
A Characterization of Polyhedral Market Games 

By L. J. BILLERA ~) and R. E. BIXBY 2) 

Abstract: The class of games without side payments obtainable from markets having finitely many 
commodities and continuous concave utility functions is considered. It is first shown that each of 
these so-called market games is totally balanced, for a reasonable generalization of the idea of a balanced 
side payment game. It is then shown that among polyhedral games (i.e., games for which each (V(S) 
is a polyhedron), this property characterizes the market games. 

1. Introduction 

The idea of obtaining an n-person game from an economic market is due to 
SnAPLEY, and in SHAPLEV and Sritmii( [1969], the authors characterize those 
games with side payments which are obtainable from markets with continuous 
concave utility functions. They show that the market games are the same as the 
totally balanced games (which in the side payment theory coincide with the games 
for which each subgame has a nonempty core). They also raise the question of 
characterizing market games without side payments. 

In BILLERA and BIXBY [1972], the authors showed that any "reasonable" set 
(i.e., a set of the form C - R~, where C C R" is compact and convex) can be 
realized as the set of attainable utility outcomes for a market with at most n(n - 1) 
commodities, and continuous concave utility functions. Therefore, the question 
of characterizing market games without side payments is reduced to one of 
finding a condition relating the various sets V(S) to one another. By generalizing 
the notion of balanced side payment games (as is discussed in BILLERA [1972]), 
one obtains a definition of balanced game which is stronger than that used by 
SCARF. In section 2, we prove that a market game (coming from a market with 
continuous concave utility functions) is always totally balanced in this sense. 
In section 3, we prove that for polyhedral games, the converse of this statement 
is also true, i.e., that totally balanced polyhedral games are always market games. 

2. Market Games 

Let N =  {1 .... ,n} and, for O - ~ S ~ _ N ,  let R S = { x ~ R " l x i = O f o r i ( ~ S } .  
Further let R~ = [0, ~)"  and R s = R s ~ R% We will define an (n-person co- 
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operative) game (without side payments) to be a function V which assigns to each 
S ~ 2 N = {S _~ N I S @ ~)} a subset V(S) ~_ R" of the form V(S) = Cs - RS+ where 
Cs C R s is nonempty compact and convex. 

Let I "  = [0,1]" be the unit m-cube, where m is a nonnegative integer (I ~ = (0}). 
Suppose for each i ~ N we are given a concave, continuous function ui : I "  ~ R, 
and a point coi e Im. (In what follows, we may assume, with no loss of generality, 
that Z c o i <  e" = (1 .... ,1)~I".)  The collection {(u,,a2i)lieN} will be called 

an n-trader, m-commodity market (see, e.g., SHAPLEY and SHUBIK [1969] or SCARF 
[1967]). 

Given a market {(ui, o)i)li e N}, we derive a game as follows. As in BILL~RA 
and BlxaY [1972], we define the attainable set for S e 2 N to be 

V(S) = {x+RS[xi < ui(yi),yieZ",ieS; Z y i =  Z ~i~. 
iES iES ) 

It follows from Theorem 2.3 of that paper that the function V so defined is a 
game, called the market game of the given market. We note here that a given 
market game may arise from more than one market, and "having the same 
game" is an equivalence on the set of all markets. 

Given any game V, it also follows from the above mentioned theorem that 
for each S e 2 N, there is a market such that V(S) is the attainable set for S with 
respect to that market. The problem of characterizing market games is the problem 
of finding for which games can a single market give V(S) for all S. 

We first derive a necessary condition. Given a game V on N and a nonempty 
subset T _  N, we define the subgame of Von T to be the restriction of V to 2 r. 

We say a game V on N is balanced if 

V(N) ~_ Z bs V(S) 
S=_N 

whenever 6s > 0, S ___ N, are such that ~ 6s = 1 for each i e N. The subgame of 
s~ 

V on T is said to be balanced if it is balanced as a game on T, i.e., 

V(T) ~_ ~ 6s V(S) 
S=_T 

whenever 6s >>_ O, S ~_ T, and ~ 6s = 1 for each i e T. The game V is said to be 
S~i  

totally balanced if it and each of its subgames is balanced (see SHAPLEY and 
SHum~: [1969]). 

Theorem 2.1: 
A market game is always totally balanced. 

Proof: 
Since any subgame of a market game V is again a market game, we need on],, 

show that V is balanced. So, let Xs e V(S) for each S e 2 N and suppose 6s > O, 
S___N, and ~ 6 s = 1  for i~N.  We must show x =  ) - '6sxseV(N) .  

S~i  S c - N  
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Let {(ui, co i) I i ~ N} be a market which gives rise to E For  each S ~ 2 ~, by de- 
finition of V(S), there are y~ ~ I m, i~ S, such that ~ y~ = ~ e) ~ and (Xs)i < ui(y~) 

i~S iES 

for each i ~ S. Define z i ~ I r", i ~ N, by z i = ~, 6syis. 
S~ i 

To show x ~ V(N), we will show first that ~ z i = ~ co i, and then that xi < ui(z i) 
for i ~ N. Now, i~N i~N 

E z' = E Z ~s y~ = Z fis Z y~s = E oJ Z fis = Z ~o i . 
tEN ieN S~i Sc-N ieS  i~N S~i i~N 

Also, since u~ is concave, 

u~(z ~) = ~ ~sy Y~ ~su~(ys) >-__ Y~ ~s(Xs)~ = x~. 
\S~i  ] S~i S~i 

Note that the notion of balanced game defined above is stronger than that 
used by SCARF [1967], and in SHAPLEY [1973] and BILLERA [1970]. An example 
is given in BILLERA [1972-1. In order to assure that a game V (for which the sets 
V(S) are not necessarily convex) is balanced in SCARFS sense, it is enough to 
assume that it arises from a market having quasi-concave u~. In order to guarantee 
the property of balanced defined above, concave ul are necessary. By working 
with the stronger balanced property and games with convex V(S), we are losing 
some of the generality implicit in SCARF [1967-1, but we remain within the class 
of markets considered by SHAPLEY and SmrBIK. We suspect that some of this 
generality can be recovered without too much difficulty. 

We conjecture that the converse of Theorem 2.1 is true, i.e., that the property 
of being totally balanced characterizes market games. In the next section we 
prove this is true for a special class of games (those for which each V(S) is a poly- 
hedron). 

For  x ~ R n, let x(S) denote its projection onto R s. If V is a game on N then 
let V + x be the game for which (V + x)(S) = V(S) + x(S). The following is 
an easy consequence of Lemma 2.2 in BILLERA and BIXBY [1972-1. 

Proposition 2.2: 
If V is a market game on N, then so is V + x for any x ~ R ~. 
As a consequence of the above, we will assume that all games V have the pro- 

perty that for each S, V(S) = Cs - R s where Cs is a nonempty compact, convex 
subset of RS+ such that Cs c~ {x ~ R s ] xi > 0 for i ~ S} 4: 0. 

3. Polyhedral Games 

We will say a game V is polyhedral if for each S ~ 2 s, the set Cs is a compact 
polyhedron in R s (or if polyhedral Cs can be found). The following will prove 
useful in our consideration of balanced polyhedral games. 

Definition 
Let V be a game on N and let V(N) denote the Pareto surface of V(N), i.e., 

the set of maximal elements with respect to the usual partial order on R" (see 
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B1LLERA and BIXBY [1972]). We say x ~ V(N) is in the strong core of V if for each 
S e 2 N and each y e V(S) there exists z �9 V(N) such that z (N\S)= x(NkS) and 
z(S) >= y. 

We note here that the strong core is a subset of the core [SCARF, 1967; 
SHAPLEY, 1973], while it in some sense generalizes the idea of the core of a game 

with side payments [SHAPLEY and SHUBIK, 1969]. 

Lemma 3.2: 
Suppose n E R" and n > 0. Let V be a balanced game on N with 

V(N) = { x � 9  [ (x ,n )  <= 1} - R ~ .  

Then V has a nonempty strong core. 

Proof." 
For each S � 9  N, define v(S)= max{(x ,  rc) l x e V ( S )  }, and suppose v(S) is 

attained by Ys �9 V(S) c~ RS+ (recall the remark following Proposit ion 2.2). Hence 
v(S) > 0 for all S. Since V is balanced, it follows that for any 8s ~> 0, S e 2 N, such 

that ~ ~s = 1 for i �9 N, we must have ~ (SsYs �9 V(N), i.e., 
S~i  S~-N 

1 > (~6sYs,~r) = ~bs (Ys ,  rr) = ~bsv(S) .  

Hence by linear programming duality, there exists an 2 �9 R ~ such that (7r,2) = 1 
and (zr,2(S)) > v(S) for each S �9 2S (this is essentially the proof  of the SHAVLEY- 

BONDAREVA theorem on the core). Since v({i})> 0 for i � 9  N, we have 2 > 0, 

and hence 2 �9 V(N). 
To show s is in the strong core of V, let S �9 2 N and y �9 V(S). Assume without 

loss of generality that y > 0. Choose j �9 S and define z �9 R '  by z(NkS) = 2(NkS), 
z(S~{j}) = y(S~{j}) and zj = (1/rci)(1 - (Tr, z(NV))). Clearly (Tr, z)  = 1 and z, > Yi 

for i �9 Sk{j}. If  yj > z~, then 

(z(S),rc) < (y ,  rc) <__ v(s) 

< (~(s),rc) 

= ~ - ( ~ ( N ~ S ) , ~ )  

= < z ( S ) , ~ > ,  

and so yj <__ zj, which shows z(S) > y, and z => 0. Hence z e V(N), which proves 

2 is in the strong core. 
We comment  here that Lemma 3.2 is, in general, false when V(N) is not of this 

special form. In fact, examples can be found of balanced games with empty strong 
cores, and games with nonempty strong cores which are not balanced. 

Lemma 3.3: 
Suppose n �9 R" and n > 0. Let V be a game on N with 

V(N) = {x �9 R~ ] ( x , ~ )  __< 1} - n ~ ,  
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and suppose V has a nonempty strong core. Then there is a market game 17 on 
N (coming from a 1-commodity market) such that 

I?(S) ___ V(S) for S ~ 2  N , and (3.3.1) 

Proof." ~'(N) = V(N) .  (3.3.2) 

For  each i ~ N, let ui : I --* R be given by ui(x) = x/ni for x ~ I, and let to i = niyi ~ I 
where y is a point in the strong core of V. Note ~ co i = 1. Let 17 be the market 

ieN 

game given by the 1-commodity market {(ui, to i) l i ~ N}. 
For  any S ~ 2 N, let Xs ~ V(S). Since y is in the strong core of V, we have z ~ R~_ 

such that (z, lr) = 1, z(N~S) = y(N~S) and z(S) > Xs. But 

zilri = 1 - <z(N\S),rc> 
i e S  

- -  f.O i = 1  , 
i t s  

and so Xs ~ ~(S) since for each i ~ S we have ui(zi~zi) = zi > xi. Thus V(S) ~_ V(S). 
Now suppose x ~ I?(N). Then there are a i ~ I, i ~ N, so that ~ a i = ~ c# = 1, 

f e n  i ~ N  

and xi < ui(a i) = ai/ni. Let ~2 = (at/zq . . . .  ,a,/n,). We have ~ > 0 and (n,~> = 1 
which implies ~ e V(N). Since x __< ~, we must also have x e V(N), proving (3.3.2). 

Suppose F is any index set and { V~ 17 e F} is a collection of games, all on the 
same set N. We define the intersection of the collection of games, n vr, by 

? 

cn = n easy to  erify thatn i s .   ame ei  or  .ite 
\ r  1 r r 

or if each V r satisfies the convention made following Proposition 2.2. 

Proposition 3.4." 

The intersection of any finite collection of market games is a market game. 

Proof .  
It is enough to show that the intersection of two market games is a market  

game. For  ? = 1,2, let V~ be the market game on N given by the n-trader, 
mr-commodity market {(u~,og~) I i ~ N}. It follows as in Lemma 2.2 of BILLERA 
and BIXBY [1972] that V~ c~ V2 is the market game given by the n-trader, (ml + m2)- 
commodity market {(u~ ^ u 2,~0~ G 09~) I i ~ N} where 09~ G r i i = (eh, a~2) and 
for ( x , y ) ~ I  '~§ (ul ^ u2)(x,y) = u~(x) ^ u2(y) (where a ^ b = min(a,b)). 

Theorem 3.5: 

Let A be a finite index set, and for each c~ ~ A, let n ~  R ~ and n ~ > 0. Suppose 
V is a balanced game on N with 

V(N) = { x ~ R ~ + l ( n ~ , x )  < 1 for all ~eA}  - R~_. 

Then there is a market game I2 on N (coming from a t A I-commodity market) 

such that r ~_V(S) for S e 2  ~, and (3.5.1) 

r  = V(N) .  (3.5.2) 
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Proof:  
For each e s A, let V~ be the game on N with V~(S) = V(S) for S ~ N, and 

V~(N) = {xeR"+ [(n~,x)  < 1} - R"+. 

Since V is balanced, so is each V~, and hence by Lemma 3.2, each V, has a non- 
empty strong core. It follows from Lemma 3.3, that for each e s A, there is a 
(l-commodity) market game l~ such that I7,(S)_ V~(S) for each S E2 u, and 
I7,(N) = V~(N). Setting P = 0 I7,, it follows from Proposition 3.4 that IY is a 

([A [-commodity) market game. [? clearly satisfies (3.5.1) and (3.5.2). 
We note here that the market giving the game P in Lemma 3.3, and hence 

that in Theorem 3.5, has the property that the u, are nondecreasing (in each 
variable). 

In order for us to treat the case of a general polyhedral game, we need a version 
of Theorem 3.5 which allows the ~c" to have some zero coordinates. 

Theorem 3.6." 
The conclusion of Theorem 3.5 remains valid if we change the conditions 

on then  " f r o m n  " > O t o n  ~ > 0 ,  ~ n  " > 0 .  
r 

Proof." 
Let M = max{ ~ xi I x s  V(N)}. For eachj  = 1,2 .... , define 

ieN 

n~,j = j n~ + 1 e" 
m + j  M + j  

We have, then, that n "'s > 0 for each j, and u=,s _~ rt,. 
For each j, define the game V j by VS(S) = V(S), for S :p N, and 

VS(N) = {xeR~+ ] ( x ,n  ~J) <__ 1, 'q 'eeA} - R•. 

Suppose x > 0 and x s V(N). Then for each j and each ~ s A, we have 

J (x, re) + 1 ~ x~ < 1. 
= M +-----7' M +-------7 = 

It follows that V(N) c_ Vi(N) for each j, and hence each V j is balanced. Therefore 
all the W satisfy the hypothesis of Theorem 3.5, and there exists for eachj a market 
game I 7j satisfying 

Vi(S) ~_ vJ(S) = V(S) for S :p N ,  and (3.6.1) 

12J(N) = VS(N) ~_ V(N).  (3.6.2) 

Let {(u/, o)}) ] i e N} be the ] A I-commodity market giving rise to IYs, as guaranteed 
by Theorem 3.5. Implicit in the proof of that theorem is the fact that each ul 
is given by u{(y) =/~(yJrc~[ 'J) for y e I IAI, and Z ~o} = e lal. For each i t  N, let 

i~N 
At = {c~ ~ A ] n~ > 0} (which is nonempty since ~ n ~ > 0), and let ui be given 

~t~A 
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by u~(y) = / ~  (y~/n~) for y e 11AI. Assume without loss of generality that for each 
acii Ai 

i e N,  o~ ~ w i e I iAI. It is clear that {(u,,o~*) i i e N} is a market; let 17be its market 
game. We claim 17 satisfies the conclusions of the theorem, i.e., (3.5.1) and (3.5.2). 

Suppose x e 17(N)c~ R"+. Then there exist y ie  11AI, i e N ,  such that ~ y i =  
i t N  

co t = e iAl and xi <= ui(Y i) = A (yi/n~) for each i e N. For ~ e A we have 
i t  N ott Ai 

< 

< E y ~ = l ,  
i eN  

and hence x e V(N). Thus we have shown that 17(N) __ V(N). 
Now let S e 2 N and suppose x e V(S). By (3.6.1) and (3.6.2), x e 17J(S) for every 

j. Therefore for j = 1,2,..., and for each i e S ,  there exists y ~ e I  lal such that 
E Y~ = E co~ and xi < ul(y~). Assume without loss of generality that y~ ~ yi ~ IIAI 
i~S  i eS  

for each i e N. Thus ~ y~ = lira ~ ~o~ = ~ o9 i. For each i e N and j, put fi!(y) = 
i t s  j ~  i t s  i eS  

/ ~  (y~/n~'5 for y e ilal. Then for each i and s xi < fi,~(y~.) and fit ~ u~ uniformly 
~ A i  

on I IAI (this follows easily by induction on [A~ [). Since u~ is continuous and y~ ~ y~, 
it can be shown that fii(y~.) ~ ui(y i) and hence xi <-_ ui(yi). Thus x ~. 17(S) and we 
have V(S) ~_ 17(S). This concludes the proof. 

We comment here that the previous proof is a special case of a more general 
limit theorem which can be proved. Essentially, what this theorem would say 
is that given a sequence of market games which come from a sequence of markets 
having utilities which are uniformly bounded below, and having a bounded 
number of commodities, then any limit point of this sequence (in the Hausdorff 
metric) is again a market game. In fact, it is the necessity for a bound on the number 
of commodities which prevents this limit theorem and the results of this paper from 
proving the converse to Theorem 2.1 for general V. 

Lemma 3.7: 
Let V be a game on N. Suppose the restriction of V to some subset T _  N 

is a market game on T. Then there exists a market game 17 on N such that 

17(R) ~_ V(R) for all R e 2  N, and (3.7.1) 

17(R) = V(R) for all R e 2 T . (3.7.2) 
Proof: 

Suppose the m-commodity market {(u~,coi)lie T} generates the restriction 
of V to T. Let M = max {xi Ix e V(S), S e 2N;i e N} and t = I T[. Let 17 be the 
market game on N generated by the (rn + 1)-commodity market {(fii,&i)[ i e N} 
where o5 ~ e 1 "+1 is given by 

= i e r 

((0,1) ir  T, 
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and fii:I~+~ ~ R is given by 
f u~(y) + (t + l )Mz  i~ r 

fii(Y'Z) = ~(t + 1)Mz  ir T, 

for ( y , z )~ l  m+~. It is easy to see that 1~ satisfies (3.7.1) and (3.7.2). 
We are now in a position to characterize the market games among the poly- 

hedral games. First, we can view the set V(S) as a subset of an IS [-dimensional 
space by ignoring the zero coordinates corresponding to N\S. Thus it is enough 
to show that for a polyhedral game V, the set V(N) can be expressed in the form 
required by Theorem 3.6. 

By our convention, V(N) = CN -- R~+ where Cn ~- R~+ is a polyhedron con- 
taining a point q > 0. Therefore V(N) is a polyhedron and q ~ V(N). Suppose 

V(N) = { x e R " [  (x ,p  ~) < b ' , a~A }  

where A is a finite index set and p ' s  R", b ~  R for each a s A. First, p~s R% 
for each e since V(N) is unbounded in all directions contained in -R~-. Since 
q ~ V(N), we must have b" > 0 for each e. Thus we have 

V(N) = {x ~ R"[ ( x , n ' )  <= 1, a ~ A} 

where n" = (1/b')p ~. Finally, letting P = V(N) n R"+, we have V(N) = P - R"+, 
and we have obtained the required expression for V(N). That ~ rc ~ > 0 follows 
from the fact that CN, and hence P, is bounded. ,~ A 

Theorem 3.8: 
A polyhedral game is a market game if and only if it is totally balanced. 

Proof: 
Necessity is Theorem 2.1. To show sufficiency let V be a totally balanced 

polyhedral game. From Theorem 3.6 and Lemma 3.7 it follows that for each 
T e 2  N, there is a market game VT having the properties that VT(S) ~- V(S) for 
each S ~ 2 N, and VT(T ) --- V(T). But then V = N VT is a market game by Pro- 
position 3.4. r~2N 

We comment that the methods used here essentially realize the game V with 
a market having ui's which are continuous, nondecreasing, piecewise-linear concave 
functions on all of R m. Also the number of commodities m = k + 2" - 2, where 
k is the total number of"faces" ~ needed to describe each of the sets V(S). Clearly, 
these methods do not work for non-polyhedral games unless one is willing to 
admit a countably infinite dimensional commodity space, I~ Even in such 
a case, it is not clear that the resulting functions u~ are continuous for any reasonable 
topology on I | i.e. one for which I ~ is a compact subset of a linear topological 
space (see SHAPLEY [1973]). This direction is being investigated (see BILLERA 
[1973]). 

In any case, we can say that the market games are a dense subset (say, with 
respect to the Hausdorff metric) of the totally balanced games. If one could find 
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a method to bound the number of commodities needed to realize an n-person 
polyhedral market game (say, as was done for attainable sets in BILLERA and 
BIXBY [1972]), then by using the aforementioned limit theorem, one could prove 
Theorem 3.8 for all games. Work is continuing along these lines as well. 
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