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Summary. A nucleic acid chain L nucleotides in length, with the specific 

base sequence BIB 2 .... BL, each B i being A, G, C, or T, is defined by the 

L-dimensional vector B = (BI, B2, ..., BL), the k th position in the chain 

being occupied by the base B k. Let PBB' be the twelve given constant non- 

negative transition probabilities that in a specified position the base B 

_(X) be the prob- is replaced by the base B' in a single step, and let ~BB' 

ability that the position goes from base B to B' in X steps. An exact 

analytical expression for p(X) is derived. Assuming that each base mutates BB' 
independently of the others, an exact expression is derived for the prob- 

ability p(X) that the initial gene sequence B goes to a sequence BB' 
B' = (BI, B~ ..... B L) after X = (X I, X 2 ..... X L) base replacements, 

where X k is the number of single-step base replacements in the k th position. 

The resulting equations allow a more precise accounting for the effects of 

Darwinian natural selection in molecular evolution than does the idealized 

but biologically less accurate assumption that each of the four nucleotides 

is equally likely to mutate to and be fixed as one of the other three. Il- 

lustrative applications of the theory to some problems in biological evol- 

ution are given. 
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Computer Simulations of Molecular Divergence/Nucleotide Transition Prob- 

abilities/Gene Divergence 

INTRODUCTION 

In calculating the pathways of gene divergence during evolution, 

the only case which has been treated exactly is the idealized 

situation where each of the four types (A, G, C, or T) of 

nucleotides comprising the gene is equally likely to mutate to 

and be fixed as any one of the other three (Holmquist, 1972). 

The requirements of protein function (for structural genes), 

and the effects of Darwinian natural selection (for all genes) 
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during this divergence cause the probabilities with which one 

base mutates to and is fixed as one of the other three to dif- 

fer (Goodman et al., 1974) from these equiprobable values. I 

derive here the equations necessary to calculate the divergence 

when these probabilities are arbitrary but constant. The re- 

sults differ significantly from the idealized simplification 

which assumes equal probabilities. 

THEORY 

A fixation is defined as an accepted (by natural selection) 

point mutation, that is, a one-step replacement of one nucleo- 

tide by another. For example, A + G is one fixation, A ÷ G ÷ 

C + A are three fixations. Let the original base at the k th 

nucleotide position be B k (B k = A, G, C, or T) . After X k fix- 

ations at that position, let the probability that the base 

(X k) 
B{ (B~ = A, G, C, or T) be found at that position be PBkB¢.~ If 

the initial, i.e. ancestral, sequence of bases in the gene is 

defined by the vector B = (B I , B 2, ..., BL), the probability 

p(X) 
BB' that the final sequence is the vector B' = (B~, B~ ..... B{) 

is given by 

(x) 
(I) P 

BB ' 

L (X k) 
= ~ P 

k=1 BkBk 

provided that each position mutates independently of the others. 

The vector X = (XI, X2, ..., X L) is the vector which describes 
the number of single-step base replacements which have occurred 

at each position. (Xk) 

The problem thus reduces to calculating P for k = I to L 
BkB { 

As the calculation is similar at each position we drop the sub- 

script k in what follows. An explicit expression for p(X) will BB' 
be derived by transforming an obvious recurrence relation into 

the generating function G(SlPBB,) for ~(X) =BB'" 
The probability that a given nucleotide position is occupied 

by the nucleotide B' (B' = A, G, C, or T) after the X th fixation 

is equal to the sum of the conditional probabilities that if 
that position is not B' after the (X - I) th fixation, it will 

mutate to and be fixed as B' at the next step: 

(2) ( x )  = z p(X-1) 
PBB' BB" PB"B ' ' 

B" 
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(3) Z PB"B' = I, for a given B". 
B'#B" 

Here PB"B' is the probability that if a base is B" it will 

mutate to and be fixed as B' Since it is biologically imposs- 

ible for a base to mutate to itself, the four PB"B' with 

B" = B' (PAA' PGG' PCC' PTT ) are zero. Equations (2) and (3) 
are valid for nonconstant as well as constant nucleotide 

transition probabilities PB"B'; in this paper we derive the 

solution for D(X) when the PB"B' are constant and known. 
~BB' 

In Markov chain theory Equations (2) are known as the Chapman- 

Kolmogorov equations. (X) 

By definition the generating function G(SlPBB,) for PBB' is 

(Feller, 1968) 

oo 
x (x) 

(4) G(SlPBB ,) = Z s PBB'" 
X=O 

Multiplying each side of the recurrence relation (2) by s X and 

summing each side over X = I to ~, we obtain 

(5) G(SlPBB, ) _ p(O) = s ~ G(S,PBB,)PB,,B,t BB' 
B" 

_(o) 
Here PBB' is the probability that the original base is B'. By 
assumption, the original base is B, so that p(O) = I and if 
B '~n D(O) BB ' 

I~, ~BB' = O, since no more than one base can occupy a given 
nucleotide position. The only restriction on the variable s is 

that G(SIPBB,) must converge in the interval IsI<s o for some 

So; s has no significance other than as an intermediate in the 
calculations. 

For each starting base B, Equations (5) give four different 

equations, one for each of the four possible values of 

B' (A, G, C, or T). Since the single-step transition prob- 

abilities PBB' are constant and known, these four equations 

are linear with respect to the four unknowns G(S(PBB,) , and 

can be solved directly for the latter by Cramer's rule (Keller & 

Doherty, 1961) as the ratio of two determinants: 

(6) G(SIPBB ,) = N(SIPBB,)/D(S ) . 

D is the 4 × 4 determinant of the coefficients of G(SIPBB,) in 
Eq. (5) and N is the 4 x 4 determinant obtained from D by re- 

placing the coefficients of G(SIPBB ) by the p(O) with sign 
' BB' 

changed, that is by -I, O, O, O. D is the same for all B' and 

B, but the numerator N depends on both B' and B. By direct 

expansion of these determinants: 

2 
(7) Dis) = [i - s][1 ÷ s ÷ ÷ 3] 
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where 

(8) a = I - PGTPTG - PcTPTc - PATPTA - PcGPGc- PAGPGA - PAcPcA" 

(9) 
: (PTGPGcPcT + PGTPcGPTc ) + (PTGPGAPAT + PGTPAGPTA) + 

(PcAPATPTc + PACPTAPCT ) + (PcAPAGPGc + PACPGAPCG). 

If B' = B (the original base), then 

(10) N(SlPBB,) = 

2 (3) 3 (2) 
I - s ~* PB"B"'PB"'B" - s Z* 

B" ,B' "#B B" ,B' " ,B" "#B 
PB"B" ' PB" ' B" "PB" "B' 

The number in parenthesis to the right of the asterisk in each 

summation is a reminder for the total number of terms in that 

sum, and the asterisk is a reminder that no term is to be taken 

more than once in the sum and that each term of the sum is to 

be independent of the other terms in that sum. If B'#B (i.e. B' 

is one of the three nucleotides not originally occupying that 

locus), 

(11) N(SlPBB , ) = 

S PBB ' + s  ~ , ( 2 )  
B" 

2 
PBB,,PB,, B, +s Z, (2)PBB" PB"B ' "PB' "B' 

B"#B' 

B ' "#B 

(I) 
-~* PBB' PB"B ' "PB' "B" 

B" ,B' "#B,B' 

Explicit numerical examples of the expansions in Eqs. (10) and 

(11) are given in the section on illustrative applications. 

Eqs. (6) through (11) completely define the generating func- 

tion G(SlPBB ,) as explicit functions of the twelve PB'B" for 
all four B' (= A, G, C, or T). In Eq. (6) if N and D have 

common factors, let those be divided out expressing G(SlPBB,) 

in the form 

(12) 

w i t h  

G(SIPBB ,) = N*(S[PBB,)/D*(s), 

(13) D*(s) - (s - s I) (s - s2)...(s - Sk), 

the s. being the zeros of D*(s) , and the asterisks indicating 
1 
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that N*(s) and D*(s) have no common zeros. An explicit expres- 

sion for P~I for all nonnegative integral X is then given by 

the usual (Feller, 1968) partial fraction expansion of Eq.(12) : 

Pl (B' ]B) P2(B' ]B) pk(B' tB) 
( 14 )  p ( X )  _ + + . . . +  

BB' X+I X+I X+I 
s I s 2 s k 

wi th 

(15) Pi(B' IB) = - N*(silPBB,)/D*' (s.) .l 

N*(silPBB ,) are the numbers obtained by evaluating N*(SlPBB,) 
at s = s i, and D*' (s i) are the numbers obtained by evaluating 

the first derivative of D*(s) [from Eq. (13)] with respect to 

s at s = s i. Equations (14) and (15) hold provided D*(s) has 

no multiple zeros. The trivial modifications required when 

there are multiple zeros of D*(s) are in standard texts 

(Feller, 1968; D'Azzo & Houpis, 1966). 

Equation (14) completes the analytical solution to our 

problem. Four applications, of increasing complexity, utility, 
and realism follow the Discussion. 

DISCUSSION 

The experimentally observed patterns of amino acid sequences 

of homologous proteins or nucleic acids which have been 

isolated from contemporary organisms are a function of, among 

other things, the probabilities for the transition of one 

nucleotide to another during the time over which these macro- 

molecules diverged from a common ancestor. If the twelve 

transition probabilities can be estimated, then the expected 

distribution of nucleic acid and/or amino acid sequences can 

be predicted and compared with experiment. 

The simplest estimate is to assume that each base has been 

equally likely to mutate to any one of the other three. In 

this case each of the twelve transition probabilities is simply 

I/3 (Example I, below). This model, despite its simplicity, 

has led to improved estimates of the number of nucleotide point 

fixations which separate the genes which code for proteins 
(Jukes & Holmquist, 1972), and which are in accord with those 

made by the method of parsimony (Moore et al., 1976; Holmquist 

et al., 1976). This concordance does not imply the absence of 

Darwinian natural selection, but rather that such has preserved 

a significant degree of randomness with respect to these tran- 
sition probabilities. 

Almost always the transition matrix elements for the genes 
coding for a particular protein family, and even within that 
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family for a particular phylogenetic lineage, will differ some- 

what from the equiprobable values of I/3, the actual values 

being specific for that family and lineage. In Example 2, below, 

we consider such a case and use it as a step by step concrete 

numerical example to show how the theoretical equations are 

employed in practice. 

Example 3 illustrates how information at the gene level can 

be extended to the protein sequence level. 

Finally, in the fourth example, the theory is applied to 

real data taken from the globin family of genes. The results 

demonstrate that the corrections are significant in magnitude 

and cannot be neglected in realistic biological situations. 

ILLUSTRATIVE APPLICATIONS 

Example i. Probability of back mutation -- Consider the case 

where any base is equally likely to mutate to and be fixed as 

any one of the other three bases. Hence all PB'B" = I/3. What 

is the probability that after a fixations, the base is the 

same as at the start? For concreteness let the original base 

be G. 

From Eqs. (7) and (10), 

3 
N(SlPGG) = I - 3(I/3) (I/3)s 2 -  - 2(I/31 (1/31 (I/3)s = - (2/27). 

3 (s + 3) 2(s - ~) 

.1 .I 2 D(s) = [1 - s] [I + s + (I - 6 ~ ~)s + 

(I -6 "I I _ 8"~-1 1 s 3 ~-~ .~.~1 ] -- - (I/271 is + 313(s - I). 

Here not only do D and N have common zeros (-3), but D has a 

root (-3) of multiplicity three. From Eq. (6), 

G(SlPGG) = N(SIPGG) /Dis) = (2S - 3)/(s + 3)(s - I) 

in which the numerator and denominator have no common zeros 

denominator has no repeated roots. Thus N*(SlPGG). = and the 
! 

(2S - 3) and D* (s) = (s + 3)(s - I) so that D* is) = 2(s + I). 

From Eq. (151, and taking s I = I, s 2 = -3, 

P1(GIG) = - N*(IIPGG) /D*' (I) = - (2"1 - 3)/2(I + I) = I/4 

I 

P2(OlG). = -N*(-31PGG)/D*. (-3) = -(-3 2 - 3)/2(-3 + 1) ' / 

Finally, from Eq. (14) , 
a 

p(a) (i/4)/ia+I (9/4)/(_3)a+I I [I + (-I~___) .], 
GG = - - 4 3a-I 

which is correct (Holmquist, 1972). 
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Example 2. Let the probabilities for the transition of one 

nucleotide to another be given by the matrix 

~ T 

T O 

G 0.22 

C 0.15 

A 0.23 

G C 

0.24 0.29 

0 0.45 

0.44 O 

0.39 0.38 

A 

0.47 

0.33 

0.41 

0 

The numerical values of the matrix elements were chosen to 

illustrate the effect of moderate deviations from the overly 

idealistic situation in Example I where all nondiagonal 

matrix elements were I/3. Consider a specific nucleotide pos- 

ition and let the ancestral base there be G. Derive explicit 

expressions for the probabilities that after k fixations the 

base there is G, T, C, or A respectively. 

From Eqs. (7) , (8) , and (9) , 

= I - (0.22) (0.24) - (O.15) (0.29) - (0.23) (0.47) - (0.44) (0.45) 

- (0.39) (0.33) - (0.38) (0.41) = 0.3131. 

= (0.24) (0.45) (0.15) + (0.22) (0.44) (0.29) + (0.24) (0.33) (0.23) + 

(0.22) (0.39) (0.47) + (O.41) (0.23) (0.29) + (0.38) (0.47) (O.15) + 

(0.41) (0.39) (0.45) + (0.38) (0.33) (0.44) = 0.284082. 

D(s) = (I - s)(I + s + 0.3131s 2 + O.029018s 3) 

= - O.O290(s - I)(s + 6.010)(s - 2.395 /3.080). 

(s - 2.395 /-3.080), 

/0 being exp(iO) with 0 in radians. From Eq. (10), 

s 2 3 
N (SIPGG) = I - (PcTPTc+PATPTA+PAcPcA) - (PTcPcAPAT+PcTPACPTA) s 

2 
= I - |(O.15)(0.29) + (0.23)(0.47) + (0.38)(0.41)is 

_ [(0.29) (0.41) (0.23) + (O.15) (.38) (O.47)]s 3 

3 0 7 4 s  2 3 = I - O. - O.05414s = - O.O5414(s - 1.594)- 

(s + 2.359)(s + 4.913). 

As D(S) and N(SIPGG) have no common factors N*(SIPGG) -- N(SJPGG), 

and De(s) - D(s). The four zeros Sl, s2, s3, and s 4 of D~(s) 

are I, -6.O10, and +2.395 /_+3.080. 

D*' (s) = -0.116s(s + 2.390)(s + 4.953). 

From Eq. (15) , 
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(G Pl G) = - (-O.0541) (I - 1.5941 (1 + 2.359) (1 + 4.913)/(-O.116). 

(I) (I + 2.390)(I + 4.953) = 0.2726 

P2(G G) = - N*(-6.01OIPGG)/D*' (-6.O10) = -O.6174 

P3(G G) = - N*(+2.395 /3.08OIPGG)/D*' (+2.395 /3.080 = O.7810/-2.~11 

P4(G G) = O.7810 /+2.911 

Finally, from Eq. (141 , 

P(k) = 0.2726 + 
GG 

0.1027 k 0.6523 
( - 1 )  + 

6.O10 k 2.395 k 
cos(5.991 + 3.08Ok). 

The cosine term arises from the sum of the last two terms in 
Eq. (141, which involve the two complex conjugate roots, 
2.395 /-+3.080, of D*(s) = 0 p(k) p(k) , and p(k) are calculated 

• GA ' GT Gu 
similarly with N(SIPGA) being, for example, from Eq. (11): 

N ( s I PGA) = s { PGA + s (PGcPcA+PGTPTA) +s (PGcPcTPTA+PGTPTcPcA-PGAPCT T6i 

s[0.33+[(0.45) (0.41)+(0.22)(0.47)]s+[(0.45)(0.15)(0.17) 

L +(O.221 (0.29) (O.41)-(0.33)(O.15) (O.291]s 2 ! 

= s(O.33÷O.2879s+O.O435s 2) = O.0435s(s+1 .475) (s+5.1391 

The results are 

p(k) = 0.2824 0.0644 (_1)k + 

GA 6.01 O k 

p(k) = 0.1667 O.1245 k 
GT k (-I) + 

6.010 

2.1OO 

2.395 k 

0.5827 

2.395 k 

cos(1.675 + 3.O80k) 

cos(4.640 + 3.O8Ok) 

p.k)( = 0.2783 + 
GC 

0.O861 k 1.369 
(-I) + 

6 . 0 1 0  k 2 . 3 9 5  k 
cos(4.443 + 3.080k). 

In these solutions for k O ~(0) _(0) _(O) and _(0) 
' = ' ~GG ' ~GA ' ~GT ' FGC 

reduce to I, O, O, 0 as required by the fact the initial base 

was G; also, for all k > O, p(k)GG + p(k)GA + p(k)GT + P~)is ident- 
ical~y unity as required by the fact that the nucleotide pos- 
ition must be occupied by some one of the four bases G, A, T, 

~or C. For k = I the individual probabilities reduce to the 

elements of the transition matrix itself. 

More interestingly, the terms PI(B'IB) in Eq. (14) which 

arise from the zero s = I in the generating function, are the 
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_ (k) 
asymptotic values for the PBB' as k ÷ =. This asymptotic base 

composition is, for a given matrix of transition probabilities, 

the only base composition about which over the long term the 

nucleic acid composition can remain stable, but it should be 

noted that even if the starting nucleic acid has this asymptotic 

composition, it may first drift away from that composition be- 

fore returning to it. The actual base composition is stable in 

the statistical sense, not in the sense of being constant. This 

is because the actual composition will fluctuate around the 

asymptotic expected values as a multinomial random variable 

with probabilities P(=) It should also be noted that a given 
BB'' 

asymptotic base composition does not uniquely determine the 

twelve nucleotide transition probabilities PBB' even though 

the converse is true. 

The damped cosine term in the final expressions should not 

surprise us. If the matrix of transition probabilities is such 

that purina +÷ pyrimidine base interchanges are forbidden then 

if the initial base is G, successive replacements result in 

the sequences G + A ÷ G ÷ A ad infinitum, with probabilities 

P~)-- of O, I, O, ... (I if k even, 0 if k odd). Thus P~)-- 

and p(k) in such a case will exhibit undamped periodic behavior 
GA 

Most biological situations will not be so extreme, but can be 

considered an admixture of various allowed and disallowed base 

transitions in various proportions so that a retention of some 

portion of the periodic component is natural. 

Typically, each variable codon in a protein has received 

somewhere between one and four base replacements (Jukes & 

Homquist, 1972) over the geological time periods involved in 

genetic divergence. If we take X = 2 in Eq. (14), then, for 

this example, the expected base composition after two base re- 

at the site initially occupied by G is P~£)-~ = placements O.380, 

P~)-~ = 0.288, p(2)GT = 0.143, and P~)-~ = 0.189. The approach~ to 

the asymptotic values of G, A, C, and T of 0.27, 0.28, O.17, 

and 0.28 is thus not all that rapid, and the latter cannot 

replace the exact calculations. Further, assuming the idealized 

case in Example I where any base is equally likely to mutate 

to and be fixed as any of the other three, the expected base 

composition is for G, A, T, and C, respectively 0.333, 0.222, 

0.222, and 0.222 (Holmquist, 1972). The relative error intro- 

duced by the idealization of Example I, averages about 27%, ra- 

nging from 12% for G to 55% for T and is clearly not negligible. 

Example 3. AS an extension of Example 2, consider the probability 

that after 10 fixed nucleotide point mutations the triplet 

(3') GAC (5') will end up TTC. Let the 10 mutations be distrib- 

uted over the first, second, and third nucleotide positions of 

the triplet, respectively, 3,5, and 2, and assume the nucleo- 

tide transition probabilities are given at each of the three 

nucleotide positions by the matrix of Example 2. This process 

represents one pathway by which leucine (codon CUG) could be 
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converted to lysine (codon AAG) in a protein. Compare the 

results with that obtained unter the idealized assumptions of 

Example 1. 
We calculate the idealized case first. From Table I in 

Holmquist (1972) the probability of GAC ÷ TTC by the described 

pathway is: 

~[i/3][1 - (2/9)]~[i/3][i - 20/81]~1/3~ = 0.0217. 

From example 2, 

p(3) = O.1667 
GT 

0.1245(-I) 
(6.O10) 3 

+ 0.5827 3cos[ 4 640+3.080(3)] = O.178%. 
(2.395) 

_(x) _(x) 
The calculations for ~AT and PCC are analogous to those 
already given in Example 2 with the results: 

(5) 
P 
AT 

0.002379 5+0.2703 [2 224+3.080(s)] 0 1678. = O" 1667--I(6 ]~5(--I ) ~ [ ~ ) 5 C 0 ~ I = " 

p I2) = 0 0.2024 2,~209 cc 2783+~]~)2(-i) .~5)2cos[1.127+3.080(2)] = 0.3973. 

The correct probability of GAC ÷ TTC by the described pathway 
is thus: 

p(3,5,2) = p(3) p(5) p(2) = (0.1781)(0.1678)(0.3973) = O.O119 
GAC÷TTC GT AT CC 

The relative error committed by using the approximations of 

Example I is thus quite large, 82%, i.e. 
[100(0.0217 - 0.0119)/0.0119]. 

Example 4. Estimates of the twelve transition probabilities can 

be obtained by examining adjacent ancestral nodal sequences in 

phylogenetic trees which have been constructed by the method of 

parsimony and tabulating for all such adjacent nodes the number 

of times each base in the most ancestral of the two adjacent 
nodes is replaced by the other bases in the more recent of the 

two nodes. Goodman and his colleagues (1974) have made a par- 

tial tabulation of this sort for the first two codon positions 

along six lineages of metazoan globin chains. A total of 867 

base fixations were tabulated. These data have been analyzed 

(Holmquist, 1976) with the following results, averaged for the 
six lineages and two codon positions: 

~ T 

T 0 

G 0.42 

C 0.49 

A 0.34 

G C 

0.44 0.40 

0 0.37 

0.32 O 

0.37 0.39 

A 

0.16 

0.21 

O.19 

O 
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The magnitudes of the deviations of these matrix elements 

from the idealized values of I/3 are generally similar to 

those of the hypothetical matrix in Example 2, but values for 

the magnitudes themselves differ from those in the example. 

For comparative purposes it is instructive to compute the 

same quantities as for Examples 2 and 3. The calculations 

proceed analogously to those already given, but more simply, 
as in the present case D(s) has no complex zeros. The results 

are: 

p(k) = 0.2756 + ( 0"0014 + 0.0606 + 0t6623) (_1)k 

GG 5.656 k 2.230 k 2.668 k 

p(k) = O.1567 - (,0.0320 + O.O117 + O±1!3_~I) (_1)k 

GA 5.656 k 2.230 k 2.668 k 

p(k) = 0.3001 + (0.0.150 

GT 5.656 k 

O.0601 O~2550) (_i) 

2.230 k 2.668 k 

p(k) = 0.2675 + (O.0156 + 0.O111 Oz294__~I) (_1)k 

GC 5.656 k 2.230 k 2.668 k 

Again taking k = 2, the expected base composition after two 

base replacements at the site initially occupied by G is, in 

the order G, A, T, and C, O.381, O.137, 0.253, and 0.229. The 

asymptotic values cannot replace the more exact calculations. 

In this (k = 2) example the idealization used in Example I 

would introduce an average relative error in base composition 

of 22% ranging from 3% for C to 62% for A. 

Finally 

p(3,5,2) 

GAC÷TTC 
= p(3) p(5) p(2) = (O 3189)(0.3003)(0.3695 

GT AT CC 
= 0.0354. 

The relative error committed by using the approximations of 

Example I is 39% and not negligible. 

For longer gene sequences representative of the structural 

genes of proteins (as contrasted with the simple nucleotide 

triplet considered here) and for other protein families the 

magnitude of the deviations from the idealized values (as in 

Example I) of the probability with which one DNA sequence goes 

to another may be greater or less than in this example. For 

more accurate calculations, one should use a separate transit- 

ion matrix for each codon position. The true average deviation 

of the matrix elements from the equiprobable values of I/3, on 

a per codon basis, must be less than that calculated here 

because the third nucleotide position of each codon is known 
from the experiments of Salser and his co-workers (1976) to 

be under less selective constraint than the first two positions. 
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CONCLUSION 

The purpose of this paper has been to derive usable analytical 

expressions which can accurately describe the dynamics of the 

evolutionary divergence of two genes when the distribution of 

fixed point mutations along the gene and the twelve transition 

probabilities of the four bases to each other are known. It 

has been of equal importance to express these equations direct- 

ly in terms of biologically familiar interpretable parameters - 

the twelve transition probabilities of one nucleotide to 

another - and to provide simple numerical illustrative examples 

so that calculations of this type are accessible to practicing 

molecular evolutionists and not only to mathematicians. The 

assumption that each base is equally likely to mutate to and 

be fixed as any one of the other three is shown to lead to 

appreciable error in realistic biological applications. These 

equations can also help in reducing the necessity for expensive 

Monte Carlo type computer simulations. 

When applying these methods to genes coding for protein 

structure, some of the mutational pathways involved may include 

one or more nucleotide triplets which code for one of the three 

chain-terminating codons UUA, UAG, or UGA in the messenger RNA. 

Each investigator must allow for this particularity in a manner 

consistent with the application in mind. 

The full potential of this work can be realized only after 

calculations for long gene sequences. It is now clear, however, 

that such calculations are both theoretically tractable and 

practically implementable without undue demands of time. Such 

calculations are a necessary prerequisite for an understanding 

of the evolution of macromolecules. 
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