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Summary. A model of molecular evolution in which the parameter (intrinsic 

rate of amino acid substitution) fluctuates from time to time was investi- 

gated by simulating the process. It was found that the usual method of 

estimation such as Poisson fitting underestimates this variation of the 

parameter when remote comparisons are made. At the same time, four distance 

measures (minimum base difference, Poisson fitting, random nucleotide sub- 

stitutions and negative binomial fitting) were tested for their accuracy. 

When the substitution rate is not uniform among the amino acid sites, the 

negative binomial fitting gives most satisfactory results, however, one 

needs to know the parameter beforehand in order to use this method. It was 

pointed out that the fluctuation of the evolutionary rate is expected if 

the nearly neutral but very slightly deleterious mutations play an import- 

ant role on molecular evolution. 
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INTRODUCTION 

The question whether the rate of molecular evolution is con- 

stant or not is one of the most stimulating problems in recent 

study of evolution in conjunction with the big controversy 

between the "neutral" vs. "selection" hypotheses. According 

to Kimura (1968), the rate of amino acid substitution (k) is 

simply equal to the mutation rate per gamete (v) under his 

neutral mutation-random drift hypothesis. Here, if the "nearly 

neutral" mutant substitutions or, in particular, the very 

slightly deleterious mutations are prevalent at the molecular 

level, the above relationship (k = v) does not hold and the 

evolution becomes rapid in small populations such as the time 
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of speciation. In very large populations, the evolution stops 

or at least its rate slows down (Ohta, 1973, 1974). On the 

other hand, if Darwinian selection is the main cause of mol- 

ecular evolution, one would expect parallel changes between 

the molecular and the phenotypic levels (Kimura, 1969). The 

purpose of the present study is to clarify this problem by 

simulating the evolution of amino acid sequences and to find 

out the true pattern of molecular evolution. Throughout this 

paper, by the term "the number of amino acid substitutions", 

I mean the cumulative number of amino acid substitutions that 

have taken place in the course of evolution and this is dif- 

ferent from the observed amino acid differences between the 

two sequences. 

MODEL 

In this study, I shall introduce two types of non-randomness 

in the amino acid substitutions; over time and over amino acid 

sites in a sequence. We assume that the number of amino acid 

substitutions in a protein sequence in some period (to be 

called a leg) follows a Poisson distribution. This assumption 

holds when each amino acid site has a very small probability 

of substitution and there are many such sites in a sequence. 

If the parameter of the Poisson distribution is a constant (I), 

the generating function of the number of amino acid substi- 

tution is, 

(I) P(s) = e (1-s)l for Isl < I 

Consider the situation in which I is not a constant but a 

random variable following certain probability distribution 

such as gamma function. This is considered to represent one 

case where the rate of molecular evolution is not strictly 

constant but is influenced by various environmental factors 

such as population size or severeness of the environment. 

Then I in formula (I) follows its distribution function with 

mean I and variance V k- 
The mean (M) and the variance (V) of the number of amino 

acid substitutions may be obtained by differentiating the 

above generating function and taking the expectation. 

(2) M = E{P' (I)} = ~ and 

(3) V = E{P" (I) + P' (I) } - M 2 

=V +~ 
k 

where E denotes the expectation with respect to I. Thus the 



variance of the number of substitutions is the sum of the 

mean and the variance of I. Now, if ~ and V 1 are constant 

when measured in a unit time, V is also a constant. I shall 

investigate the two cases: constant and variable I. In the 

simulation experiment, I shall also introduce non-uniform mu- 

tation rates among the amino acid sites, since this is one of 

the important properties found in actual amino acid sequences. 

DISTANCE MEASURES 

Minimum Base Difference 

I have adopted Fitch's minimum difference matrix, which he ob- 

tained directly from the code table (Fitch & Margoliash, 1967). 

Poisson Fitting 

Zuckerkandl & Pauling (1965), Margoliash & Smith (1965) and 

Kimura (1969) and others have estimated the number of multiple 

substitutions by fitting a Poisson distribution. If Pd is the 

fraction of amino acid sites at which two sequences being com- 

pared have different amino acids, the number of amino acid 

substitutions per site is estimated by the following formula; 

(4) Kaa : -l°ge(1 - Pd ) 

The variance of this estimate becomes, 

2 Pd 
(5) ~ = 

K (I - Pd ) n aa aa 

where naa is the number of amino acid sites being compared 

(Kimura, 1969). The assumption underlying this procedure is 

that all amino acid sites have an equal probability of sub- 

stitution. When the amino acid sites have different prob- 

abilities of substitution, this method underestimates the true 

value somewhat; however, we shall show later that the bias is 

not large unless very remote comparisons are made. 

Random Nucleotide Substitutions 

Holmquist (1972a,b) developed a method to estimate the total 

number of base substitutions (including synonymous mutations) 

between the two sequences and he called it random evolutionary 

hits. Jukes & Cantor (1969) and Kimura & Ohta (1972) presented 



the simpler method. I shall call it "random nucleotide sub- 

stitutions" or RNS. Let Pd be the fractio~ of different amino 

acid sites as before and let D E be the average number of base 

substitutions per codon. Then D E is obtained from the following 
formula: 

9 4 

(6) D E = - ~ loge(1 - ~y) 

where y is the fraction of nucleotide sites for which the two 

3 
sequences differ from each other (0 ~ y ~ ~) and satisfy the 

following cubic equation, 

(7) I - (I - y)2 (I - ¼y) = Pd 

The variance of D E becomes (Kimura & Ohta, 1972); 

2 16P d (I - Pd ) 
(8) ~ : 

DE (I y)2 (3 y) 2 (3 4y)2 
- - - n 

aa 

Underlying assumptions of this procedure are: base substitu- 

tions occur spatially at random and in uniform probability 

over the sequence, and at each site a given nucleotide mutates 

with equal probability to any one of the remaining three. 

Negative Binomial Fitting 

Uzzell & Corbin (1971) suggested that the negative binomial 

distribution gives a better estimation of the number of amino 

acid substitutions than the Poisson distribution, since the 

substitution rate is not uniform among the sites. This distri- 

bution is theoretically expected when the mutability follows 

the gamma distribution among the amino acid sites. The gener- 

ating function of the negative binomial distribution takes 

the following form, 

r 
P ] 

(9) P(s) = (I -----~-s for Is I _< I 

where p = I - q and r are the parameters of the distribution. 

Here r reflects the non-randomness of mutability among the 

sites. For r ÷ ~, the negative binomial distribution converges 

to the Poisson distribution. For smaller r, more non-ran- 

domness exists. Thus we need to know both parameters in order 

to fit this distribution. If the form of the distribution of 

the rate of substitution among the amino acid sites does not 



change over time, the value of r may be estimated from the 

phyletically inferred number of substitution in each site. 

Uzzell & Corbin (1971) have estimated r z 2 using cytochrome c 

data. Once r is known, p may be estimated from Pd (fraction of 

amino acid sites by which two sequences differ), and the aver- 

age number of substitution per site (KNB) may be obtained from 

the following formula: 

(10) K = rq/p 
NB 

I 
where p = (I - Pd )~ and q = I - p. The difficulties involved 

in this procedure are: (i) one needs to know r before-hand, 

and (ii) the variance of the above estimate is larger than 

that of the Poisson distribution. 

There are several other distance measures, some of which 

are quite general and model non-specific (e.g. Grantham, 1974; 

Dayhoff, 1972; Beyer et al., 1974). It is impossible to examine 

all these distances in the present study. 

MONTE CARLO EXPERIMENTS 

The simulation experiment consists of the following steps: 

making the original sequence, mutation in the 2 descendants 

from the original sequence, and calculation of the distance 

between the 2 descendants. The original sequence was made by 

generating uniform random number between O ~ 1.0 (RAND 20 in 

TOSBAC 3400). First, the triplet code was made by asigning 

of ~ to each of A, T, G and C. If any codon equal probability 

happened to be nonsense codon, it was discarded. A random se- 

quence of a total of 1OO amino acid codons was generated. 

Mutation was carried out again by using random numbers. 

The number of mutants or the amino acid substitutions in a 

leg from the ancestral to the descendent sequence was deter- 

mined by generating a Poisson random number (RAND 40 in TOSBAC 

3400) with a specified parameter. If a synonymous mutation oc- 

curred, it was not counted but the base sequence was changed 

and the process was repeated. From an ancestral sequence, two 

descendants were made in order to compare each with the other 

and to calculate the distance in terms of amino acid sub- 

stitutions. In one set of the experiments, the parameter of 

the Poisson distribution was a constant, whereas in another 

set, the parameter itself was a random variable following the 

gamma distribution, in which the mean and variance of the 

parameter were equal (~ = VI). For this gamma distribution, 

the gamma random number (RAND 50 in TOSBAC 3400) was used. 

The position of the mutation was determined again by gen- 

erating a random number. Two different ways in asigning the 



probability of mutation to each of 100 amino acid sites were 

employed. In one set, the uniform probability of mutation was 

asigned to each of the 1OO sites by generating a uniform ran- 

dom number. In the other set, a gamma random number with mean 

one was used. Actually, if the gamma random number, 

X G = -IOO(lOgeX)/2 falls in the interval i - I i, the i-th 

site is chosen for mutation, where X is a uniform random num- 

ber. Note that -logeX is the gamma random number with both 

mean and variance one and that it is multiplied by 100 because 

there are 100 amino acid sites in a sequence. It is further 

divided by 2 for truncation. If X G is larger than 1OO, it was 

discarded. By this asignment of mutability, I have empirically 

found that the parameter of the negative binomial distribution 

(r) may be 2, the value estimated from cytochrome c data 

(Uzzell & Corbin, 1971). 

Thus the total of 4 sets of experiments designated I to IV 

were carried out as in the following table: 

Mutability of amino acid sites 

Uniform Gamma 

Number of Poisson 

mutants in with constant 

a leg parameter 

I II 

Poisson 

with variable 

parameter 

III IV 

Each set of the experiments was conducted for 20 periods (i.e. 

20 values of ~) and for each period, 1OO repeats were done, 

resulting in 2000 trials. In each period, the mean and the 

variance of each of the 4 distance measures were computed 

based on 100 repeats. Simultaneously, the expected variance 

was computed (formula 5). 

For the negative binomial fitting, , I put r = 2, the value 

which was found to fit to the cases of non-uniform mutability 

among the sites (II and IV). It seems impossible to estimate 

this parameter for each case in the present simulation, since 

there are only two legs to compare. When many sequences and 

more complicated phylogenetic tree are available, this par- 

ameter may be estimated as Uzzell & Corbin (1971) have done. 

RESULTS 

Figure I represents the mean of the estimated number of amino 

acid substitution between the two descendants by using the 

four methods: the minimum distance, Poisson fitting, random 
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Results of simulation experiments I to IV. The ordinate is the average num- 

ber of amino acid substitutions per site. The abscissa is the average of the 

parameter of the Poisson distribution, which determines the number of sub- 

stitution in a leg, divided by the number of amino acid sites in a seqUence 

(~). Thus, the ordinate and the abscissa have the same scale. In the fig- 

ures, the straight line represents the expected actual number of substi- 

tutions; triangles, the observed minimum base difference; circles, the re- 

sults of Poisson fitting; and crosses, the results of negative binomial 

fitting; and squares, the observed random nucleotide substitutions 



nucleotide substitutions and negative binomial fitting. Fig- 

ures la to Id correspond to the sets I to IV respectively. The 

abscissa ([) is measured by the expected number of amino acid 

substitutions and hence has the same scale as the ordinate. 

The expected actual number of substitution is shown by the 

straight line in the figure. In each figure, the triangles 

represent the results of minimum distance, the circles, those 

of Poisson fitting, the squares, those of random nucleotide 

substitutions and the crosses, those of negative binomial fit- 

ting. 

In the figure, the symbols under the line indicate that 

they are underestimates. It is clear from the figure that, in 

all cases, the minimum distance (MBD) is a serious underesti- 

mate when the distance becomes large. The bias is pronounced 

when the substitution rate is not random among the amino acid 

sites (cases II and IV). For example, when MBD = 0.5, the bias 

is about 15% of the true value in cases II and IV but about 

13% in cases I and III. When MBD = 1.O it is the underesti- 

mation of almost 1OO% in the former cases. 

The Poisson estimates (Kaa) also undervalue somewhat, par-- 

ticularly when the rate is non-random among the sites. For 

example when Kaa = 0.5, the bias is about 10% in cases II and 

IV but negligible in cases I and III. The bias gets nonneg- 

ligible for remote comparisons even for cases I and III. This 

is considered to be caused by the back mutation intrinsic to 

the genetic code (Farris, 1973). Actually, because of struc- 

tural and functional constraints of protein molecules, the 

back mutation may occur much more frequently than random ex- 

pectation. In practice, however, it can still be a good method 

of estimation unless very remote comparisons are made. In fact, 

Nei & Chakraborty (1976) found, using the empirical data, that 

the correlation is very high between the Poisson estimate and 

the maximum parsimony solution by Langley & Fitch (1974) and 

by Goodman et al. (1974). 

Theoretically, random nucleotide substitutions (RNS) should 

be roughly 40% larger than the actual number of amino acid 

substitution (straight line). This relationship holds when the 

amino acid sites have uniform probability of substitution 

(cases I and III). However, when the rate is non-random among 

the sites (II and IV), RNS curves downwards as time gets larger. 

Since the linearity with respect to true distance is the most 

desirable property of a distance estimator, RNS is not much 

better than the Poisson estimate as long as there is variability 

in the substitution rate among the sites. 

The negative binomial (KNB) overestimates the number of sub- 

stitution when the probability of substitution is uniform among 

the sites (I and III). In fact, it is clear that the model does 

not fit such cases. When the rate is gamma distributed (II and 

IV) among the sites, it fits better than any other distance 
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The variance of the rate of amino acid substitution as measured by the 

ratio of the observed to the expected variance (ordinate). Abscissa is the 

average parameter as in Figure I. Figure 2a represents the results of the 

experiments I (x) and II (o), in which the parameter of the Poisson distri- 

bution is constant. Figure 2b represents the cases with a fluctuating par- 

ameter: experiments III (x) and IV (o). The straight lines in both figures 

are the theoretical expectation of the variance ratio 

measures tried. The weakness of this measure as mentioned be- 

fore, is that we need to know beforehand the parameter (r = 2 

in the present case) of the distribution. Furthermore, the 

variance of the estimate is larger than that of the Poisson 

fitting. 

Let us turn our attention to the variance of the number of 

substitutions. We examine the results of the Poisson fitting 

in detail, since practically the same results were obtained 

for RNS. Figure 2 shows the results in terms of the ratio of 

the observed to the expected variance. The expected variance 

was calculated using formula (5) from the average Pd of 100 

trials. Again, the expected actual ratio is shown by the 

straight lines. Figure 2a is the cases of constant parameter 

of the Poisson process among the legs (I and II). Crosses 

represent the results for case I and circles, those of case 

II. The observed values roughly agree with the expected 

values; however, there seems to be a slight tendency of under- 

estimation when the substitution rate is not uniform among the 

sites (case II). 

Figure 2b shows the results for the cases when the parameter 

of the Poisson distribution varies among the legs. Crosses rep- 

resent the results of case III (uniform substitution among the 

sites) and circles, those of case IV (non-uniform substitution 



among the sites). The expected actual ratio becomes two from 

formula (3) and by putting Vl = [. It is interesting to find 

that the ratio decreases rapidly as the genetic distance gets 

larger. In other words, the observed variance is smaller than 

the true value and the deviation gets larger as the distance 

gets larger. For example, when the expected amino acid sub ~ 

stitution is 0.3 per site ([ = 0.3), the ratio is 1.8 in case 

III and 1.6 in case IV. It further decreases to almost 1.2 in 

case III and 1.O in case IV when ~ = 2.0 (largest [ value in 

the figure). A more theoretical approach to this problem is 

under investigation. The fact that the observed variance under- 

estimates the true value has an important bearing in assessing 

the true nature of molecular evolution and will be discussed 

later. 

DISCUSSION 

From the results of our Monte Carlo experiments, we can see 

that the non-randomness among the sites is reflected in the 

mean value of the distance whereas the non-randomness among 

the legs is reflected in the variance of the estimates. The 

interaction effects between the two types of non-randomness 

is rather small. Also we can say that the Poisson fitting is 

a good method as compared with the other more complicated 

approach not only because of its simplicity but also because 

of its reliability. As for the estimation of the mean, more 

assumptions are needed for more sophisticated analysis, and 

hence the reliability decreases as long as we are not sure 

of such assumptions. As for estimating the variance of the 

evolutionary rate, the Poisson fitting is considered to be 

satisfactory since the interaction effects of the two types 

of non-randomness mentioned is rather small. 

The maximum parsimonious solution investigated by several 

investigators (e.g. Fitch, 1971; Goodman et al., 1974), is a 

kind of minimum distance and therefore it may be the under- 

estimate when the number of branches (or, branchings) is small. 

However, in my Monte Carlo experiments, the true distance is 

not more than twice the minimum distance even at the maximum 

value studied. Thus the augmentation procedure by Goodman 

et al. (1974) which give 3 4 times of the minimum distance 

in some branches of the phylogenetic tree of the globins is 

questionable (Nei & Chakraborty, 1976). 

Perhaps the most important finding of the present study is 

that the observed variance by Poisson fitting is the under- 

estimate of the true value when the rate of evolution fluc- 

tuates. The bias is negligible for close comparisons but be- 

comes large when the remote comparisons are made. This will 

make it difficult to find out the variation of the evolutionary 
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rate. Ohta & Kimura (1971) found by analysing several "semi- 

independent" comparisons of reported sequences from cytochrome 

c, hemoglobin ~ and hemoglobin B, that the variance of the 

evolutionary rate is roughly 2 ~ 3 times of the expected value 

from the strictly random process. Since the comparisons they 

used are not very remote, the bias would not be large. Essen- 

tially the same result has been obtained by Langley & Fitch 

(1974). In their analysis, the value of ×2 becomes roughly 

twice the degrees of freedom for the maximum parsimonious 

solution by Fitch (1971). Therefore, these results, at least, 

fit to the present model of random fluctuation of the parameter 

among the legs. It has been noted by several investigators in 

cytochrome c and globins that the variance decreases as time 

gets larger (Ohta & Kimura, 1971; Romero-Herrera et al., 1973; 

Van Valen, 1974). This would be explained by the present re- 

sult. Note here that the autonegative correlation as suggested 

by Van Valen (1974) is not necessarily needed to explain this 

fact. 

Random fluctuation of the evolutionary rate is expected if 

the nearly neutral mutant substitutions are numerous for mol- 

ecular change. In particular, the behavior of very slightly 

deleterious mutations, which I postulated as important for mol- 

ecular changes (Ohta, 1973, 1974), is greatly influenced by 

the population size. When the population is small, they behave 

as neutral mutants and can spread in the population. But when 

the population is large, they are effectively selected against 

and are eliminated from the population. The severity of the 

environment must also affect their behavior. Such factors may 

be regarded as random variables and not systematic factors 

such as progressive evolutionary force. In fact, if the pro- 

gressive evolutionary force or the adaptive natural selection 

is the primary factor of molecular evolution, one should find 

much stronger correlation between the evolution at the pheno- 

typic level and the molecular evolution than actually found 

(Kimura, 1969; King & Wilson, 1975). 

The models used in the present study may be criticized as 

unrealistic, in particular, I did not incorporate the chemical 

nature of 20 kinds of amino acids, whereas it is now well 

recognized that it has an important bearing on amino acid 

substitutions (e.g. Dayhoff, 1972). Instead, I concentrated 

on the random nature of mutant substitutions. Since some dis- 

tance measures used are based on the assumption of the random 

nature of amino acid substitutions, some of the agreements 

between the actual and the estimated distances may be circular. 

However, as a first step, it is necessary to test these dis- 

tance measures under the assumption on which they are derived. 

The next step is to incorporate the chemical nature of amino 

acids into the model and to find out the aggregate effects of 

various types of non-randomness in the amino acid substitutions. 
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