case of 1; = 0 of the condition of (2.2) of
the Theorem, the inequality

Rai(L) < 0

holds. This means (2 .6) . The condition (2 .3) of the Theorem implies

det [I - zN] 0 0 whenever I z < 1 .

Thus we obtain

P(s, z) = det[I - zN] det[sI - (I - zN) -1 (L + zM)]

d

= det[I - zN] (s - A [(I - zN)-1 (L + zM)]) .
i_1

Henceforth we have the following inequality .

P(s, z) ~4 0 for ERs = 0 and jzj < 1,

which is nothing but the condition (2.7) . Together with the condition (2 .2) we
obtain the inequality (2.8) . Recall that the characteristic equation of the system
(2.1) is

P(s, exp(-sr)) = 0 .

P

The conditions of the Theorem have been shown to yield

(s, exp(-sr)) :A 0 for Rs > 0 and I exp(-sr) I < 1 .

It is trivial to show I exp(-sT) I < 1 for Rs > 0 and T > 0. Thus we have

P(s, exp(-ST)) zA 0 for its > 0,

whose contraposition reads that the equation P(s, exp(-sT)) = 0 implies Rs < 0 .
0

COROLLARY 2 .1 . The two assumptions zn Theorem 2 .1 are equivalent to the
following two conditions :

Rai [(I - fN)-1(L + EM)] < 0 for all i and ~ E C such as 1~1 = 1

and
p(N) < 1 .

PROOF : It is an immediate consequence that the assumptions of the Theorem
2.1 imply the above two conditions. Assume the above two assumptions hold .
Since the real part of every eigenvalue

SRAi[(I - zN) -1 (L + zM)]
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is a harmonic function whenever jzj < 1, we can show that the maximum of
J2Ai[(I - zN) -1 (L + zM)] over Izl < 1 attains at z such as Izl = 1, which
completes the proof.

	

0

Assume that the two conditions of Theorem 2 .1 are satisfied and introduce the
matrix

(2.10)

	

Q(~)

	

t;N) -1 (L + eM).

Then we have the inequality

3 Stability region of linear multistep methods .

For initial value problem of ODEs

y(t) = f (t, y(t)) t > 0

	

and

	

y(0) = yo,

a linear k-step method is given in a standard form as

k

	

k

E ajYn+j = hE Oj fn-I-j,
j=0

	

j=0

where h stands for the stepsize and cej„ 3j are the formula parameters . The
characteristic polynomial of the method (3.1) is

k

(3 .2)

	

7r(z ;h) _ J(aj - h0j)z''
j=0

where h = hA and A is a complex parameter with negative real part. ir(z ; h) is
also called the stability polynomial [15] of the method (3.1) .

The linear multistep (LM in short) method (3.1) is said to be absolutely stable

for a certain h in ODE-sense if all the roots zi of ir(z ; h) are less than unity in

magnitude for h = ha . Furthermore, a region RLM in the complex h-plane is
said to be the region of absolute stability if for all h E RLM the method is
absolutely stable. More restrictedly, the method is said to be A-stable if RLM
includes the left half-plane of h .
Let the method (3.1) be applied to a system of NDDEs with h = T/m where

m is a positive integer . For the application to the linear test equation (1.2), by
introducing

it(t) = v(t)

the system (1 .2) can be written

(3 .3)

	

it(t) = v(t), v(t) = Lu(t) + Mu(t - T) + Nv(t - T) .

A characterization of the region of absolute stability in NDDE-sense can be given
in the following .

R.i(Q(e)) < 0

GUANG-DA HU and TAKETOMO MITSUI

for all

	

and ~ E C ; 1~1 G 1 .
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THEOREM 3_1 . If

(i) the assumptions of Theorem 2.1 hold,

(ii) hAj(Q(~)) E RLM for all i and ~ such as

(iii) h = T/m, where m is a positive integer,

then the linear multistep method applied to NDDEs (1.2) is asymptotically stable_

PROOF: Consider the method (3.1) be applied to (3.3), we have

which, together with (3.6), implies

PLM(z) = det[I - z-"r`N] det

k

hN 1: ,i3jvn-m.+j
j=0

At the same time we obtain

j=0

j=0

k

E aj un+j =

	

13 n+j
j=0

and

(3.5)

	

vn+j = Lun+j + MUn_m+j + NVn_nn+j .

The former yields

k

j =0
j un-rn+j

k

	

k

	

k

1: ajun+j = h E ~j (Lun+j + Mun_ ,n+j) + hN1: (3jVn-'m+j,
j=0

	

j=0

	

j=0

13j (Lun+j + Mun_, R +j) + N

The characteristic polynomial of the above difference formula is

k

	

k

PLM(z) `-- det[I l:ajz' - Nz-'Eaj z -

	

/3j(Lzi + Mz_ -+j)]]
j=0

	

j=0

	

J _
Assume that ~zj > 1 is a root of PLM(z) . Since det[I - z-mN] :A 0 holds, by
virtue of Schur's unitary upper-triangularization theorem we can calculate as

j=0

1 k
(ajf -h/3jQ(z-'n))

J=0
d

det[I - z-''N] 11 7c(z ; ho-j),
i=1

509
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where ai is an eigenvalue of Q(z_m ) . From the definition of Q(~), we obtain
RAi (Q(z-m)) < 0 whenever Izj > 1 . The assumption of the Theorem, together
with Corollary 2 .1, implies hAi(Q(z-')) E 1ZLM for [zI > 1 . Hence the definition

of -7r(z ; h) implies the inequality

PLM (z) ~ 0 for z E C; I z I > 1,

which completes the proof.

	

0

The Theorem tells that the stability region of a linear multistep method ap-
plied to NDDEs is governed by the eigenvalues of Q(~) with ~ of unit magnitude,
and that if all the eigenvalues multiplied by the stepsize fall into the stability
region of the LM for ODEs, then LM is asymptotically stable for NDDEs .

4 Stability region of Runge-Kutta methods .

Linear stability analysis and regions of stability are derived for a natural exten-
sion of the Runge-Kutta (RK) method to NDDEs. We consider an application
of the s-stage Runge-Kutta method in ODE-case to (1.2) . As in the previous
section, we employ the stepsize h as an integral fraction of T and the step-points
to = nh (n = 0,1 . . . . ) . Denoting the stage values of RK formula by Kn , i , we can
obtain the RK scheme for (3.3) as follows .

(4 .1) Kn , i = hL(un

	

) +hM (un_.m
j=1

s

+ N ( ~ ciiKm-m, j)
j=1
S

(4 .2) un+ 1 = un +

	

biKn, i .
i=1

j=1
(ci)Kn-m,j)

Here aij, bi and ci stand for the parameters of the underlying Runge-Kutta
method, whereas bi(9) and cij are given below. We employ the matrix notations

A= (aij),

	

B = (bj(ci)),

	

and

	

C = (cij) (1 < i, j < s),

where, bj (9), j = 1, • , s are polynomials which define the continuous extension

of the RK method and cij =
d8

(ci) (see [4, 18]) . If the conditions A = B and

C = I hold, we call it the natural Runge-Kutta method for NDDEs. Moreover
we introduce the following notation.

b = (b1 b2 . . . , bs )T

In the sequel, we only consider the natural RK case .
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The scheme in (4.1) and (4 .2) then becomes

(4.3) Kn, i = hL(un +

	

i;Kn,7) + hM(un_m
7=1

	

7=1

+ 1VKn-m,i

and s
(4 .4)

	

un+1 = un +

	

bz&,i •
i=1

The stability function of the underlying RK method is given by

r(h) = I + hbT(I - hA)
-1e = det[]- - h(A - ebT)]

det(I - hA)

in ODE-case (see [15]), where e = (1, 1, . . . ,1)T , h = hA and RA < 0 . The region

(4.5)

	

JZRK = {h E C; jr(h)l < 1}

is called the region of absolute stability of the RK method . The A-stability of
the RK method is similarly introduced as in LM case .

The following is a sufficient condition of stability of explicit natural RK for
NDDEs .

aidKn-m,7 )
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THEOREM 4 .1 . Assume that

(i) the assumptions of Theorem 2 .1 hold;

(ii) hai(Q(e)) E RRK, i = 1, 2, • • . , d for I ~ I = 1,.

(iii) the underlying RK method is explicit and A = B, C = I ;

(iv) h = rim where m is a positive integer.

Then, the natural RK scheme in (4 . g) and (4 . .4) for (1,2) is asymptotically stable .

PROOF: The equalities (4.3) and (4 .4) can be rewritten through the Kronecker
product as follows .

I< - h(A® L) 0

	

K,

u+L ] ` {
0 hte (F L)

{ K

.-i
-b ® Id

	

Id

	

0

	

Id

	

un
h(A(9M))+t ®N

0 ] Km+1 ]
0 h(e ® M)

	

Kn_,n_ 1
_ 00

	

0

	

un-M

where Kn = (K,,,,1, Kn,2, , . . , K,,, ; ;)T. The characteristic equation of the above
difference equation turns out tv

det PRK(2) = 0
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where

[

	

1
PRK (z)

	

T1 T2=

	

T3 T4 ,

Tl = zm+l [Isd - h(A ® L)] - z[h(A ® M) + II ® N],
T2 = -zm'he ® (L + z -mM), T3 = -zm+l(bT (D

(Id)),
T4 = (zm+l - zm)Id

To prove the Theorem, it suffices to show the implication

det PRK(z) = 0 =

	

IzI < 1 .

We will first prove
det Ti :A0 for IzI >1.

A calculation yields

T1 = zm+1 [(Id - h(A ® L)) - z- "n (h(A ® M) + IS (9 N)]
zm+l [( IS ® ( Id - z-mN)) - A ® h(L + z-'M)] .

Due to the condition (2.3) of Theorem 2 .1, we have

det[Id - z-mN] :A 0 for z E C ; IzI > 1,

which derives

T1 = zm+ l (Is ® (Id - z-m N)) [Isd - (IS ® ( Id - z-m N)) -l (A ® h(L + z-mM))] .

The definition of Q(~), together with Schur's unitary upper-triangularization
theorem, enables us to obtain

(4.6) Tl = zm+ l (I8 0 (Id - z-mN))(Isd - hA® Q(z-m ))
s

det Tl = {det(zm+lls )} s {det(Id - z-m'N)}d H det(Id - haiQ(z m)),
i=1

where ai = )i (A) (i = 1, 2, . . . , s) . Since the RK method is explicit, in fact all
ai's vanish. Hence det Tl cannot vanish for z such as IzI >_ 1 . Then we obtain
the identity

det PRK (z) = det Tl - det(T4 - T3T, 'T2) .
Thus it is sufficient to show

(4 .7)

	

det(T4 -T3 T1'T2) 0 0 for z E C; IzI > 1 .

Assume z(Izl > 1) is a root of the left-hand side of (4.7) . Eq . (4 .7) and the
definitions of T2, T3 and T4 imply

T4 - T3T1 1T2
= .-[zfd - Id - (bT 0 Id)(Isd - hA ® Q(z-m )) -1
x (IS (3 (Id - z--N)-l ) (he ® (L + z -mM))]
= 2t'[zld - Id - (bT 0 Id)(Isd - hA ® Q(z-m))-'(he 0 Q(z-m))]
= z''[zId - Id - (bT 0 Q(z-'n))(Isd - hA 0 Q(z-m))- '(he 0 Id)]

GUANG-DA HU and TAKETOMO MITSUI



which gives

det[T4 - T3T1 ' T2 ] = zmd det[zId - r(hQ(z m ))] .

This means that the root z should satisfy

det[zId - r(hQ(z m'))] = 0 .

Since RAj (Q(z-m)) < 0 for Izl > 1 and A i (A) = 0, (i = 1, 2, . . ., s), det(II -haA)
cannot vanish whenever a is in a neighborhood of .i(Q(z- n)) (i = 1, 2, . . . , d) .
Thus r(ha) is holomorphic with respect to a in the neighborhood of .Xi(Q(z-m)) .
From the spectral mapping theorem, we have the identity

Ai[r(hQ(z-m))] = r[Ai(hQ(z-m))] •

Henceforth from the condition (ii) of the Theorem, we can conclude

which means
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Ir[Ai(hQ(z-m))] < 1

	

=z>

	

~ai[r(hQ(z-m))]I < 1 ,

det[zld - r(hQ(z-'°'))] = 0 z I z) < 1 .

This contradicts the assumption Izl > 1 and the proof is completed .

	

L7

Similarly to Theorem 3.1 for LM, the above Theorem characterizes the region
of absolute stability of an explicit RK for NDDEs . Again, the eigenvalues of
Q(~) with ~ of unit magnitude governs the stability of a natural explicit RK .
Now we discuss the stability of implicit Runge-Kutta method and can attain the
following result .

THEOREM 4_2 . Assume that

(i) the assumptions of Theorem 2.1 hold;

(ii) the underlying RK is A-stable for ODEs ;

(iii) A = B, C = I, RAi (A) > 0 for i = 1, 2, . . . , s ;

(iv) h = r/m where m is a positive integer .

Then, the resulting difference system of (4.S) and (4 .4) corresponding to (1.2)
is asymptotically stable.
PROOF : The proof can be carried out similarly to that of Theorem 4 .1. Note

that the assumption RAi (A) > 0 ensures detT1 ~4 0 for Izl > 1 . Thus the
calculations on the determinant for PRK(z) are again available, and the definition
of A-stability implies the conclusion .

Roughly speaking, a natural implicit RK is stable for NDDEs when the under-
lying RK for ODEs is A-stable and all the eigenvalues of the coefficient matrix A
have nonnegative real parts, provided the eigenvalues of Q(~) with ~ of unit mag-
nitude are of negative real parts . An A-stable implicit RK with R)i (A) > 0 really
exists. Remember, for instance, the two-stage fourth order Butcher-Kuntzmann
formula .
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5 Stability region of NDDEs with multiple delays .

Results in the previous sections are readily extended to the multiple delay
case. Consider the neutral delay-differential equations

J
(5.1)

	

7i(t) = Lu(t) + E[Mju(t - jT) + Nju(t - jr)]
j=1

where L, Mj and Nj are constant complex matrices, J is a positive integer and
T>0.

The following is an extension of Theorem 2 .1 .

THEOREM 5.1 . The system (5.1) is asymptotically stable if the conditions

J

	

J
Ra2[(I - 1: ~'Nj ) 1(L+El;'Mj)] < 0, for all

	

and

	

E C; } } < 1
j=1

	

j=1

and
J

det[I -

	

~jNj ] 0 0,

	

E C; }~1 < 1 .

j=1

hold.

The proof of the Theorem is carried out in parallel to those of Theorem 2 .1 .
For NDDEs (5.1), the matrix

J

	

J

Q()=( -

	

'NN) (L+~e'Mj)
j=1

	

j=1

plays the role of Q(~) in the proofs of Corollary 2 .1. Theorems 3 .1, 4 .1 and 4 .2
lead us to similar results as these statements for the applications of LM and RK
to NDDEs (5.1) .
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