
Oddness of the Number of Equilibrium Points: A New Proof 

By J. C. HARSANYI 1) 

Abstract: A new proof is offered for the theorem that, in "almost all" finite games, the number of 
equilibrium points is finite and odd. The proof is based on constructing a one-parameter family of 
games with logarithmic payoff functions, and studying the topological properties of the graph of a 
certain algebraic function, related to the graph of the set of equilibrium points for the games belonging 
to this family. In the last section of the paper, it is shown that, in the space of all games of a given size, 
those "exceptional" games which fail to satisfy the theorem (by having an even number or an infinity 
of equilibrium points) is a closed set of measure zero. 

1. Introduction 

WILSON 1-1971, Theorem 1 on p. 85] has shown that, apar t  f rom certain degen- 

erate cases, in any finite game, the number  of equilibrium points is f i n i t e  and odd. 

The purpose  of  this paper  is to offer a new proof  for WILSON'S theorem. 

Let F be a finite noncoopera t ive  game. The k-th pure strategy of  player 

i (i = 1 . . . . .  n) will be called a k, whereas the set of all his Ki pure strategies will be 

called Ai. Let  
tl 

K = l-I Ki .  (1) 
i = 1  

We shall assume that  the K possible n-tuples of pure strategies are numbered  
consecutively as a 1 . . . . .  a% . . . .  a K. Let 

a ~ (ak,,. k, _k,x (2) 
= . . ,a i  , . . . , u n  1. 

Then we shall write 

am(i) = a k' , (3) 

to denote  the pure strategy used by player i in the strategy n-tuple a ~. The set of  

all K possible pure-strategy n-tuples will be called A. We have A = A lx  ... xAn. 

Any mixed strategy of  a given player i ( i  = 1 . . . . .  n) can be identified with a 
probabi l i ty  vector p~ of  the form 

p, = (pl . . . .  ,pk .. . .  ,p~,), (4) 

where pl . . . .  ,p K, are the probabilities that  this mixed strategy assigns to his pure 
strategies u,-l, . . . ,utr ' .  The set P, of all mixed strategies available to player i is a 
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simplex, consisting of all K~-vectors satisfying the conditions 

pk > 0, for k = 1 ... . .  K, ,  
and 

(5) 

Ki 

p~ = 1. (6) 
k = l  

The set P = P1 • "" x P, of all possible n-tuples p = (Pl ..... p,) of mixed strategies 
is a compact and convex polyhedron, and will be called the strategy space of 
game F. We shall write p = (Pi,~), where ~ = (Pl .. . . .  Pi-l,Pi+l ..... p,) is the 
strategy (n - 1)-tuple representing the mixed strategies of the (n - 1) players 
other than player i. 

k The set C(p0 of all pure strategies a~ to which the mixed strategy Pi assigns 
positive probabilities p~ > 0 is called the carrier of Pi. If the carrier C(pi) of a 
given strategy p~ contains only one pure strategy a~, then p~ will be identified 
with this pure strategy a~ = p~. On the other hand, if C(p~) contains all K~ pure 
strategies of player i, then Pi will be called a complete (ly) mixed strategy. Finally, 
if p~ is neither pure nor complete, then it will be called an incomplete(ly) mixed 
strategy. 

For any strategy n-tuple p = (Pl .. . . .  p,), the carrier C(p) of p will be defined 
as the union of the carriers of its component strategies, that is, as 

C(p) = 0 C(p,). (7) 
i = 1  

Suppose that the i-th component of the pure-strategy n-tuple a m is am(i) = a~, 
and that a given mixed strategy p, of player i assigns the probability p~ to this 
pure strategy @ Then, we shall write 

q~"(p,) = p~. (8) 

Of course, if pi = a~ is a pure strategy, then we have 

q.F(a~) = 1, when am(i) = ~ ,  (9) 

but 
q'F(a~) = 0 when a"(i) ~ a~. (10) 

When the n players use the pure-strategy n-tuple a m, then player i (i = 1, ...,n) 
will receive the payoff 

U i ( a  m) = u m , (11) 

whereas if they use the mixed-strategy n-tuple p = (Pl ..... p.), then his payoffwitl be 

Ui(p) = q'f(p~) u~. (12) 
g n u 1  ' =  

L e t J  =J(n;K~, . . . ,K , )  be the set of all n-person games in which players 
1,. . . ,n have exactly K1 .. . . .  K,  pure strategies, respectively. Thus, J is the set 
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of all games of a given size. Each specific game F in J can be characterized by the 
(nK)-vector 

, 1 -KI. . 1 ,K,. . 1 ..,U,K"), (13) U -~- ~UI~. . . ,U 1 ~.. . f l .di~.. . ,I~ i , . . . , U n , .  

whose components u~' = Ui(a m) are the payoff to various players i for the dif- 
ferent pure-strategy combinations an. We can identify each game F with its 
vector u = u(F) of possible payoffs for pure-strategy combinations, and can 
regard the s e t J  as an (nK)-dimensional Euclidean s p a c e J  = {u}. 

Let g ( J )  be the set of all games F in J for which a given mathematical statement 
6e is false. We shall say that statement 5 e is true for almost all games if, for every 
possible set J of games of a particular size, this set ~ ( J )  is a closed set of measure 
zero within the relevant set J ,  regarded as an (n K)-dimensional Euclidean space. 
(Concerning the closure requirement for 57(~r see DEBREU [1970, p. 387].) 

2. Logarithmic Games 

Let A be an n-person noncooperative game, where the n players have the same 
simplexes P1 ... . .  P .  they have in game F as strategy spaces, but where the payoff 
function Li of each player i(i = 1 . . . .  ,n) is of the form 2) 

K~ 

L~(p) = L~(pi) = ~ log Pi. (14) 
k = l  

Thus, A is a "degenerate" game, in which each player's payoff L~ depends only 
on his own strategy p~, and does not depend on the other players' strategies 

pi, J 4= i. 
Finally, we define a one-parameter family of games {A*(t)}, with 0 - t _< 1. 

In any particular game A*(t) with a specific value of the parameter t, the payoff 
function of player i(i = 1 . . . .  ,n) is 

L*(p,t) = (1 - t)Ui(p) + tLi(Pi). (15) 

Obviously, A*(0) = F, whereas A*(1) = A. All games A*(t) with 0 < t < 1 will 
be called logarithmic games. F will sometimes be called the original game, while 
A will be called the pure logarithmic game. 

2) Since the payoff  function Li are logarithmic functions (instead of  being multilinear functions in 
the probabilities p~ as is the case in ordinary finite games), this game A - as well as the games A*(t) 
to be defined below - are best regarded as being infinite games in which the liure strategy of  every 
player i consists in choosing a specific point  pl f rom the simplex P~, which makes  each p~ a pure strategy, 
rather than  a mixed strategy, in game A (or A*(t)). But, for convenience, we shall go on calling any 
given strategy p~ a (complete or incomplete) mixed strategy - even in discussing the infinite games 
A and A*(t) - if p~ would represent a (complete or incomplete) mixed strategy in the finite game 
F. This terminology will not  give rise to any confusion because, in analyzing these infinite games, 
we shall never consider mixed strategies having the nature  of  probability mixtures o f  two or more 
strategies p~. 
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3. Equilibrium Points 

A given strategy Pi of player i will be called a best reply to a strategy combination 
/~i used by the other (n - 1) players in game A*(t) if 

L*(pl,/~,t) > L*(p~,~f,t) for all p ~ P i .  (16) 

A given strategy n-tuple p -: (Pt,-..,P.) is an equilibrium point [NASH, 1951] in 
game A*(t) if every component pf ofp  is a best reply to the corresponding strategy 
combination/~i of the other (n - 1) players. 

An equilibrium point p is called strong 3) if all n components Pi of p satisfy (16) 
with the strong inequality sign > for all p; 4= Pv That is, p is a strong equilibrium 
point if every player's equilibrium strategy pi is his only best reply to the other 
players' strategy combination/~f. An equilibrium point is called weak if it is not 
strong. 

An equilibrium point p is quasi-strong 4) if no player i has pure-strategy best 
replies to/~f other than the pure strategies belonging to the carrier C(pi) of his 
equilibrium strategy p~. An equilibrium point that is not even quasi-strong is 
called extra-weak. 

A given game F itself will be called quasi-strong if all its equilibrium points are 
quasi-strong; and it will be called extra-weak if at least one of its equilibrium 
points is extra-weak. 

In the original game F = A*(0), a best reply p~ to any given strategy combination 
/~ may be a pure strategy or may be a mixed strategy. (It can be a mixed strategy 
only if all pure strategies a~ in its carrier C(p~) are themselves best replies to/~.) 
In contrast, in a logarithmic game A*(t) with t > 0, only a complete mixed strategy 
can be a best reply. This is so because, in view of (12), (14), and (15), any player 
i will obtain an infinite negative payoff/~ = - oo if he uses a pure or an incom- 
pletely mixed strategy, but will always obtain a finite payoff/~ > - ~ if he uses 
a completely mixed strategy. Consequently, in these logarithmic games, all 
equilibrium points will be in completely mixed strategies. 

In the original game F, in general, the mathematical conditions characterizing 
an equilibrium point p = ~ t  .... ,p,) will be partly equations and partly ine- 
qualities. The former will be of the form: 

Ui(a~,fiO = Ui(a~',pi) 

whereas the latter will be of the form: 

Ui(a~,~O > Ui(af',O~) 

if a~, af' e C(Pi); (17) 

if a/k e C(p~) (18) 

while a~' r C(pl). 

Only in the special case where all n equilibrium strategies Pl ..... p. are pure 

3) I am using the term "strong equilibrium point" in a different sense from AUMANN'S [1959, p. 300-t. 
*) Many of the concepts used in this paper were first introduced in HARSANYI [1973]. 
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strategies, will all conditions characterizing p be inequalities of form (18); and 
only in the special case where all n equilibrium strategies are complete mixed 
strategies, will all these conditions be equations of form (17). 

An equilibrium point p of game F will be quasi-strong if and only if, for every 
player i, and for every strategy a k in the carrier C(pi) of i's equilibrium strategy, 
and for every strategy a k' not in this carrier, condition (18) is satisfied with the 
strong inequality sign >.  

In contrast to equilibrium points in the finite game F, every equilibrium point 
p in any logarithmic game A*(t) with t > 0, is always characterized by equations 
of the following form: 

( 0~(p,t) '~ = 0, for k = 1 ..... Ki - 1 (19) 
-~=--p~ ] ~pk=l and for i = 1 ..... n. 

Here each partial derivative 3~13p~ must be evaluated at the equilibrium point 
p itself. Of course, these eqs. (19) express only the first-order conditions for max- 
imizing the payoff function/~ with respect to the vector Pi- But, since each function 
/~ is strictly concave in pi, the second-order conditions are always satisfied, so 
that the eqs. (19) are both necessary and sufficient conditions for maximization. 

The functions L* can also be written as 

Ki K~ 
/~(p, t) = (1 - t) ~ p~ Ui(d,/~,) + ~ log ~ .  (20) 

k=l  k=l  

Therefore, using the fact that 

Ki 

pt = 1 - Z P~, (21) 
k=2 

we can write (19) in the form 

t t 
(1 - t)[U,(~,/53 - U,(at,O,)] + ~ - p--f = O, (22) 

or, equivalently, in the form 

(1 - t ) p l  ~ [ U , ( a ~ , O , )  - U, (a l , / ~ , ) ]  + t(pl - p ~ )  = 0 ,  

for i = 1 ..... n; 

and for k - 2  ..... K~. 

(23) 

The number of equations of form (23) is: 

K * = ~ ( K ~ -  1 ) =  K i - n .  
i=1 i=1 

Thus, together with the n equations of form (6), we have all together 

(24) 
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= " K  K** K * + n = ~  i (25) 
i = l  

independent equations for characterizing each equilibrium point p, which is 
the same as the number of the variables p~ determined by these equations. 

In view of (12), all equation s of form (23) are algebraic equations in the variables 
p~ and in the parameter t. All equations of form (6) are likewise algebraic. Let S 
be the set of all (K** + 1)-vectors (t,p) satisfying the K** equation of forms (6) 
and (23). Clearly, S will be typically a one-dimensional algebraic variety, i.e., an 
algebraic curve. (In degenerate cases, however, S may also contain zero-dimensional 
subsets, i.e., isolated points, and/or subsets of more than one dimension, i.e., 
algebraic surfaces of various dimensionality.) 

Let T be the set of all vectors (t,p) satisfying, not only the K** equations of 
forms (6) and (23), but also the K** inequalities of form (5). Clearly, T is simply 
that part of the algebraic variety S which lies within the compact and convex 
cylinder (polyhedron) R = P • I, where I = [03]  is the closed unit interval. 
Since T is the locus of all solutions (t,p) to the simultaneous equations and ine- 
qualities (5), (6), and (23), T will be called the solution graph for the latter. 

For  any point (t,p), t will be called its first coordinate. Within the cylinder R, 
the strategy space P of any specific game A*(t) is represented by the set R' of all 
points (t,p) in R whose first coordinate is the relevant t value. 

For any game A*(t), let E ~ be the set of all points (t,p) in R t such that p is an 
equilibrium point of A*(t). Finally, let T' be the intersection of R ' with the solution 
graph T. We can now state: 

Lemma I: 
For all t with 0 < t < 1, E t = T t. In contrast, for t = 0, in general, we have 

only E ~ ~ T ~ 

Proof: 
For all t with 0 < t -< i, conditions (5), (6), and (23) are sufficient and necessary 

conditions for any given point p to be an equilibrium point of game A*(t). On the 
other hand, for t = 0, it is easy to verify that all equilibrium points p of the game 
A*(0) ~ F satisfy all these conditions but, in general, so will also some strategy 
combinations p that are not equilibrium points of F. For example, all these 
conditions will be satisfied by any pure-strategy n-tuple p = a ~, whether it is 
an equilibrium point of game F or not. 

4. Some Topological Properties of the Solution Graph T 

Consider the mapping #: t ~ T ~. The Jacobian of this mapping, as evaluated 
at any given point (/7, t) of T', can be written as 
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Here 

whereas 

a ( e l  . . . . .  . . . . .  f .  
J ( t , p )=  c3(p I . . . .  ,p~ , . . . ,p~ , ) ,  

i = 1, . . . ,n;  

and, for each i, k = 1 .. . . .  K~. 

(26) 

F~ (t,p) = ~ p~ - 1, i = 1, . . . ,n ; (27) 
i=l  

F~(t,p) (1-  1 k = t)p, Pi [U,(~,/~,) - U,(a~,/3,)] + t(p~ - p~), (28) 

i = 1 .. . . .  n; 

and, for each i, k = 2,. . . ,K~. 

For  points of the form (t,p) = (0,p) in set T ~ the functions F~(k 4: 1) take the 
following simpler form: 

F~(0,p) = p~p~[U,(a~,ff ,)-  U,(a~,/5,)], i =  1 .. . . .  n; 

and, for each i, k = 2 . . . . .  Ki . (29) 

Any equilibrium point p of the original game F will be called regular ifJ(0,p) 4: 0; 
and will be called irregular if J(O,p) = 0. A given game F itself will be called 
regular if all of its equilibrium points are regular; and it will be called irregular 
if at least one of its equilibrium points is irregular. 

We shall now state two lemmas, based on well-known facts in algebraic geo- 
metry. 

Lemma 2: 
Let (x~ *) be an arc of an algebraic curve S in a v-dimensional Euclidean 

space X v, connecting the two points x ~ = (x~  ~ and x* = (x*,...,x*) ~ x ~ 
Then, this arc (x ~ x*) can be uniquely continued analytically beyond point x* 
(and beyond point x~ 

Proof: 
If x* is not a singular point, then the possibility of analytic continuation follows 

from the Implicit Function Theorem. On the other hand, if x* is a singular point, 
then this possibility follows from PtnsEvx's Theorem [VAN DER WAEROEN, 1939, 
Theorem 14]. By this theorem, if x* is a point of some branch S* of a given algebraic 
curve S, then, whether x* is a singular point or not, in some neighborhood N(x*) 
of x*, the coordinates xl of any point x = (x~ .. . . .  xv) of this branch S* can be 
represented by v convergent power series n~(y) in an auxiliary parameter y, so 
that we can write xi = rci(y) for a suitably chosen value ofy( i  = 1,..., v). Moreover, 
we can select the v functions n, in such a way that x* itself will correspond to 
y = 0 (so that x* = n,(0), for i = 1 . . . . .  v), and in such a way that all other points 
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x of the arc (x ~ x*) will correspond to negative values of y. Then, by assigning 
positive values to y, we can analytically continue the arc (x ~ x*) beyond x*. Even 
though we can choose the v functions n~ in many different ways, all choices will 
yield the same curve as the analytic continuation of (x ~ x*). 

Corollary: 
Let S be an algebraic curve, and x be an arbitrary point. Then, the number of 

arcs belonging to S and originating from x is always even (possibly zero). These 
arcs always uniquely partition themselves into pairs, so that the two arcs belonging 
to the same pair are analytic continuations of each other, and are not analytic 
continuations of any other arc originating from x. 

Lemma 3: 
Let (x ~ x*) be an arc of an algebraic curve S. Suppose that (x ~ x*) lies wholly 

within a given compact and convex set R with a nonempty interior, and that 
x ~ is a boundary point of R whereas x* is an interior point of R. Then, by ana- 
lytically continuing (x ~ x*) far enough beyond x*, we shall once more eventually 
reach a boundary point x ~176 of R. 

Proof: 
Let S* be the curve we obtain if we continue (x~ *) beyond x* as far as possible 

without leaving set R. For each coordinate x~, let 

mi = infxi and m ~ = sup xi. ( 3 0 )  
xeS* xES* 

Since S* is not an isolated point, at least for one coordinate x~, its variation on 
S*, At = m ~ - m~, must be positive. On the other hand, since S* is an arc of an 
algebraic curve, it can be divided up into a finite number of segments 0~1,...,~u ..... o~M 
such that, as we move away from x ~ along any given segment ~", this coordinate 
x~ is either strictly increasing or is strictly decreasing. Let us assume that, starting 
from x ~ and moving along S*, we reach these segments in the order they have 
been listed. Now, first suppose that, along the last segment cz M, x~ increases. Then, 
since R is a compact set, x~ must reach a local maximum at some point x ~176 of 
~M. Obviously, this point x ~176 can only be the endpoint of ~ t  furthest away from 
x ~ Moreover, it can only be a boundary maximum point for x~ because, if it 
were an interior maximum point, then ~M could not be the last segment of S*. 
Therefore, this point x ~176 must be a boundary point of R. By the same token, if 
xl decreases along ~M, then the endpoint x ~176 of ~M must be a local boundary 
minimum point for x~ and, therefore, it must be boundary point of R. Thus, in 
either case, S* will eventually reach a boundary point x ~176 of R. 

Let i n be the boundary of the strategy space P. Thus, P is the set of all strategy 
n-tuples p = (Pl .. . . .  p,) having at least one pure or incompletely mixed strategy 
p~ as a component. Let I ~ = (0,1) be the open unit interval. Let B be the set 
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B = P • I ~ Clearly, the boundary hypersurface/~ of cylinder R is made up of 
the three disjoint sets pO, B, and p1. 

Lemma 4: 
Let 2V be the intersection of the solution graph T and of the boundary hyper- 

surface /~ of cylinder R. Let (t,p) be any nonisolated point of T Then, either 
(t,p) = (1,/5), where /~ is the unique equilibrium point of the pure logarithmic 
game A*(1); or (t,p) = (0,p*), where p* is an equilibrium point of the original 
game A*(0) = F. 

Proof: 
For any t with 0 < t < 1, the vector p characterizing any given point (t,p) of 

7 ~ must be an equilibrium point of the game A*(t), because (t,p) is a point of the 
solution graph T. Therefore, (t,p) cannot belong to set B, since the logarithmic 
games A*(t) with 0 < t _< 1 have no equilibrium point using a pure or an incom- 
pletely mixed strategy Pi as equilibrium strategy. Hence, if t > 0, then (t,p) can 
only be a point belonging to set p1, which is possible only if (t,p) = (I,/5). 

On the other hand, if t = 0, then (t,p) = (0,p) is a point belonging to set pO. 
As (t,p) is a nonisolated point of T, it is a limit point of some convergent point 
sequence (tl,p 1) . . . . .  (tJ, p J) . . . . .  where each it; is an equilibrium point in game 
A*(tJ), with t j > 0. Consequently, p itself is an equilibrium point in game A*(0) = F, 
because the correspondence #* : t ~ E t is upper semi-continuous (where E ~ is the 
set mentioned in Lemma 1). This completes the proof. 

Lemma 5: 
The point (t,p) = (1,p), corresponding to the unique equilibrium point /3 of 

the pure logarithmic game A*(1) = A is always a nonsingular point of the graph 
T, and is the endpoint of exactly one branch/~(ff) of T. 

Proof: 
As is easy to verify, J(1,iff):h 0. Consequently, (1,/~) is nonsingular and, by 

the Implicit Function Theorem, it lies on exactly one branch ~(~) of T 

Lemma 6: 
Let F be a regular and quasi-strong game. Then, any point (t,p) = (O,p) cor- 

responding to an equilibrium point p of game A*(0) = F is always a nonsingular 
point of the graph T and is the endpoint of exactly one branch/~(p) of T 

Proof: 
Since F is regular, we have J(0,p) :~ 0. Hence, if p is an interior point of the 

strategy space P, then the present lemma can be established by the same reasoning 
as was used in the proof of Lemma 5. However, if p is a boundary point of P, 
then this reasoning shows only that (0,p) lies on exactly one branch fi(p) of the 
algebraic variety S. In order to prove the lemma, we have to show also that 
fi(p) belongs to the graph T, i.e., that it lies within cylinder R. In other words, we 
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have to show that fl(p) goes from (0,p) towards the interior of R, which is equi- 
valent to showing that, for any zero component p~ = 0 of the vector p, the total 
derivative dpk/dt is positive at the point (0,p). Now, by differentiating eq. (23) with 
respect to t, and then setting t = pk = 0, we obtain 

P~ [U~(d, pO - Vi(aL~i)] + p~ = O. (31) 

Since the numbering of player i's pure strategies is arbitrary, without loss of 
generality we can assume that 

p] > 0. (32) 

On the other hand, since p~ > 0 and p~ = 0, we have pr ~ C(pO but p~ r C(p3. 
Since p is a quasi-strong equilibrium point, condition (18) must be satisfied by 
a strong inequality sign if we set a~' = a~. Therefore, 

U,(a~,ffO - U,(a~ 1,/3~) < 0. (33) 

But (31), (32), and (33) together imply that dp~/dt > O, as desired. 
In what follows, when we say that two points are "connected", we shall mean 

that they are connected by some branch e of the solution graph T. 

Theorem I : 
Let F be a regular and quasi-strong finite game. Then, the number of equi- 

librium points in F is finite. Moreover, there exists exactly one distinguished 
equilibrium point p* in F such that the corresponding point (0,p*) is connected 
with the point (1,p), associated with the unique equilibrium point/~ of the pure 
logarithmic game A*(1) = A. All other equilibrium points of F form pairs, such 
that the two equilibrium points belonging to the same pair are connected with 
each other and with no other equilibrium point. Therefore, the number of equi- 
librium points in F is odd. 

Proof: 
By Lemma 6, every equilibrium point p of F lies on some branch/3(p) of T. But 

T, being the intersection of an algebraic variety S and of a compact and convex 
set R, can have only a finite number of branches. Moreover, on any given branch 
/3, there can be at most two equilibrium points, corresponding to the two end- 
points of t3. Therefore, the number of equilibrium points in F is finite. 

By Lemma 5, there exists a unique branch a lp)of  T, originating from the point 
(1,/~). By Lemmas 1 and 2, this branch e(p-) must lead to a boundary point x ~176 
of R. As J(1,/~) =/= 0, we must have x ~176 4: (1,/~), because otherwise T would have 
two local branches originating from (1,i6), contrary to the Implicit Function 
Theorem. Consequently, by Lemma 4, x ~176 = (0,p*), where p* is an equilibrium 
point - called the distinguished equilibrium point - of game F. 

Finally, let p 4: P* be any equilibrium point of F, other than the distinguished 
equilibrium point p*. By Lemma 6, there exists a unique branch/~(p) of T, originat- 
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ing from the point (0,p). By an argument similar to the one used in the last para- 
graph, it can be shown that fl(p) must lead to another boundary point x ~176 of R, 
with x ~176 = (0,p'), where p' :/: p and :p p* is another equilibrium point ofF.  Hence, 
all equilibrium points of F, other than the distinguished equilibrium point i6, are 
pairwise connected. But this means that the number of these latter equilibrium 
points is even, which makes the total number of equilibrium points in F odd. 

Note: 
The proof of Theorem 1 shows that, for any game A*(t) with 0 < t < 1, the 

set Qt of all equilibrium points in A*(t) is nonempty. This is so because branch 
~(~) of graph Tconnects the two points (1,/~) and (O,p*). Therefore, ~(p~) intersects 
every set R t with 0 < t < 1 at some point (t, pZ). As is easy to verify, the strategy 
n-tuple pt defining this point must be an equilibrium point of game A*(t). 

5. Three "Almost All" Theorems 

Within a given set J = J(n;K1 ..... K.) of games of a particular size, let ~(C*)  
be the set of all games F that have at least one equilibrium point p with a specified 
set C* = C(p) as its carrier. There are only afinite number of different sets ~(C*)  
in J because, for all games F in J ,  the number of possible carrier sets C* is finite. 
This is so because any set C* is a subset of the finite set 

A* = 0 At, (34) 
i = l  

consisting of the set of all K** pure strategies ~ for the n players in each game 
F, where 

K** = s Ki. (35) 
i=1 

(Of course, two sets ~(C*)  corresponding to different carrier sets C* will in 
general overlap.) We can now state the following theorem. 

Theorem 2: 
Almost all finite games are quasi-strong. 

Proof: 
Let ~(C*)  be the set of all games F in J that have at least one extra-weak 

equilibrium point p with the set C* = C(p) as its carrier, Obviously,~(C*) C o~(C*). 
Let ~,~(C*) = ~(C*)  - ~(C*). Thus, all games F in ~(C*)  have the property 
that they contain one or more equilibrium points p with the set C* = C(p) as 
their carrier set, and all these equilibrium points p are quasi-strong. 

All games F in a given set o~(C*) are characterized by the fact that their defining 
vector u = u(F) satisfies a finite number of algebraic equations and algebraic 
weak inequalities, of forms (17) and (18), in which the functions Ui are defined 
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by (12). Thus, if we regard the set J as an (nK)-dimensionat Euclidean space 
J = {u}, then each set ~ (C*)  will correspond to a subset of J ,  bounded by 
pieces of a finite number of algebraic hypersurfaces. In view of (12) and (18), 
these bounding hypersurfaces are multilinear, i.e., they are hyperboloids. Within 
each set ~(C*) ,  all games F belonging to ~ (C* )  are characterized by the fact 
that their defining vectors u = u(F) satisfy all the inequalities of form (18) used 
in defining this set ~(C*) ,  with a strong inequality sign >.  In contrast, all games 
F belonging to ~ (C*)  have a defining vector u = u(F) satisfying one or more of 
these weak inequalities with an equality sign =.  Therefore, all games in 9 ( C * )  
correspond to interior points u of ~(C*),  whereas all games in ~ (C*)  correspond 
to boundary points of ~(C*).  Hence, as a subset of the (n K)-dimensional Euclidean 
space J ,  ~ ( C *)  consists of pieces of a finite number of hyperboloids of at most 

( n K  - 1) dimensions. Consequently, each set ~ (C*)  is a set of measure zero in J .  
Let ~ *  be the set of all extra-weak games in J .  ~ is the union of all sets ~(C*) ,  

corresponding to various possible carrier sets C*. Thus, ~ *  is a union of a finite 
number of sets of measure zero in J .  Therefore, ~ *  itself is also a set of measure 

zero in J .  
Next, we shall show that ~ *  is a closed set. Let F 1 , F  z . . . .  be a sequence of 

extra-weak games in J ,  with the defining vectors u l =  u ( F 1 ) , u Z =  u(F2),.. . .  
Suppose that the sequence u 1, u 2 .... converges to a given vector u ~ Let F ~ be the 
game corresponding to this vector u ~ = u(F~ We have to show that F ~ is likewise 
an extra-weak game. 

Since the games FJq = 1,2 .... ) are extra-weak, each vector u j satisfies one or 
more inequalities of form (18), with an equality sign. Yet, there are only a finite 
number of inequalities of this form. Therefore, at least one of these inequalities - let 
us call it inequality (18)* - will be satisfied by infinitely many vectors u s, with 
an equality sign. As the sequence of these latter vectors, being a subsequence of 
the original sequence {u J}, converges to u ~ this vector u ~ itself will also satisfy 
(18)* with an equality sign, which makes the corresponding game F ~ extra-weak, 
as desired. This completes the proof of Theorem 2. 

Let p be an equilibrium point in game F belonging to set J ,  with the carrier 
C* = C(p) = U C(pO. Thus F e o~(C*). Suppose the carriers C(pl) ..... C(p,) of 

i 
the equilibrium strategies p~ ... . .  p, consist of exactly 7, . . . . .  ~, pure strategies, 
respectively. In studying games F in set ~(C*) ,  we shall adopt the following 
notational convention, which, of course, involves no loss of generality: 

k of each player i(i = 1 . . . .  ,n) have been re- The pure strategies ai 
numbered in such a way that the carrier C(p0 of his equilibrium 
strategy Pi now contains his f irs t  ~ pure strategies a~ . . . . .  a~, '. 

(36) 

We can fully characterize each equilibrium strategy Pi by the (7i - 1) probability 
numbers pZ,p3 . . . . .  p~', since we have 
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p~ = 1 - ~ p / ,  (37) 
.i=2 

and 

pk = 0 ,  for k = 7i + 1 . . . . .  K / .  (38) 

Let  rh be the probabi l i ty  vector  

rh = (p2 . . . . .  p r9 ' for i = 1 . . . . .  n .  (39) 

Thus,  rci is a subvector  of  the probabi l i ty  vector  p/. 

Let  Hi  (i = 1 . . . . .  n) be the set of  all ( 7 / -  1)-vectors satisfying the two condi t ions 

and  

pk > 0 ,  k = 2 . . . . .  7~; (40) 

Let  7t be  the compos i te  vector  

< 1. (41) 
j=2  

r~ = (rq . . . . .  ft.). (42) 

Thus,  rc is a vector  consisting of 7* probabi l i ty  numbers  pk, where  

F* = ~, ( 7 / -  1 ) =  ~ 7 / -  n.  (43) 
i=1 i=1 

Clearly, n is a subvector  of  the probabi l i ty  vector  p. 
L e t / 7  be the set of all 7*-vectors 7z whose subvectors  7zl . . . . .  re, satisfy condi t ions 

(40) and (41). C lea r ly , /7  = / 7 1  x ... x /7,. 
We now define 

and 

m*(1,k) = k - 1, for k = 2 . . . . .  71; (44) 

i - 1  

m * ( i , k )  = ~ (Tj - 1) + (k - 1) (45) 
j = l  
i - 1  

= ~ T j - i + k ,  for i = 2  . . . .  , n ;  k = 2 . . . . .  7 / .  
j = l  

In  addi t ion to (36), we now int roduce the following further no ta t iona l  con- 
vention,  which again  involves no loss of  generali ty:  

The  pure-s t ra tegy n-tuples a m of the game have been re -numbered  
in such a way that  the first 7" pure-s t ra tegy n-tuples a 1 . . . . .  a ~* 
will now have  the following form. For  any m with 1 < m < 7", let 
i and  k be the unique pair  of  numbers  satisfying m * ( i , k )  = m .  

Then  
1 1 a m = (a~ . . . . .  a / _  1,~ ,a /+1  . . . . .  a~).  (46) 
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Thus, we can write 

um Hm*(i,k) 1 1 1 1 = = U~(al . . . . .  a i - i , ~ , a i + ~ , . . . , a , , ) ,  for i = 1 .. . . .  n; k = 2 .. . . .  Yi. (47) 

Let u* be the vector formed of those y* components uT' of vector u which can 
be written in form (47). Let u** be the vector formed of the remaining ( n K  - ?*) 
components of u. Hence 

u = (u* ,u**) .  (48) 

The set of all possible vectors u* is a ?*-dimensional Euclidean space, to be 
denoted as J *  = {u*}; whereas the set of all possible vectors u** is an ( n K  - ?*)- 
dimensional Euclidean space, to be denoted as J * * =  {u**}. Clearly, 
J *  x J * *  = J .  

Since p is an equilibrium point in game F, it must satisfy condition (17). This 
condition can also be written as 

I k k - Pi pi[U~(a~,pi)  - U,(a~, f , ) ]  = 0,  for i = 1, . . . ,n;  k = 2 ..... ?~. (49) 

Since p~ and p~ > 0, (49) is equivalent to (17). In view of (12), this condition can 

also be written as 

[q?@) 1-I qT(P,)] u? 
J ~ ~ (50) 

Urn* = I-I qT* (P 3) 
mSam * j~ i  
m~M 

[qT'(a]) 17[ qT'(O~)] um 
_ ~ j:~i r-r m*, ) , for i = 1  ..... n ; k = 2  ... . .  Yi. 

11 qJ (PJ 
meM j ~ i  

Here M = {1,2 . . . . .  K} and m* = m*(i ,k ) .  It is permissible to write eq. (17) [or 
m* * and pJ > (49)] in form (50) because, by (46), we have qj (p j) = pj for all j # i, 0 

since aJ e C(pj). 
m* Note that each quantity ui for a specific value of m* = m*( i , k )  occurs, with 

a nonzero coefficient, only in one  equation of form (50) (where it occurs on the 
left-hand side). This is so because, by (10) and (46), for any k ' #  k, we have 

m* k' qi ( a i )  = 0. Therefore, if we know the 7* components p~ of vector n, and know 
the ( n K  - ?*) components uT' of vector u**, then we can compute each one of 
the y* components uT'* of vector u* separately, from the relevant equation of 
form (50). Consequently, the 7" equations of form (50) define a mapping p: (r~,u**) 
---, u* from s e t / /  • J * *  to set J * .  This mapping p is continously differentiable 
because, by (40), for each point rc in /7  we have p~ > 0 for k ---- 2 .. . . .  ?2; so that the 
denominators on the right-hand side of (50) never vanish within/7.  

We can use this mapping p to define another mapping p*: (re, u**) ~ (u*, u**) = u, 
where u* = p(rt, u**). This mapping p* is from set/7 x J *  to set J *  x J * * *  = J ;  
and it is continuously differentiable since p is. 
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We can now state the following theorem: 

Theorem 3: 
Almost all finite games are regular. 

Proof: 
Instead of using the 7" equations of form (50), we can also use the equivalent 

7" equations of form (49), in order to define the mappings p and p*. But if we do 
so, then the Jacobian of mapping p* can be written as 

(~(F/2, k 
. . . .  F~  . . . . .  F~. ~) (52) 

J*(z,u**) = a(p2 .. . .  ,p~ . . . . .  p~,") ' i =  1,. . . ,n; and, foreach k =  2 .. . . .  7,, 

where the F~'s are the functions F~ = F~(0,p) defined by (29). This means that 
J* (n, u**) is a subdeterminant of the Jacobian determinant J(0,p) defined by (26, (27), 
and (29); it is that particular subdeterminant that we obtain if, for each player i, we 
cross out the rows and the columns corresponding to k = 1, and to k = 7i + 1,...,K~. 
It is easy to verify that, owing to the special form of the functions F~ (i = 1 . . . . .  n) 
as defined by (27), and owing to the fact that ,~ir'~' + 1 = ... = pi x' = 0, this crossing 
out of these rows and columns does not change the value of the original deter- 
minant J(0,p). Hence, d*(n,u**) = J(O,p) if n is the subvector of p defined by 
(39) and (42). 

Let 8(C*) be the set of all games F in J having at least one irregular equi- 
librium point p with set C* = C(p) as its carrier set. Equivalently, 8(C*) can also 
be defined as the set of all vectors u = p*(n,u**) corresponding to those points 
(re, u**) in set (/7 x J * * )  at which the Jacobian J*(u,u**) = J(O,p) vanishes. By 
SARD'S Theorem ['SARD, 1942], this set 8(C*) is a set of measure zero in the (nK)- 
dimensional Euclidean space J .  

Let 8 "  be the set of all games F in J having at least one irregular equilibrium 
point p, regardless of what its carrier C* = C(p) is. Thus, 8 "  is simply the set of 
all irregular games in J .  8 "  is the union of a finite number of sets 8(C*), corre- 
sponding to different carrier sets C*. Since each set 8(C*) is a set of measure zero 
in J ,  their union 8* will also have this property. 

Next, we shall show that 8* is a closed set. Let F1,F 2 ... .  be a sequence of 
irregular games, with the defining vectors u 1 = u(F1),u2= u(F 2) . . . . .  Suppose 

that the sequence ul,u z .. . .  converges to a given vector u ~ Let F ~ be the game 
corresponding to u ~ = u(F~ We have to show that F ~ is likewise an irregular 
game. 

Let pl,pZ .. . .  be a sequence of strategy n-tuples, such that/f l  fj = 1,2 . . . .  ) is an 
irregular equilibrium point in game F j. All these points p~ lie in the compact 
set P. Consequently, the sequence {p J} must contain a convergent subsequence. 
Suppose the latter consists of the points pJl,pJ2 . . . . .  and that it converges to some 
point pO in P. Then: 
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(1) This point pO will be an equilibrium point of game F ~ This is so because the 
set Q(F) of all equilibrium points in any given game is an upper semi-con- 
tinuous set function of the defining vectors u = u(F) of F, i.e., of the payoffs 
uT' of F. 

(2) This point pO will be an irregular equilibrium point of game F ~ This is so 
because Y(O,p 11) = J(O,p j2) . . . . .  0 since ph,pi2, ... are irregular equilibrium 
points. Consequently, J(O,p ~ = 0 since pO is the limit of the sequence 
pJ',/r/2 . . . . .  and since J(O,p) is a continuous function of p. 

Consequently, pO is an irregular equilibrium point in F ~ and, therefore, F ~ 
itself is an irregular game, as desired. This completes the proof of Theorem 3. 

Theorems 1, 2, and 3 directly imply: 

Theorem 4: 
In almost all finite games, the number of equilibrium points is finite and odd. 
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