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Abstract: The theory presented in this paper investigates the connection between the number of 
competitors and the tendency to cooperate within the context of a symmetric Cournot model with 
linear cost and demand, supplemented by specific institutional assumptions about the possibilities 
of cooperation. Cooperative forms of behavior are modelled as moves in a non-cooperative game. 
The proposition that few suppliers will maximize their joint profits whereas many suppliers are likely 
to behave non-cooperatively does not appear as an assumption but as a conclusion of the theory. 
For the simple model analyzed in this paper a definite answer can be given to the question where 
a "small group" of competitors ends and a "large group" begins: 5 is the dividing line between "few" 
and "many". 

It  is a widely held belief that in imperfect markets the tendency to cooperate 
depends on the number  of competitors. CnAMBERLIN'S distinction between the 
small group and the large group is based on this assumption [CHAMBERLIN, 1933]. 
Cooperative forms of behavior like jo in t  profit maximization are assumed to 
be typical for markets  with a small number  of competitors and non-cooperative 
equilibria are expected, if the number  of suppliers is sufficiently large. 

The theory presented in this paper  investigates the connection between the 
number  of competitors and the tendency to cooperate within the context of 

a simple model. The proposit ion that few suppliers will maximize their joint 
profits whereas many  suppliers are likely to behave non-cooperatively does not 

appear  as an assumption but as a conclusion of the theory. 

The investigation is based on the symmetric COURNOT model with linear cost 
and linear demand, supplemented by specific institutional assumptions about  
the possibilities of cooperation. Cooperative forms of behavior are modelled 
as moves in a non-cooperative game. Game-theoretic reasoning is employed in 
order to find a unique solution for this game. 

The distinction between the small group and the large group remains unsatis- 

factory as long as "small" and "large" are only vaguely defined. Where does the 
small group end and where does the large group begin? For  the simple model 
of this paper  a definite answer can be given to this question: 5 is the dividing 
line between few and many. 

x) Prof. Dr. REINI-IARD SELTEN, Institut fiir Mathematische Wirtschaftsforschung an der Universit/it 
Bielefeld, D-484 Rheda, SchloB Rheda. 
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The formal description of the possibilities of cooperation is an important part 
of the model. It is assumed that the firms are free to form enforcible quota cartels, 
but before this can be done, each firm must decide whether it wants to participate 
in cartel bargaining or not. These decisions must be made without knowledge 
of the corresponding decisions of the other firms. Those firms who have decided 
to participate may then form a quota cartel. A quota is an upper bound for 
the supply of a firm. A quota cartel agreement is a system of quotas for all cartel 
members. The model assumes that each firm, which participates in cartel bargain- 
ing, proposes exactly one cartel agreement 2) and that a quota system for a group 
of firms becomes binding, if all members of the group have proposed that system. 

Before the supply decision is made, the outcome of the bargaining is made 
known to all firms in the market. If an agreement has been reached, the cartel 
members cannot exceed their quotas. 

This is an extremely simplified picture of cartel bargaining but hopefully at 
least some of the relevant features of real imperfect markets are captured. Note 
that nobody can be forced to come to the bargaining table. Cartels may or may 
not include all firms in the market. Once an agreement has been reached, it 
cannot be broken. This means that enforcement problems are excluded from the 
analysis. The only kind of agreement which is allowed, is a system of quotas. 

Within the framework of these institutional assumptions it is advantageous 
to form a cartel, but if the number of competitors is sufficiently large, it may 
be even more advantageous to stay out of a cartel formed by others. The fact 
that the position of an outsider becomes relatively more attractive as the number 
of competitors is increased, is the basic intuitive reason for the results of this paper. 

The task of finding a unique solution for the model presented in this paper 
cannot be attacked without putting it into a wider framework. It is necessary 
to develop a solution concept for a class of games, which contains the model as 
a special case. Only in this way the desirable properties of the proposed solution 
of the model can be properly described. 

Sections 2, 3 and 4 contain some game-theoretic results which may be of 
interest beyond the main purpose of this paper. 

1. The Model 

The complete model takes the form of a non-cooperative n-person game in 
extensive form, where the players are n firms numbered from 1 ..... n. For the 
limited purpose of this paper it seems to be adequate to avoid a formal definition 

2) One may think of this as a final proposal which is formally made after extensive informal discussions. 
The idea that at the end of the bargaining process the bargainers make simultaneous final proposals 
is maybe more realistic than it appears at first glance. STEVENS' book on collective bargaining [STEvENs, 
1963] conveys the impression that agreements are often reached by virtually simultaneous last moment 
concessions after a period of apparent stagnation of the bargaining process. 
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of a game in extensive form 3), but some remarks must be made about the sense 
in which the words "extensive form" will be used. 

1.1. Extensive Forms 

In this paper a slight generalization of the usual testbook definition of a game 
in extensive form is used. It is necessary to permit infinitely many choices at some 
or all information sets of the personal players (this excludes the random player). 
The set of all choices at an information set of a personal player may be a set, 
which it topologically equivalent to the union of a finite number of convex subsets 
of some euclidean space. Apart from that the properties of a finite game tree are 
retained as much as possible. The set of all choices at an information set of the 
random player is finite. Only such games are permitted, which have a finite 
upper bound for the length of the play. Another slight deviation from the usual 
definition concerns the payoff. The payoff of a player is a real number or - oo. 

The games considered in this paper will always be games with perfect recall, 
where each player always knows all his previous choices4). Therefore it is con- 
venient to exclude all games which do not have this property from the definition 
of an extensive form. For the purpose of this paper a game in extensive form 
will be always a possibly infinite game with perfect recall which has the properties 
mentioned above. Sometimes a game in extensive form will simply be called an 
"extensive form" or a "game", where no confusion can arise. 

It would be quite tedious to describe the model with the help of the terminology 
of extensive form games. Instead of this a set of rules shall be formulated, which 
contains all the information needed for the construction of an extensive form. 
Apart from inessential details like the order, in which simultaneous decisions 
are represented in the game tree, the extensive form representation of the model 
is fully determined by this description in an obvious way. Therefore it will be 
sufficient to relate only some of the features of the model to the formal structure 
of the extensive form. This will be done after the description of the rules is com- 
plete. 

1.2. Structure of the Model 

Wherever this is convenient firm i is called player i. The set N = (1 ... . .  n) 
of the n first positive integers is interpreted as the set of all players. The subsets 
of N are called coalitions. 

3) See KUHN [1953] or LUCE and RAIFFA [1957]. It will be assumed that the reader is familiar with 
the concept of a game in extensive form and with other basic concepts of game theory. 

4) The formal definition of games with perfect recall can be found in KUHN [1953]. For infinite 
games with perfect recall see AUMANN ['1964]. 
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It is convenient to look at the game as a sequence of three successive stages: 
1) the participation decision stage, where the firms decide, whether they want 
to participate in the cartel bargaining or not; 2) the cartel bargaining stage, 
where the proposals are made, which may or may not lead to cartel agreements; 
3) the supply decision stage, where each firm selects a supply quantity. 

At each stage the players know the outcome of the previous stages but they 
do not know the decisions of the other players at the same stage or at later stages. 

The firms are motivated by their gross profits derived from the cost and demand 
relationship of the Cournot model. It is assumed, that the firms want to maximize 
expected gross profits in the sense of probability theory, subject to the constraint 
that the probability of negative gross profits is zero. This is not unreasonable 
if one imagines a situation, where non-negative gross profits are necessary for 
survival. 

1.3. Cost and Demand 

The same homogenous good is supplied by all firms. The supply of firm i is 
denoted by xi. The quantity xi is a non-negative real number, x = (x~ .... ,x,) 
is the supply  vector. It is assumed that there is no capacity limit. The cost function 
is the same for each firm: 

Ki  = F 4- c xi  ; x~ > O ; 

F and c are positive parameters. Total supply 

X =  f i x i  
i=1 

determines the price p 

i =  1 ... . .  n.  (1) 

for for 

(2) 

(3) 

Here we assume ~ > o and 3 > c. 
It is always possible to choose the units of measurement for money and for 

the commodity in such a way that the parameters ~ and fl take the following values 

= 1 (4) 

fl = 1 4- c. (5) 

Therefore we shall always assume that (4) and (5) hold. This simplifies our formulas 
without entailing any loss of generality. Because of (4) and (5) a simple relationship 
between the total supply X and the profit margin 

g = p - c (6) 
is obtained: 

1 - X  for 0 < X < l + c  (7) 
g =  c for X > l + c .  
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Define 
P i = x i g  for i = l  .... ,N .  (8) 

The variable P~ is the gross profit of firm i; it is the profit without consideration 
of fixed costs. One may imagine that the fixed costs are "prepaid" and that the 
availability of liquid funds depends on the gross profit. 

The assumption about the motivation of the firms can be expressed by a 
VON-NEUMANN-MORGENSTERN utility function: 

~Pi for P , > O  i 1 .... ,n (9) 
U i ~ 

for P ~ < 0  

u~ is player i's utility. Note that u~ does not depend on the parameter co 5) 

1.4. The Participation Decision Stage 

Formally the participation decision is modelled as the selection of a zero-one 
variable zi. Each player i may either select zi = 0, which ~neans that he does not 
want to participate or z~ = 1, which means that he wants to participate. The 
decision is made simultaneously by all players; each player must choose his 
z~ without knowing the participation decisions of the other players. The result 
of the participation decisions is a participation decision vector z = (Zx,...,z,). 
Those players i who have selected z~ = 1 are called participators; the other 
players are called non-participators. The set of all participators, or in other words, 
the set of all i with z~ = 1 is denoted by Z. At the end of the participation decision 
stage, the vector z = (Zl . . . . .  z,) is made known to all players. In the cartel bargain- 
ing stage and the supply decision stage the players can base their decisions on the 
knowledge of Z. 

1.5. The Cartel Bargaining Stage 

In the cartel bargaining stage each participator i ~ Z must propose a quota 
system for a coalition C which contains himself as a member. 

Y~=(YO~c;  i ~ C ~ Z ;  Y~i > 0 "  (10) 

Y~ is called the proposal of participator i. The notation (Y0~c indicates that Y~ 
contains a quota y~j for each participator j ~ C. A non-participator does not make 
a proposal and no quotas can be proposed for non-participators. The quotas 
y~j can be arbitrary non-negative real numbers or ~ .  Within the restriction 
i ~ C ~ Z a participator i is free to propose a quota system for any coalition C 
he wants. The special case where i is the only member of C is not excluded; such 
proposals correspond to unilateral commitments 6). 

s) If (9) did not have certain mathematical  advantages, it would be preferable to work with the simpler 
assumption ul = Pi. The main advantage of (9) is the possibility to prove lemma 6 in section 4. 

6) The result of the analysis would not change, if unilateral commitments were excluded. The reader 
will have no difficulty to see that  this is true. 
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The participators must make their proposals simultaneously; each participator 
knows the participation decision vector z = (zl .... , z,), when he makes his proposal 
Y~, but he does not know the proposals of the other participators. 

A quota system Yc for a coalition C ~_ Z becomes a binding agreement, if and 
only if the following is true: 

Yc=(yj)j~c= Yi forall  i~C .  (11) 

This means that all members of C propose the same quotas for C. Unanimity 
of the members is required for a cartel agreement. 

The system of proposals 
Y = (v,),~ z (12) 

determines which binding agreements are reached. In (12) the same notational 
convention is used as in (10) and (11): the expression i ~ Z indicates that Y contains 
exactly one proposal for each participator i s Z. 

If Yc is a binding agreement, then the quotas y~ assigned by u to the participators 
i ~ C are called "binding quotas". Since it is convenient to define a "binding quota 
vector" y = (yl, ...,y,) which contains a binding quota Yi for every player i t  N, 
the "binding quota" yi = oo is assigned to those players i, who are not in coali- 
tions for which binding agreements have been reached. 

At the end of the cartel bargaining stage the system of proposals Y is made 
known to all players. The system of proposals uniquely determines the binding 
quota vector y = (y~ ... .  ,y,). Note that the system of proposals Y contains a 
complete description of the course of the game up to the end of the cartel bargaining 
stage, since the knowledge of Y implies the knowledge of Z. 

1.6. The Supply Decision Stage 

In the supply decision stage each player i selects a supply quantity xi subject 
to the restriction 

0 < x i < y i  i =  1,. . . ,n.  (13) 

The players must make their decisions simultaneously; each player knows Z, Y 
and y, when he selects his quantity x~, but he does not know the supply decisions 
of the other players. 

At the end of the supply decision stage, each player i receives u~ as his payoff. 
ui is computed according to (2), (7), (8) and (9). 

1.7. Some Features of the Extensive Form Representation of the Model 

In spite of the fact that a detailed formal description of the extensive form 
representation of the model is not needed, it may be useful to point out some 
of its features. Let us denote the extensive form representation of the model 
by F 1. (The symbol F will be used for extensive forms.) The representation of the 
decisions in the game tree of F 1 follows the order of the stages and simultaneous 
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decisions are represented in the order given by the numbering of the players, 
the lower numbers coming first. This arbitrary convention about simultaneous 
decisions is needed, since the tree structure of the extensive form requires a 
successive representation of simultaneous choices. 

In the information partition, the participation stage is represented by n in- 
formation sets, one for each player; the decision situations of a player i at the 
beginning of the cartel bargaining stage correspond to 2 "-1 information sets, 
one for each Z with i e Z; the supply decision stage is represented by infinitely 
many information sets: each player has one information set for each proposal 
system Y. A play of the game corresponds to a triple (z, Y,x), where z = (zl .... ,z,) 
is the participation decision vector, Y= (Yi)i~z is the proposal system and 
x = (xl, . . . ,x,) is the vector of supplies. 

It will be important for the game theoretic analysis of the extensive form 
representation F 1, that the game F 1 has subgames. Obviously after the participa- 
tion decisions have been made and the set of participators Z is known to all 
players, the rest of the game corresponds to a subgame; this subgame is denoted 
by Fz ~. There are 2" subgames of this kind. We call these subgames cartel bargain- 
ing subgames. The cartel bargaining subgames do not have the participation 
decision stage, but they still have the other two stages. After a system of proposals 
Y has been made another kind of subgame arises, which is denoted by Fr ~. In 
these subgames only supply decisions are made; they are called supply decision 
subgames. There are infinitely many supply decision subgames, one for each Y. 
Obviously for Y = (Y~)i, z, the supply decision subgame Fr 1 is a subgame of the 
cartel bargaining subgame Fz 1. 

A subgame, which contains at least one information set and which is not 
the whole game itself is called a proper subgame. (The information set may be 
an information set of the random player.) A game in extensive form Is called 
indecomposable, if it does not have any proper subgames; otherwise the game 
is called decomposable. Obviously the supply decision subgames Fr 1 are inde- 
composable and the cartel bargaining subgames Fz 1 are decomposable. 

2. Perfect Equilibrium Sets 

Any normative theory which gives a complete answer to the question how 
the players should behave in a specific non-cooperative game must take the 
form of an equilibrium point. Theories which prescribe non-equilibrium behavior 
are selfdestructing prophecies, since at least one player is motivated to deviate, 
if he expects that the others act according to the theory. Therefore, if one wants 
to find a rational solution for a non-cooperative game, one must look for equili- 
brium points. 

For games in extensive form it is important to make a distinction between 
perfect and imperfect equilibrium points. The concept of a perfect equilibrium 
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point will be introduced in subsection 2.3. There the reasons for the exclusion 
of imperfect equilibrium points will be explained. 

The solution concept proposed in this paper does not prescribe perfect equili- 
brium points but perfect equilibrium sets. A perfect equilibrium set may be 
described as a class of perfect equilibrium points, which are essentially equi- 
valent as far as the payoff interests of the players are concerned. A solution 
concept which prescribes perfect equilibrium sets does not give a complete 
answer to the question how the players should behave in the game, but the answer 
is virtually complete in the sense that only unimportant details are left open. 
Such details may be filled in by non-strategic prominence considerations (see 
ScrrELLING [1960]). 

Some basic game theoretic definitions and notations are introduced in 2.1 
and 2.2. 

2.1. Behavior Strategies 

The way in which the words "extensive form" are understood in this paper 
has been explained in subsection 1.1. The games considered here are always 
with perfect recall. KUHN [1953, p. 213] has proved a theorem about finite games 
with perfect recall which shows that nothing is lost if one restricts one's attention 
to equilibrium points in behavior strategies. AUMANN [-1964, p. 639] has generalized 
this theorem to games in extensive form, where a continuum of choices may be 
available at some or all information sets. In view of these results the game- 
theoretic analysis will be in terms of behavior strategies. 

Let ~/~ be the set of all information sets U of player i in an n-person game in 
extensive form F. 

A behavior strategy qi is a system of probability distributions qv over the choices 
at U, containing one distribution q for every U ~ ~ .  This is expressed by the 
following notation: 

q, = {q u} u~ ~,. (14) 

A finite behavior strategy is a behavior strategy which has the property that the 
distributions qv assign positive probabilities to a finite number of choices at 
U and zero probabilities to all other choices. Such distributions are called finite 
distributions. 

For the purposes of this paper it will be sufficient to consider finite behavior 
strategies only. Therefore from now on, a strategy will be always a finite behavior 
strategy. Note that the pure strategies are included in this definition as special 
cases, since a pure strategy rci can be regarded as a behavior strategy whose distribu- 
tions qv assigns 1 to one of the choices at U and zero to all others. 

The set of all strategies q~ of player i in an n-person game in extensive form 
is denoted by Qi. A strategy combination q = (qt,...,qn) for F is a vector with n 
components whose i-th component is a strategy q~ e Q~. The set of all pure 
strategies zh of player i is denoted by Hi. A pure strategy combination for F is 
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a strategy combination n = (rq .. . . .  re,) with nis l l i .  For every given strategy 
combination q = (ql . . . . .  q~) a payoff vector H(q) = (Hi(q) ..... Hn(q)) is determined 

in the usual way. 
The symbol F with various indices attached to it will be used for games in 

extensive form. The same index will be used for the game and its information 
sets, strategies, strategy combinations etc. In this way, notations introduced 
for a general game will be carried over to specific games in extensive form. 

2.2. Equilibrium Points 

It is convenient to introduce the following notation. If in a strategy combination 
q = (ql, .--,qn) the i-th component is replaced by a strategy ri then a new strategy 
combination results which is denoted by q/ri. Consider a strategy combination 
s = (sl, ...,s~) for F. A strategy ri for player i with 

Hi(s/ri) = max Hi(s/qi) (15) 
qi~ Q~ 

is called a best reply to the strategy combination s. An equilibrium point (in finite 
behavior strategies) for a game in extensive form F is a strategy combination 
s = (sl .... , s,) with the following property: 

Hi(s) = max Hi(s/qi). (16) 

An equilibrium point can be described as a strategy combination whose 
components are best replies to this combination. 

2.3. Perfect Equilibrium Points 

It has been argued elsewhere (see SELTEN [1965] or SELTEN [1968]) that one 
requirement which should be satisfied by an equilibrium point selected as the 
solution of a non-cooperative game is a property called perfectness. In order to 
describe this property some further definitions are needed. 

Consider an n-person game F in extensive form. Let F' be a subgame of F 
and let q = (ql .... ,qn) be a strategy combination for F. The system of probability 
distributions assigned by qi to information sets of player i in F' is a strategy 
ql for F'; this strategy q~ is called induced by qi on F' and the strategy combination 
q' = (q~ ... . .  q~,) is called induced by q on F'. 

A perfect equilibrium point s = (sl,...,sn) for an n-person game in extensive 
form F is an equilibrium point (in finite behavior strategies) which induces an 
equilibrium point on every subgame of F. An equilibrium point which is not 
perfect is called imperfect. 

An imperfect equilibrium point may prescribe absurd modes of behavior in 
a subgame which cannot be reached because of the behavior prescribed in earlier 
parts of the game; if the subgame were reached by mistake, some players would 
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be motivated to deviate from the prescribed behavior. It is natural to require 
that the behavior prescribed by the solution should be in equilibrium in every 
subgame, regardless of whether the subgame is reached or not. Any reasonable 
solution concept for non-cooperative games in extensive form should have the 
property that it prescribes perfect equilibrium points. 

2.4. Truncations 

A set M of subgames of a given extensive form game F is called a multisubgame 
of F, if no subgame in M is a subgame of another subgame in M. A proper multi- 
subgame of F is a multisubgame which contains only proper subgames of F. 

Let s = (sl .... ,sn) be a strategy combination for F. For every proper multi- 
subgame M of F we construct a new game in the following way: Every subgame 
F' �9 M is replaced by the payoff vector H'(s') which in F' belongs to the strategy 
combination s' = (s~,...,s~) induced by s on F'. This means that every F ' � 9  M 
is taken away; thereby the starting point of F' becomes an endpoint of the new 
game; the payoff vector at this endpoint is the equilibrium payoff vector H'(s'). 
The new game is denoted by T(F, M, s). The games T(F,M, s) are called s-trunca- 
tions. 

If qi is a strategy for F, then the strategy induced by qi on T(F,M,s) is defined 
in the same way as the strategy induced on a subgame; the induced strategy assigns 
the same probability distribution to an information set as q~ does. A strategy 
combination 0 for r = T(F,M,s) is called induced by a strategy combination 
q for F, if each of the components of 0 is induced by the corresponding component 
ofq. 

Lemma 1: 
Let M be a proper multisubgame of a game F and let s be a strategy combination 

for F. Then H(g) = H(s) holds for the payoff vector/t(g) belonging to the strategy 
combination g induced by s on iV = T(F, M, s). 

Proof: 7) 
Consider an endpoint z of F. Let s be that endpoint of P which is on the 

play to z. The strategy combination s generates a probability distribution over 
the set of all endpoints of F. The payoff vector H(s) is the expected value of the 
payoff vectors at the endpoints with respect to this distribution. The payoff 
vector H'(s') which belongs to the combination s' induced by s on a subgame 
F' of F beginning at one of the endpoints 5 of r is the conditional expectation of 
the payoff vector at z under the condition that an endpoint z of F with 5 = 5(z) 
is reached. This together with the definition of F and its payoff function/-/shows 
that the lemma is true. 

7) Only a sketch of a proof is given here, since a detailed proof would require a formal definition 
of the extensive form. A detailed proof would be analogous to the proof of KUrIN'S theorem 2. See 
KUHN 1-1953, p. 206], 
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Lemma 2: 
Let M be a proper multisubgame of a game F and let s be a perfect equilibrium 

point for F. Then the strategy combination g induced by s on r = T(F,M,s) is 
a perfect equilibrium point of F. 

Proof: 
Assume that g is not a perfect equilibrium point. Then there must be a subgame 

F', of r such that in this subgame at least one of the players, say player j, has a 
strategy ~ for F' such that in F' his payoff IrI)(g'/~)) is greater than his payoff 
/-/j(g') at the combination g' induced by g on F'. The subgame F' is the s'-trunca- 
tion T(F', M', s') of some subgame F' of F, where s' is the equilibrium point induced 
by s on F' and M' is the set of subgames of F' which are in M. 

Let r) be that strategy for F' which agrees with ~) for the information sets in 
F' and agrees with player j 's equilibrium strategy s) from s' everywhere else. 
It follows from I~'j(g/~) > IZlj(g ') that because of lemma 1 for this strategy r~ 
we must have H~(s'/r~) > H)(s') for player f s  payoff in F'. This cannot be true, 
since s' must be an equilibrium point. 

2.5. Bricks 

Let s be a strategy combination for a game F. The indecomposable subgames 
of F and of the s-truncation of F are called s-bricks of F. (This includes improper 
subgames like indecomposable truncations or the game F itself if F is indecom- 
posable.) Obviously only the payoffs of the s-bricks depend on the strategy com- 
bination s. If F is a game in extensive form, then the game tree of F together with 
all the dements of the description of the extensive form apart from the payoff 
function (information sets, choices, probabilities of random choices etc.) is called 
the payoffless game of F. A payoffless brick of F is the payoffless game of an 
s-brick of F. 

With respect to s-bricks and payoltless bricks, induced strategies and strategy 
combinations are defined in the same way as for subgames and truncations. 

Obviously the payoffless bricks of an extensive form F generate a partition 
of the set of all information sets of F. Every information set of F is in one and 
only one payoffless brick of F. A strategy combination q for F is fully determined 
by the strategy combinations induced by q on the payoffless bricks of F. 

Two strategy combinations r and s for F are called brick equivalent if every 
r-brick coincides with the corresponding s-bricks. A set S of strategy combinations 
for F is called brickproducing if two strategy combinations r ~ S and s ~ S are always 
brick equivalent. Obviously every s in a brick producing set S generates the same 
system of s-bricks. 

2.6. The Decomposition Rank of a Game 

A maximal proper subgame of a game F in extensive form is a proper subgame F' 
of F which is not a proper subgame of another proper subgame of F. 
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The decomposition rank of a game F in extensive form is defined recursively 
by the following two properties: (a) indecomposable games have decomposition 
rank 1 and (b) for m = 2, 3,... a game F has the decomposition rank m if every 
maximal proper subgame of F has a decomposition rank of at most m - 1 and 
if the decomposition rank of at least one maximal proper subgame of F is m - 1. 

Obviously this definition assigns a finite decomposition rank to every game 
in extensive form in the sense of this paper, since the play length is bounded 
from above. 

2.7. A Decomposition Property of Perfect Equilibrium Points 

In this subsection a theorem is proved which shows that perfect equilibrium 
points have an important property which may be called a"decomposit ion property" 
since it relates the perfect equilibrium point to the equilibrium points induced 
on the bricks of the game. 

Let M be the set of all maximal proper subgames of a decomposable game F. 
The s-truncation F = T(F,M,s) with respect to this multisubgame is called 
the indecomposable s-truncation of F. The notation T(F,s) is used for the inde- 
composable s-truncation. 

Theorem 1: 
A strategy combination s for a game F in extensive form is a perfect equilibrium 

point of F, if and only if an equilibrium point is induced by s on every s-brick of F. 

Proof: 
It follows from the definition of a perfect equilibrium point and from lemma 2, 

that a perfect equilibrium point s induces equilibrium points on the s-bricks. 
Therefore we only have to show that s is a perfect equilibrium point if equilibrium 
points are induced on the s-bricks. In order to prove this, induction on the de- 
composition rank is used. 

The assertion is trivially true for decomposition rank 1. Assume that it is true 
for decomposition ranks 1 .. . . .  m. Let s be a strategy combination for a game F 
with decomposition rank m + 1, such that s induces equilibrium points on every 
s-brick of F. Since the assertion is true for 1 .. . . .  m, the strategy combination 
s induces a perfect equilibrium point on every maximal subgame of F. 

Assume that s is not a perfect equilibrium point of F. If s were an equilibrium 
point, then s would be a perfect equilibrium point, since perfect equilibrium 
points are induced on every maximal subgame. Therefore s is not an equilibrium 
point. There must be a player j with a strategy rj for F, such that Hi(s/r j) > Hi(s) 
holds for his payoff in F. 

Consider the indecomposable s-truncation r = T(F,s). This game F is an 
s-brick of F. Let ~ be the strategy combination induced by s on P and let fj be the 
strategy induced by rj on/~. 
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At every endpoint of the game iV' = T(r, s/rj) the payoff of player j is at most 
as high as his payoff at the same endpoint in F. This follows from the fact that 
equilibrium points are induced by s on the maximal proper subgames of F. 
Therefore I~j(g/~j) > I~j(g) must hold for player j 's payoff in r since otherwise 
Hj(s/rj) > Hi(s) cannot be true. This contradicts the assumption that an equili- 
brium point is induced by s on the s-brick. 

The following corollary is an immediate consequence of the theorem and the 
fact that the strategy combinations s' induced by s on a subgame F' of F or one 
of its s-truncations generate s-bricks of F' which coincide with the corresponding 
s-bricks of F. 

Corollary 8): 
Let P = T(F, M, s) be an s-truncation of a game F in extensive form. Then the 

strategy combination s is a perfect equilibrium point for F if and only if the follow- 
ing two conditions are satisfied: 1) the strategy combination g induced by s 
on r is a perfect equilibrium point for F; 2) For every F'~ M the strategy com- 
bination s' induced by s on F' is a perfect equilibrium point for F'. 

2.8. Perfect Equilibrium Sets 

T w o  equilibrium points r and s for a game F are called payoff equivalent if 
we have H(r) = H(s) for the payoff vectors of r and s. An equilibrium set S for 
F is a non-empty class of payoff equivalent equilibrium points s for F, which is 
not a proper subset of another class of this kind, Obviously every equilibrium 
point s for F belongs to one and only one equilibrium set for F. This equilibrium 
set is called the equilibrium set ofs. 

Two perfect equilibrium points r and s for F are called subgame payoff equivalent, 
if for every subgame F' (including the improper subgame F) the equilibrium 
points r' and s' induced by r and s on F' are payoff equivalent. A perfect equilibrium 
set S for F is a non-empty class of subgame payoff equivalent perfect equilibrium 
points s for F, which is not a proper subset of another class of this kind. Obviously 
every perfect equilibrium point s for F belongs to one and only one perfect equilibri- 
um set for F. This perfect equilibrium set is called the perfect equilibrium set ofs. 

A set of strategy combinations R' is induced by a set R, if every element r' E R' 
is induced by some r ~ R. The definition of an induced set of strategies is analogous. 

Lemma 3: 
A perfect equilibrium set S for a game F in extensive form induces a perfect 

equilibrium set S' on every subgame F' of F. 

Proof: 
Obviously the set S' induced by S on F' is a set of subgame payoff equivalent 

perfect equilibrium points. Let r' be a perfect equilibrium point for F' which is 

8) This corollary of theorem 1 is similar to KUHN'S [1953, p. 208] theorem 3. 
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subgame payoff equivalent to the perfect equilibrium points s'~ S'. Any s ~ S 
can be changed by replacing the behavior prescribed by s on F' by the behavior 
prescribed by r'. The result is a strategy combination q for F. Let M be the multi- 
subgame containing F' as its only element. Obviously we have/~ = T(F, M, q) = 
T(F,M,s). It follows by lemma 2 and by the corollary of theorem 1 that q is a 
perfect equilibrium point for F. 

It remains to be shown that q is subgame payoff equivalent to the elements 
of S. If this is true r' must belong to S'. Let F" be a subgame of F and let q" and 
s" be the strategy combinations induced on F" by q and s, respectively. If F" 
is a subgame of F' or if F' is not a proper subgame of F", then H"(q") = H"(s') 
follows immediately from the fact that q agrees with s on/~  and with r' on F'. 
Let F' be a proper subgame of F" and let S" be induced by S on F"; then 
F"'= T(F",M,s") is a subgame of/~ = T(F,M,s). Hence by lemma 1 we have 
tl"(g") = H"(s")= H"(q") for the strategy combination g" induced by both s 
and q on F". This proves the lemma. 

Let S be a perfect equilibrium set for F. Obviously for r ~ S and s ~ S we always 
have T(F,M,s)= T(F,M,r). Therefore the s-truncation T(F,M,s) with s~S  
is denoted by T(F,M,S). The games T(F,M,S) are called S-truncations. Since 
for s E S the s-bricks are indecomposable subgames of S-truncations, every 
perfect equilibrium set is a brick-producing set in the sense of 2.5. If S is a brick- 
producing set, then the s-bricks with s ~ S are also called S-bricks and T(F,s) 
is denoted by T(F, S). The game T(F, S) is the indecomposable S-truncation of F. 

Lemma 4: 
A perfect equilibrium set S for a game F induces a perfect equilibrium set S 

on every S-truncation r = T(F, M, S). 

Proof: 
It follows from lemma 2 that the elements of ,~ are perfect equilibrium points. 

It remains to be shown that a) any two equilibrium points ~ S  and ~ S  
are subgame payoff equivalent and 13) if a perfect equilibrium point ~ for r is 
subgame payoff equivalent to the elements of S, then ~ is an element of S. 

We first prove a). The perfect equilibrium points ~ and g are induced by some 
r ~ S and some s ~ S, resp. Let r and s be such strategy combinations. Let F' 
be a subgame of r and let f' and g' be the strategy combinations induced by 

and g, resp. on F'. We must show/~'(~') =/~'(g'). This is obviously true if F' 
is a subgame of F. If F' is not a subgame of F, then a subgame of F' exists, such 
that/~' is an S'-truncation of F', where S' is the set which is induced by S on F'. 
Let r' and s' be the strategy combinations induced on F' by r and s, resp. We 
must have/~'(~') = H'(r') and/~'(g') = H'(s') because oflemma 1 and H'(r') = H'(s') 
since r and s are subgame payoff equivalent. This shows that ~ and g are subgame 
payoff equivalent. 
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Consider a perfect equilibrium point 0 for/~ which is subgame payoff equivalent 
to the elements of S. We have to show that ~ belongs to S. Let q be a strategy 
combination for F which agrees with ~ on P and agrees with some s ~ S every- 
where else. It follows from the corollary of theorem 1 that q is a perfect equilibrium 
point for F. 

Assume that q does not belong to S. Then there must be a subgame F' of F 
where the payoff vector H'(q') belonging to the strategy combination induced 
by q on F' does not agree with the payoff vector H'(s') belonging to the strategy 
combination induced by s on U. Obviously this subgame U cannot be in M. 
Therefore some s-truncation r ' =  T(F',M',s) of F' must be a proper subgame 
of F. Because of lemma 1 the payoff vector H'(cl') belonging to the strategy com- 
bination ~' induced by ~ on/~' is the same as the payoff vector H'(s'). This con- 
tradiction shows that q belongs to S. Therefore ~ belongs to S. This proves the 
lemma. 

Lemma 5: 
A perfect equilibrium set S for a game F induces an equilibrium set S' on every 

S-brick F' of F. 

Proof: �9 
Since S-bricks are indecomposable subgames of S-truncations the assertion 

follows from lemma 3 and lemma 4. 

2.9. A Decomposition Property of Perfect Equilibrium Sets 

In the following it is shown that similar results as in 2.7 can be obtained for 
perfect equilibrium sets. 

Theorem 2: 
Let S be a perfect equilibrium set for a game F in extensive form. Then a 

strategy combination s for F is an element of S, if and only if for every S-brick 
P' of F the strategy combination s' induced by s on F' is an element of the equili- 
brium set S' induced by S on F'. 

Proof: 
The only-if part of the theorem follows from the definition of an induced set 

of strategy combinations. The if-part remains to be shown. This is done by induc- 
tion on the decomposition rank of F. The assertion is trivially true for decom- 
position rank 1. Assume that it is true for decomposition rank 1 ..... m. 

Consider a strategy combination s which induces a strategy combination 
s'~ S' on every S-brick F' of F. It follows from the induction hypothesis that for 
every proper subgame F" of F the strategy combination s" induced by s on F" 
is in the perfect equilibrium set S" induced by S on F". There is no difference 
between an S-brick of F" and the corresponding S-brick of F. 
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Let S be the equilibrium set induced on the indecomposable S-truncation 
ff = T(F,S). The strategy combination g induced by s on the S-brick F belongs 
to S. Since perfect equilibrium points s" are induced on the maximal proper 
subgames F" of F, the S-brick/~ is also an s-brick. Moreover every other S-brick 
is also an s-brick. It follows by theorem 1 that s is a perfect equilibrium point. 
We must have H(s) =/-/(g) because of lemma 1. This shows that s belongs to S. 

Corollary: 
Let S be a perfect equilibrium set for a game F in extensive form and let 

r = T(F,M,S)  be an S-truncation of F. Then a strategy combination s for F 
is an element of S, if and only if the following two conditions are satisfied: 1) The 
strategy combination g induced by s on r is in the perfect equilibrium set S induced 
by S on F and 2) For every F '~ M, the strategy combination s' induced by s 
on F' is in the perfect equilibrium set S' induced by S on F'. 

Proof: 
The S-bricks and S'-bricks coincide with the corresponding S-bricks. There- 

fore for s e S the induced strategy combinations g and s' are in ff and F' resp. 
On the other hand, if s satisfies 1) and 2), then the strategy combinations induced 
by s on the S-bricks are in the equilibrium sets induced by S. This shows that 
the corollary follows from the theorem. 

Theorem 3." 
Let S be a brick-producing set of strategy combinations for a game F in 

extensive form. Then S is a perfect equilibrium set, if and only if the following 
two conditions are satisfied. 1) For  every S-brick F', the set S' induced by S on 
F' is an equilibrium set for F'. 2) If a strategy combination s for F has the property 
that for every S-brick F' the strategy combination s' induced by s on F' is in the 
set S' induced by S on F', then s is in S. 

Proof: 
If 1) and 2) are satisfied, then it follows from theorem 1 that the elements s ~ S 

are perfect equilibrium points. Take any fixed r s S and let R be the perfect 
equilibrium set of r. Obviously there is no difference between corresponding 
r-bricks, R-bricks and S-bricks. It follows from lemma 5 that an equilibrium 
set R' is induced by R on every r-brick F'. Since every equilibrium point is in a 
uniquely determined equilibrium set, R' must agree with the set S' induced by 
S on F'. It follows by theorem 2, that R and S are identical sets. 

If S is a perfect equilibrium set, then lemma 5 has the consequence that 1) is 
satisfied and it follows by theorem 2 that 2) is satisfied, too. 

2.10. Interpretation 
The notion of a perfect equilibrium set is a natural modification of the notion 

of a perfect equilibrium point. Since all the perfect equilibrium points s in a given 
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perfect equilibrium set are subgame payoff equivalent, one can take the point 
of view, that the differences between them are unimportant. 

Theorem 1 shows that a perfect equilibrium point s is fully determined by the 
equilibrium points induced on the s-bricks. Theorem 3 shows that a perfect 
equilibrium set S is fully determined by the equilibrium sets S' induced on the 
S-bricks. In order to describe S it is sufficient to describe these equilibrium sets S'. 

3. The Solution Concept 

The game-theoretic concepts developed here serve the limited purpose of 
constructing a theory which is just general enough to provide a solid basis for the 
analysis of the game F 1 described in section 1. The solution concept of this paper 
is not applicable outside a certain class of games with special properties. No 
attempt is made to attack the difficult task of selecting a unique solution for 
every non-cooperative game. 9) 

For the class of games where it is defined, the solution concept proposed here 
is the only one of its kind, which has four desirable properties. Two of these 
properties concern the relationship of the solution of a game to the solutions of 
its subgames and truncations. The third property is a symmetry property. The 
fourth property is based on the idea that the players have a tendency to act in 
their common interest if this is compatible with the other three properties. 

3.1. Solution Functions 

A solution function for a class K of games in extensive form is defined as a 
function which assigns a perfect equilibrium set L(F) to every game F in the class 
K. The equilibrium set L(F) is called the L-solution or simply the solution of F, 
where it is clear which solution function L is considered. The payoff vector be- 
longing to L(F) is called the L-value of F. The L-value of F is denoted by V(F,L) = 
(V1 (F, L) ... . .  V~(F, L)). 

It may happen that the solution L(F) is a perfect equilibrium set which contains 
exactly one perfect equilibrium point. In this case the single perfect equilibrium 
point in L(F) will also be called the solution of F, where the danger of misunder- 
standings cannot arise. 

3.2. Subgame Consistency 

A class K of games is called subgame complete, if for F ~ K every subgame 
of F is also in K. A solution function L for a class K of games is called subgame 

9) The author is collaborating with JOHN C. HARSANYI on the elaboration of a theory of this kind. 
Some of the ideas presented here go back to this common work which is not yet complete. See 
HARSANYI and SELTEN [1971]. 
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consistent, if for every F~ K the L-solution L(F') of F' is induced by L(F) on every 
proper subgame F' of F with F' s K. 

Note that subgame consistency is not implied by the definition of a perfect 
equilibrium set. If L(F) is a perfect equilibrium set then it must induce some 
perfect equilibrium set on a subgame F' of F, but it does not follow, that for 
F' e K this perfect equilibrium set is the L-solution of F. 

Subgame consistency means that the behavior in a subgame depends on this 
subgame only. This is reasonable, since as far as the strategic situation of the players 
is concerned, those parts of the game, which are outside the subgame, become 
irrelevant once the subgame has been reached. 

3.3. Truncation Consistency 

Let L be a solution function for a subgame complete class K. For any multi- 
subgame M of a game F~ K, the L(F)-truncation r = T(F, M, L(F)) can be formed. 
For  the sake of shortness, this game r is denoted by T(F, M, L). The games T(F,M, L) 
are called L-truncations of F. The indecomposable L-truncations are called 
L-bricks. For the in.decomposable L(F)-truncation T(F,L(F)) the notation 
T(F, L) is used. T(F, L) is the indecomposable L-truncation of F. 

A class K of games in extensive form is called L-complete, if the solution func- 
tion L is defined on K and if K is a subgame complete class with the additional 
property that for F ~ K every L-truncation of F is in K. 

A solution function Lfor  a class K of games in extensive form is called trunca- 
tion consistent, if for every F~ K the L-solution L(F) induces the L-solution 
L(F) on every L-truncation/~ = T(F,M,L) w i t h / ~  K. 

It is intuitively clear that a reasonable subgame consistent solution function 
L should also be truncation consistent. If L(F') is the behavior expected in the 
subgames F'e M, then the strategic situation in P = T(F,M,L) is essentially 
the same as in that part of F which corresponds to F. 

3.4. Consistent Extensions 

Consider a solution function L1 for a class K1 of indecomp0sable games. In 
the following for any such L~ an extension to a wider class K will be constructed. 
It will be shown that the extended solution function L is the only subgame con- 
sistent and truncation consistent solution function for K such that L coincides with 
L1 on K 1. 

Let L be a solution function for a class K of games in extensive form. L is 
called a consistent extension of a solution function L~ for a class K1 of inde- 
composable games, if the following conditions (A) and (B) are satisfied: 

(A) Region. The set of all indecomposable games in K is the set K1. For  
m = 2,3,... the set Km of all games F~ K with decomposition rank rn is eqtml 
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to the set of all games F in extensive form, such that the maximal proper sub- 
games of F are in the sets K1,...,Km-1 and the indecomposable L-truncation 
T(F,L) is in K1. 
(B) Solution. For every FeK1 we have L(F)= LI(F). If F is a decomposable 
game F e K, then L(F) induces L(F') on every maximal proper subgame F' of 
F and L(T(F,L)) on the indecomposable L-truncation T(F,L) of F. 

Later it will be shown that (A) and (B) imply subgame consistency and truncation 
consistency. This justifies the name "consistent extension". 

Theorem 4: 
Every solution function L1 for a class of indecomposable games K1 has a 

uniquely determined consistent extension. 

Proof: 
(A) and (B) provide a recursive definition of L and K. If the classes K1 ..... Kin-1 

are known and L is known for games in these classes, then Km is given by (A). 
It remains to be shown that for every Fe Km a unique perfect equilibrium set 
L(F) is determined by condition (B). This can be seen by induction on M. The 
assertion is trivially true for Fe  K1. If the assertion is true for games in K1 .... Kin- 1" 
then it follows by the corollary of theorem 2, that for F �9 Km the set L(F) is a 
perfect equilibrium set for F. 

Theorem 5: 
The consistent extension L of a solution function L1 for a class K1 of inde- 

composable games has an L-complete region K. The consistent extension L is 
subgame consistent and truncation consistent. For every F � 9  the Ll-solution 
L1 (/~) is induced by L(F) on every L-brick/~ of F. 

Proof: 
Let/~m be the union of the sets K1 ..... Kin. Let Lm be that solution function 

for/~m, which agrees with L on/~,~. The theorem holds, if for m = 1,2, 3 .... the 
class/~m is L~-complete and Lm is subgame consistent and truncation consistent. 
For m = 1 this is trivially true. Assume that the assertion holds f o r /~ .  It follows 
from (A) that/(m+l is Lr,+ 1-complete. Since L~ is subgame consistent and Lm 
agrees withLm+ 1 for the proper subgames of games in Kin+ 1, the solution function 
Lm+ 1 is subgame consistent because of (B). 

The truncation consistency of Lm+ 1 can be seen as follows. Consider an Lm+ l- 
truncation F " =  T(F,M,L,+I) of a game FeK,+I. It has to be shown, that 
Lm+I(F) induces L~+I(F") on F". The maximal proper subgames of F" are 
L~-truncations of maximal proper subgames of F. The maximal proper subgames 
of F are in Kin. Since Lr~ is truncation consistent, Lm+I(F) induces Lm(F') on 
every maximal proper subgame F' of F". The indecomposable L~-truncation 
of F is the same game as the indecomposable L~-truncation of F". It follows 
from (B) that Lr,+I(F) induces Lm(T(F",L~)) on T(F",Lm). This shows that 
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Lm+ 1 (F") and Lm+ 1 (F) induce the same perfect equilibrium sets on the maximal 
proper subgames F' of F" and on T(F",L,,). According to lemma 4 a perfect 
equilibrium set is induced by Lm § ~ (F) on F". It follows by the corollary of theorem 2 
that this perfect equilibrium set must be equal to L,,+ ~(F"). It is a simple conse- 
quence of the truncation consistency and the subgame consistency of L, that 
LI(/~) is induced by L(F) on every L-brick/~ of F. 

Theorem 6: 
The consistent extension L of a solution function L1 for a class K~ of inde- 

composable games in extensive form is the only subgame consistent and trunca- 
tion consistent solution function L, which agrees with L1 on K~ and has the 
additional property that L together with its region K satisfies condition (A). 

Proof: 
A subgame consistent and truncation consistent solution function whose 

region has property (A) must have the property (B). Therefore theorem 6 is a 
direct consequence of theorems 4 and 5. 

3.5. Simultaneity Games 

The construction of a consistent extension is a way of reducing the task of 
solving the decomposable games in K to the simpler task of solving the inde- 
composable games in K1. For  the purpose of finding a solution for the game 
F 1 of section 1, the class K1 must be large enough to generate a class K containing 
F ~. In the following a class of very simple indecomposable games will be specified. 
The class K1 underlying the solution function applied to F ~ will be a subclass 

of this class of "simultaneity games". 
A simultaneity game is an n-person game in extensive form, where each of the 

players 1,..., n has at most one information set and where each of these information 
sets intersects every play of the game. A simultaneity game can be interpreted as 
a game, where those players, who have information sets, make simultaneous 
decisions without getting information about any random choices which might 
occur before the decisions are made. 

3.6. Normal Forms 

Since every player has at most one information set there is no difference between 
behavior strategies and ordinary mixed strategies in simultaneity games. There- 
fore a simultaneity game is adequately described by its normal form1~ 

Let F be an n-person game in extensive form, the normal form o fF  is the pair 
G = (H,H), where H = (//1, ...,Hn) is the strategy set vector, whose i-th com- 

10) This is not true for extensive forms in general. The normal form does not preserve the distinction 
between perfect and imperfect equilibrium points. In simultaneity games all equilibrium points are 
perfect and every normal form is isomorphic to the normal form of some simultaneity game. 
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ponent is the set Hi of all pure strategies ~zi of player i in F and where H is the 
payoff function which assigns the corresponding payoff vector H ( n ) =  
(Ha(n) .. . .  ,H,(n)) to every pure strategy combination n = (~Zx,...,n,) for F. A 
normalform (without reference to an extensive form) is a structure G = (II, H) 
with the same properties where the nl may be arbitrary mathematical objects. 

A finite mixed strategy of player i is a probability distribution over Hi, which 
assigns positive probabilities to a finite number of pure strategies ni e Hi and 
zero probabilities to the other pure strategies of player i. Since only finite be- 
havior strategies are considered here, in this paper a mixed strategy will be always 
a finite mixed strategy. 

Two n-person normal forms G = (H,H) and G' = (IF, W) are called isomorphic, 
if for each player i there is a one-to-one mapping f from the set Hi of his pure 
strategies in G onto the set //'~ of his pure strategies in G', such that the same 
payoff vector is assigned to corresponding pure strategy combinations in both 
normal forms. A system of one-to-one mappings f = (fx . . . . .  f,) of this kind is 
called an isomorphism from G to G'. 

An isomorphism f = (fx .... ,f,) from G to G' can be extended to the mixed 
strategies. For  every mixed strategy qi for G let J~(qi) be that mixed strategy qi 
for G which assigns the same probability to a pure strategy f~(ni) as qi assigns 
to n~. In this way every mixed strategy combination q = (qx ... . .  q,) for G corre- 
sponds to a mixed strategy combination q' = (fl(ql) . . . . .  f,(q,)) for G'. 

3.7. Symmetries 

Consider a normal form G' which results from a normal form G by a renumbering 
of the players. In this case an isomorphism from G to G' is called a symmetry 
of G. A symmetry of G may be described as an automorphism of G, i.e. a mapping 
of G onto itself which preserves the structure of G. 

A symmetry preserving equilibrium point s for a game F is an equilibrium point 
which is invariant under all symmetries of the normal form of F. A symmetry 
preserving equilibrium set S for a game F is an equilibrium set, which is invariant 
under all symmetries of the normal form of F. This means that with respect 
to every symmetry every r e S corresponds to some s e S. Note that an equilibrium 
point s in a symmetry preserving equilibrium set S need not be symmetry preserv- 
ing. Only the set S as a whole is invariant under the symmetries of the normal 
form of the game. 

A perfect equilibrium point s for a game is called locally symmetry preserving, 
if a symmetry preserving equilibrium point s' is induced by s on every s-brick 
F" ofF. A perfect equilibrium set S for a gameF is called locally symmetry preserving, 
if a symmetry preserving equilibrium set S' is induced by S on every S-brick 
F' of F. Note that the elements of a locally symmetry preserving perfect equilibrium 
set need not be locally symmetry preserving. 
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The name "local" is used in these definitions since the symmetries of the normal 
form of an s-brick or S-brick may not be present in other parts of the game. The 
following two theorems show, that local symmetry preservation is in harmony 
with the decomposition properties of perfect equilibrium points or sets. 

Theorem 7: 
A perfect equilibrium point s for a game F is locally symmetry preserving if 

and only if a locally symmetry preserving perfect equilibrium point is induced 
by s on every subgame and every s-truncation of F. 

Theorem 8: 
A perfect equilibrium set S for a game F is locally symmetry preserving if and 

only if a locally symmetry preserving perfect equilibrium set is induced by S 
on every subgame and every S-truncation of F. 

Proof of Theorems 7 and 8: 
Since the s-bricks and S-bricks are indecomposable subgames of s-truncations 

and S-truncations resp., the if-parts of both theorems follow directly from the 
definition of "locally symmetry preserving". The equilibrium point s' induced 
by s on a subgame or an s-truncation generates s'-bricks which coincide with 
the corresponding s-bricks. This together with lemmata 1 and 2 shows, that 
theorem 7 holds. With the help of lemmata 3 and 4 an analogous argument can 
be made in order to complete the proof of theorem 8. 

3.8. Symmetrical Solution Functions 

A solution function Lfor a class K of games is called symmetrical, if it assigns a 
locally symmetry preserving perfect equilibrium set L(F) to every game F ~ K. 

If one player corresponds to another under a symmetry of an L-brick F' of 
a game F ~ K, then the strategic situation of both players in F' is essentially 
the same. It is reasonable to expect, that rational players who are in the same 
strategic situation behave in the same way. Therefore it is natural to require that 
a solution function should be symmetrical. 

If F is an indecomposable game, then a locally symmetry preserving perfect 
equilibrium set of F is nothing else than a symmetry preserving equilibrium 
set of F. Therefore a solution function L 1 for a class K 1 of indecomposable 
games is symmetrical, if and only if it assigns a symmetry preserving equilibrium 
set L(F) to every game F ~ K a. 

Theorem 9: 
The consistent extension L of a solution function L1 for a class K1 of in- 

decomposable games is symmetrical if and only if L 1 is symmetrical. 

Proof: 
It follows directly from the definition of a symmetrical solution function 

that L cannot be symmetrical unless L a is symmetrical. If L a is symmetrical, 
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then by theorem 5 for every F s K the equilibrium set LI(I') is induced by L(F) 
on every L-brick/~ of F. This shows that L is symmetrical, if L1 is symmetrical. 

3.9. Payoff Optimality 
A player in a game F in extensive form is called inessential, if in the normal 

form of F the payoffs of the other players do not depend on the strategy of player 
i. This is the case, if for every strategy combination rc for F we have Hi(n) = Hi(nine) 
for every n~ s Hi and every playerj with j 4: i. The players who are not inessential 
are called essential. Obviously in a simultaneity game a player without an in- 
formation set is inessential. 

If S is an equilibrium set or a perfect equilibrium set for a game F, then the 
payoff vector H(s) for the equilibrium points s ~ S is denoted by H(S) = (Hi(S) ..... 
Hn(S)). The payoff vector H(S) is called the equilibrium payoff vector at S. 

Let R and S be two equilibrium sets or two perfect equilibrium sets for a game 
F. The set S is called weakly payoff superior to R if for every essential player i 
in F we have Hi(S) > Hi(R); if in addition to this we have H~(S) > Hi(R) for at 
least one essential player i, then S is called strongly payoff superior to R. A perfect 
equilibrium set S for F is called weakly suboame payoff superior to another perfect 
equilibrium set R for F, if for every subgame F' of F (including F) the perfect 
equilibrium set S' induced by S on F' is weakly payoff superior to the perfect 
equilibrium set R' induced by R on F'. A perfect equilibrium set S for F is called 
stronoly subgame payoff superior to another perfect equilibrium set R for F, 
if S is weakly subgame superior to R and if in addition to this for at least one 
subgame F' of F the perfect equilibrium set S' induced on F' by S is strongly 
payoff superior to the perfect equilibrium set R' induced by R on F'. 

Let K be a class of n-person games in extensive form and let A be a set of 
solution functions for K. The solution function Es A is called payoff optimal 
in A if for every Ls  A and F ~ K the L-solution L(F) is not strongly subgame 
payoff superior to the ~solution L(F). 

The solution concept of this paper is based on the idea that it is natural to 
select a payoff optimal solution function from a class of subgame consistent and 
truncation consistent symmetrical solution functions. If a perfect equilibrium 
set S for F is strongly subgame payoff superior to another perfect equilibrium 
set R, then it is in the common interest of the essential players in some subgames 
and not against the common interest of the essential players in the other sub- 
games to coordinate their expectations at S rather than R. The concept of payoff 
optimality is similar to the familiar notion of Pareto-optimality. The analogy 
becomes clear if one takes the point of view that player i in one subgame and 
player i in another subgame have different interests and therefore should be 
treated as if they were different persons. 

Definitions which do not take into account the possibility that the interests 
of the same player diverge in different parts of the game, cannot do justice to the 
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structure of extensive form games. Therefore it is necessary to look at the payoffs 
in all possible subgames. In this respect the definition of a payoff optimal solution 
function is in the same spirit as the definition of a perfect equilibrium point. 

3.10. Distinguished Equilibrium Sets 

A distinguished equilibrium set for an indecomposable game F is a symmetry 
preserving equilibrium set S for F with the following additional property: if 
R is a symmetry preserving equilibrium set for F, which is different from S, then 
S is strongly payoff superior to R. 

Obviously an indecomposable game can have at most one distinguished 
equilibrium set and not every indecomposable game has a distinguished equilibrium 
set. An indecomposable game which has a distinguished equilibrium set is called 
distinguished. 

Later the class of all distinguished simultaneity games will be of special im- 
portance. It is natural to regard the distinguished equilibrium set of a distinguished 
simultaneity game as the solution of this game. It is in the common interest of the 
essential players to coordinate their expectations to an equilibrium point in this 
set. 

In this paper the same intuitive argument is not applied to indecomposable 
games in general. It is not clear, whether for indecomposable games with com- 
plicated information structures the symmetries of the normal form say something 
meaningful about the extensive form in all possible cases. Only within the class 
of simultaneity games it is justified to rely on definitions based on the normal form. 

3.11. The Distinguished Solution Function 

Let K1 be the set of all distinguished simultaneity games and let 7", 1 be that 
solution function for K1 which assigns the distinguished equilibrium set of F 
to every F~/~1. The distinguished solution function is the consistent extension 
L of this solution function L~. 

The distinguished solution function is the solution concept of this paper. 
The following theorem summarizes the desirable properties of this solution 
concept. 

Theorem 10: 
Let K be the region of the distinguished solution function L. The set A of all 

subgame consistent and truncation consistent symmetrical solution functions 
L for K contains one and only one solution function which is payoff optimal 
in A. This is the distinguished solution function L. 

Proof: 
It follows from theorems 5 and 9 that L is in A. It is a consequence of the 

definition of a distinguished equilibrium set that a solution function L, which 
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is payoff optimal in A, must assign the distinguished equilibrium set to every 
distinguished simultaneity game in K. It follows by theorem 6 that a solution 
function L cannot be payoff optimal in A, if it is different from L. It remains to 
be shown that L is payoff optimal in A. 

Assume that L is not payoff optimal. Then there must be a solution function 
L~ A and a game F~  K such that L(F) is strongly subgame superior to L(F). 
In order to show, that this is impossible, it is sufficient to prove that for no game 
F e K a symmetry preserving perfect equilibrium set R can be found, which is 
different from r,(F) and weakly subgame payoff superior to r,(F). Let/~m be the 
set of all games F ~ K with a decomposition rank of at most m. The assertion 
is proved by induction on m. 

It is clear that the assertion is true for the games in/~1. Assume that the asser- 
tion holds for the games in Kin. Let F E R be a game with decomposition rank 
m + 1. Suppose the symmetry preserving perfect equilibrium set R for F is weakly 
subgame payoff superior to L(F). It follows from the induction hypothesis that 
for every maximal proper subgame F' of F the perfect equilibrium set R '  induced 
by R on F' is the Gsolution L(F') of F'. Therefore we have T(F,R) = T(F,f,). 
The game T(F,E,) is a distinguished simultaneity game. It follows by lemma 1 
that R cannot be weakly subgam6 payoff superior to L(F) unless the equilibrium 
set/~ induced by R on /~ = T(F,r,) is the distinguished equilibrium set ofF. 
This shows that R is the Dsolution L(F). 

Remark: 
The proof of theorem 10 shows, that L is payoff-optimal in the set of all symmet- 

rical solution functions for K. Subgame consistency and truncation consistency 
have been used only in order to prove, that no other solution function is payoff 
optimal in the set of all subgame consistent and truncation consistent symmetrical 
solution functions for ~.  

3.12. A Numerical Example 

Consider the game F represented in Fig. 1. If player 1 selects his left choice 
l, the players 2 and 3 find themselves in a subgame F' with the information sets 
U2 and U 3. If player 1 selects r, then another subgame F begins. Obviously 
F' and F" are simultaneity games. Both of the subgames have a symmetry which 
corresponds to an exchange of the numbers of players 2 and 3. 

Both F' and F" have distinguished equilibrium sets. In both cases the dis- 
tinguished equilibrium set contains exactly one equilibrium point which pre- 
scribes the left choice I to players 2 and 3. Player 1 is essential in F' and F". The 
L-values of F' and F" are v(F',L) = (4,4,4) and v(F",L) = (3,6,6). 

The indecomposable Dtruncation r = T(F,L) of F is represented in Fig. 2. 
In F player 1 is the only essential player. Obviously ~r has a distinguished equili- 
brium set, whose only equilibrium point prescribes the left choice. Consequently 
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F is in the region K of L. The L-solution L(F) prescribes the left choice at every 
information set. 

The game F has another perfect equilibrium point which prescribes the right 
choice r at every information set. This equilibrium point is the only element 
of a perfect equilibrium set R. Obviously R is locally symmetry preserving. The 
L-value ofF is v(F,L) = (4, 4, 4). The equilibrium payoffvector at R is H(R) = (5, 5, 5). 

' o  qot 31o tool l lo o s 

Fig. 1. The numerical example F. Information sets are represented by dashed lines. Choices are indicated 
by the letters I and r (standing for "left" and "right"). Payoff vectors are indicated by column vectors 

above the corresponding endpoints. 

i3 

Fig. 2. The indecomposable L-truncation/~ --- T(F,r.) of the game F represented in figure I. 

This shows that another locally symmetry preserving perfect equilibrium set 
can be strongly payoff superior to the L-solution of a game in/~. At first glance 
one may think that in view of such cases it is questionable, whether L is a rea- 
sonable solution function. With the help of the example of Fig. 1, it can be easily 
understood, why this is not a valid counterargument against the distinguished 
solution function. At the beginning of the game F of Fig. 1 all players prefer 
R to L(F), but player 1 knows that after the subgame F" will have been reached 
players 2 and 3 must be expected to coordinate their expectations at L(F"), 
since this is in their common interest. The fact that R is strongly payof  superior 
to L(F) in the whole game will then be a matter of the past. 
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Already at the end of section 3.9 it has been pointed out, that the interests 
of the same player may diverge in different parts of the game and that therefore 
the efficiency idea behind the definition of the concept of payoff optimality 
must be applied to all payoffs of all subgames rather than to the payoffs of the 
whole game only. The numerical example of Fig. 1 illustrates this point. 

4. The Solution of the Model 

In the following the solution concept developed in sections 3 and 4 will be 
applied to the extensive form F x of the model described in section 1. The upper 
index 1 in the symbol F 1 has been used in order to distinguish this game from 
other games. Since only games related to this game will appear in the remainder 
of the paper, we drop the upper index 1 and use the symbol F without any index 
in order to denote the extensive form of the model described in section 1. Accord- 
ingly the notation F z will be used for the supply decision subgames and the cartel 
bargaining subgames will be denoted by Yr. Another notational simplification 
concerns the distinguished solution function L. Here we shall use the symbol 
L instead of L, since no other solution function appears in the remainder of the 
paper. The distinguished solution of a game will simply be called the solution 
of this game. 

The computation of the solution of the extensive form F of the model will 
follow a "cutting back procedure", which works its way backwards from the 
end of the game to its beginning by solving indecomposable subgames and 
forming truncations. First the supply decision subgames Fr will be solved. Then 
truncated cartel bargaining subgames F z are formed as L-truncations of the 
cartel bargaining subgames. After these games have been solved the indecompos- 
able L-truncation F of F can be formed and solved. The games whose solutions 
are found in this way are the L-bricks of F. Finally the solution of F can be put 
together from the solutions of the L-bricks of F. 

The path to the solution of F is not the shortest possible one. The detours 
have the purpose to exhibit some interesting properties of the model and its 
solution. 

4.1. Lemmata on the Supply Decision Subgame 

Obviously the supply decision subgames Fr are simultaneity games. A strategy 
q~ for Fy is a finite probability distribution over the interval 0 _< x~ < Yi. The 
following lemma will show, that only the pure strategies are important. 

Lemma 6: 
Let s = (sl ..... s,) be an equilibrium point for a supply decision subgame 

Fy; then s is a pure strategy combination. 
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Proof" 
In order to prove the lemma, it is sufficient to show that for every strategy 

combination q = (ql .. . . .  q~) each player i has exactly one best reply r~ which 
is a pure strategy. Let us distinguish two cases. In case 1 the supply x c = 0 is the 
only pure strategy which guarantees a non-negative gross profit Pc, no matter 
which of the pure strategies occuring in the mixed strategies qj of the other players 
are realized. In case 2 player i can choose a supply xi > o which guarantees a 
non-negative gross profit P~, no matter which of the pure strategies occuring 
in the mixed strategies qj of the others are realized. It follows from (9) that in 
case 1 the supply xi = 0 is the only best reply of player i. 

Now consider case 2. Let 2j be the greatest supply xj such that qi assigns a 
positive probability to x~. 

Define 
Xi = ~ xj.  (17) 

j = l  
jr 

Obviously we must have X~ < 1. In order to be sure to receive a non-negative 
gross profit, player i must select a supply x~ in the closed intervall 0 < x~ < ~c, 
where ~ is the minimum of Yc and 1 - Xc. It follows from g = 1 - X, that in 
this intervall the expected gross profit of player i is a strictly concave quadratic 
function. Consequently player i has exactly one best reply, which is a supply 
~ with 0 _< ~1 _< ~c. 

Remark: 
If the players had the utility function u~ = Pc instead of (9), a similar argument 

would not go through, since over the whole range xc _> 0, the variable Pc is not 
a concave function of xv 

Lemma 1 shows that we can restrict our attention to pure strategy combinations. 
In the following a pure strategy combination for Fr is identified with the corre- 
sponding supply decision vector x = (x~,..., xn). 

In lemma 2 a function ~p~(Xi) is introduced, which is called the reaction function 
of player i. This function is indeed the familiar reaction function from the Cournot 
oligopoly theory. In lemma 8, Eq. (21) we shall define a related function ~h(X), 
which is called the fitting-in-funetion~l). The fact that this function depends 
on the total supply X, rather than on Xc, makes it a useful instrument for the 
analysis of the Cournot model. 

Lemma 7: 
Let (x~, ...,xn) be a pure strategy combination for a supply decision subgame 

F r �9 Define 
Xi = s xj.  (18) 

j = l  

11) The concept of a fitting-in function has been introduced for a wide class of oligopoly models in 
SELTEr~ ['1970]. The German name is ,,Einpassungsfunktion", 
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Then  

q~i(Xi) = max[O, m i n I 1 2 X i , y i l  I (19) 

is player  i's best reply to (Xl, . . . ,  x,). 

Proof: 
Consider  first the case Xi -> 1. In this case x i = 0 is the only supply which 

gives players i a non-negat ive gross profit  and cpi(Xi) = 0 is the best reply to 

x = ( x l , . . . , x . ) .  

In the case Xi < 1 player  i's gross profit  is negative outside the intervall 
0 < x~ < 1 - Xi. Within this intervall the function x,(1 - X i -  x~) assumes its 
m a x i m u m  at x, = (1 - Xy2. This shows that  for X, < 1 the best reply to (xl . . . . .  x~) 
is given by (19). 

Lemma 8: 
Let  Fr be a supply decision subgame with the binding quo ta  vector  y = (Yl . . . . .  Y~). 

Define 
th(X) = max [0,min [1 - X, yJ] (20) 

for i = 1 . . . . .  n (the function th(X ) is called player  i'sfitting-in-function). For  every 
X > 0 and for i = 1, . . . ,  n the function th(X ) satisfies the condit ion 

~I~(X) = r - ~h(X)) (21) 

and for every fixed X _> 0 the only solution of the equat ion 

xi -- ~oi(X - xi) (22) 

is x i = th(X ). 
Proof: 

qh(Xi) is monotonica l ly  non-increasing. Therefore  ~oi(X - x~) - x~ is mono-  
tonically decreasing in xv Consequent ly  for every X ___ 0 there is at most  one 
x~ satisfying (22). It remains to be shown that  (21) is true, (19) yields 

cP'(X-rh(X))=maxIO'min[1-X+rh(X) ]1 " 2 ' y~ " ( 2 3 )  

In order  to prove (21) we distinguish the following three cases (24), (25) and (26) 

1 - X < 0 ( 2 4 )  

0 <  1 - X < y ~  (25) 

y , <  1 - X .  (26) 

In case (24) we have th(X ) = 0. If we insert this on the right side of (23), we 
see that  because of (24) condi t ion (21) is satisfied. N o w  consider case (25). In 
this case rh(X ) is equal to 1 - X. It is clear f rom (23) and (25) that  (21) holds in 
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this case too. In case (26) we have ~h(X) is equal to Yv Inequality (26) implies 

1 - X + yi (27) 
Yi <- 2 

This shows that (21) is satisfied. 

4.2. The Solution of the Supply Decision Subgame 

In the following the results of the last section will be used in order to find the 
solutions of the supply decision subgames. For this purpose we introduce the 
total fitting-in function r/(X): 

r/(X) = ~ ~h(X) = ~, max[0, min [1 - X, yJ].  (28) 
i=1  i = i  

Consider the pure strategy equilibrium point (xl .. . . .  x,) of r r and let X be the 
total supply belonging to x = (xl,. . . ,x,). It follows from the definition of an 
equilibrium point and from lemma 7 that (22) must hold for i = 1 ... . .  n. In view 
of lemma 8 this means that we must have xi = ~(X). Hence we also must have 

X = ~/(X). (29) 

Moreover, it is clear that any solution X of (29) together with Eq. (21) generates 
an equilibrium point (xl .. . . .  x.). A convenient graphical representation of the 
solutions of (29) can be given with the help of a diagram which shows 1/(X) and 
the 45~ This diagram will be called the fitting-in diagram. An example is 
given in Fig. 3. In the fitting-in diagram the solutions of (29) are represented by 
the intersections of r/(X) with the 45~ Since r/(X) is a continuous non-in- 
creasing function with r/(0) > 0 and 1/(1) = 0, it is clear that r/(X) has exactly 
one intersection with the 45~ and Fr has exactly one equilibrium point, 
whose total supply X satisfies the inequality 

0 _< x < 1. (30) 

The results which just have been derived, are summarized by the following 
theorem. 

Theorem 11: 
Let Fr be a supply decision subgame. Then Fr has a unique equilibrium point. 

This equilibrium point is an equilibrium point (x~ ... . .  x,) in pure strategies. 
The total supply X belonging to (x~ ... . .  x~) is the unique solution of the equation 
X = r/(X) and satisfies the inequality 0 < X < 1. Moreover we have x i = rh(X) 
for i = 1,..., n. (Here r/and r/i are defined as in (28) and (20) resp.) 

Remark: 
Since Fr has only one equilibrium point, the solution L(Fr) is the equilibrium 

set with this equilibrium point as its single element. Obviously Fr is a distin- 
guished simultaneity game. 
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(x) 

1 

i I k 

x 

Fig. 3. The f i t t ing-in d i a g r a m  for n = 3 and  Yl = .6, Y2 = .4, Y3 = .1. The intersect ion of rl(X) with  
the 45~ is at  X = .7. The  equ i l ib r ium poin t  is at  x~ = .3, x2 = .3, xa = .I. 

4.3. Properties of the Supply Decision Equilibrium 

In this section the determination of the solution of the cartel bargaining sub- 
games Fz will be prepared by the derivation of some results on the equilibrium 
points of the supply decision subgames. We first look at the special case of a 
supply decision subgame/ 'y  with a binding quota vector (yl,...,y,,) with yg = 

for i = 1 .... ,n. We call this case the unrestricted case. The unrestricted case is 
an important limiting case. If no cartel agreements were possible then the equilib- 
rium point of the unrestricted case would be the non-cooperative solution of the 
model. 

Lemma 9." 

Let Fr be a supply decision subgame with a binding quota vector y = (Yl .. . . .  Y,) 
with Yi = ~ -  Then the components of the equilibrium point (xl . . . . .  x,) for Fr 
are given by 

1 
x i = ~  for i = l  . . . . .  n (31) 

n + l  

and player i's profit Pi at (xa . . . . .  x,) is given by 

1 
P i  = (n  q- 1) 2 for i = 1 . . . . .  n. (32) 

Proof: 
Because of (28), (29) and (30) we have 

X = n(1 - X) (33) 
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n 
X = - -  (34) 

n + l  

(31) is a consequence of (34) and (20). Eq. (32) follows by (7) and (8). 

Lemma 10: 

Let Yy be a supply decision subgame of a given cartel bargaining subgame 
Fz. Let (xl .. . . .  x.) be the equilibrium point of Yr and let k be the number of non- 
participators (the number of players in N - Z). Define 

x z  = Y,  x i .  ( 3 5 )  
iez  

Then the following is true: 

1 
x i =  k +  1 ( 1 - X z )  for i t N - Z  (36) 

n - k  
X z < ~ (37) 

- n + l "  

Proof: 
Since no quotas are fixed for non-participators we have 

Yi= oo for i ~ N - Z .  

This together with (20) and (30) yields 

x i =  1 - X  for i ~ N - Z .  
Define 

(39) yields 

(38) 

(39) 

X N - Z  =-- E X~ . 
i ~ N - z ( 4 0 )  

XN_z = k(1 - Xz - XN-z) (41) 

k 
XN-z = k + 1 (1 - Xz) (42) 

(39) shows that the equilibrium supply x i is the same for all i t  N - Z. This 
together with (42) proves (36). Because of (42) we have 

1 - X = I - X z - X N _ z  (43) 

1 
1 - X = k +--------~(1 - Xz). (44) 

The inequality 
x i < l - X  for i EZ (45) 

is a consequence of (20) and (30). This together with (44) yields 

k 
Xz _< ~ (1 - Xz). (46) 

(46) is equivalent to (37). 
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Remark: 

Note that because of (31) in the unrestricted case X z  is equal to the upper bound 
on the right side of (37). 

Lemma 11: 

Under the assumptions of lemma 10 let P, be player i's gross profit at the 
equilibrium point (xl ..... x.) of Ft. 

Define 

Then the following is true: 

Pz = ~ P~. (47) 
i e z  

1 1 
Pz = k + l X z ( 1 -  Xz)  < 4 ( k + 1 ) "  (48) 

Proof: 
Because of (30) we can write 

This together with (44) yields 

Pz = Xz(1 - X ) .  (49) 

1 
Pz = k + 1 Xz(1 - Xz) .  (50) 

The right side of (50) assumes its maximum at X z = 1/2. This proves (48). 

4.4. The Solutions of the Truncated Cartel Bargaining Subgames 

Let F z be a cartel bargaining subgame. The indecomposable L-truncation 
Fz = T(F,L) of Fz is called the truncated cartel bargaining subgame for Z. In 
this section it will be shown that F z has a distinguished equilibrium set. 

Consider an equilibrium point gz of a truncated cartel bargaining subgame 
Fz, such that the equilibrium payoffs at gz are the gross profits (32) obtained in 
the unrestricted case of a supply decision subgame. Formally an equilibrium 
point of this kind may very well involve cartel agreements as we shall see in 
lemma 12, but such cartel agreements have no economic significance and there- 
fore will be called inessential. No cartel bargaining is necessary in order to achieve 
the payoffs (32). 

The solution of Fz depends on the number k of players in N - Z. As we shall 
see, for k > ( n -  1)/2 the equilibrium payoffs connected to the equilibrium 
points in L(/~z) are the gross profits (32). In this case only inessential cartel agree- 
ments result from the equilibrium points in L(Fz). For k < (n - 1)/2 the situation 
is different. Here the equilibrium payoffs at L(/~z) are greater than those of the 
unrestricted case of a supply decision subgame. 

Generally the solution L(Fz) of a truncated cartel bargaining subgame contains 
many equilibrium points. There are two reasons for this: different proposal 



!74 R. SELTEN 

systems may lead to the same quota vector and different quota vectors may lead 
to the same equilibrium payoffs in the supply decision subgame. 

For our purposes, it is not necessary to describe L(Fz) in detail. It is sufficient 
to exhibit one equilibrium point in L(Fz) and to describe L(Fz) as that equilibrium 
set, which contains this equilibrium point. 

L e m m a  12: 

Let Fz be a truncated cartel bargaining subgame. Then the following system 
of proposals Y is an equilibrium point in pure strategies for Fz: 

Y = (Y~h~ z where for every i e Z 
(51) 

Y~ = (Yi) j~z  with yij = oo.  

The binding quota vector (Yl ... . .  y,) generated by this equilibrium point has the 
property Yi = oe for i = 1 .... ,n. 

Proof: 
Formally an agreement results from Y, but this agreement is an inessential 

one, since the binding quota vector has the property y~-- oe for i = 1 ... . .  n. 
We must show that no deviation of a player j e Z can improve his gross profit. 

The only deviation which can change the binding quota vector is a deviation 
to a proposal for the one-person coalition {j} containing j as its only element. 
Let y} be the quota which player i proposes for himself. The new binding quota 
vector has y) as its j-th component and y~ = oe for all i =~ j. 

The proposal system (51) has the result that all players get the gross profit 
from (32). It is clear from the proof of lemma 4 that the new binding quota cannot 
lead to a different result unless we have 

Because of 

we must have 

l - X - =  

This together with (52) yields 

x j  = min[1 - X , y ) ]  = y) . 

x i = l - X  f o r  i + j  

x = y) + (n - 1)(1 - x )  
p 

X =  n - l + Y J  _ _  

n n 

t 

1 - yj 
n 

r 1 - i y j  < YJ 

n 

1 f y~ < 
- n + l "  

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 
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Because of (7), (8) and (56) player f s  gross profit Pj after the deviation can be 
written as follows: 

1 y~(1 - y~). (59) Pj=-  

In the interval 0 <_ y~ <_ i/(n + I) the profit Pj is an increasing function of y}. 
Therefore we must have 

PJ=  n n +  1 n +  1 ( n +  1~-" (60) 

This shows that the deviation to y'~ does not improve player j's gross profit above 
its equilibrium value from (32). Consequently (51) is an equilibrium point of Fz. 

Theorem 12: 
Let Fz be a truncated cartel bargaining subgame where the number k of non- 

participators satisfies the inequality 
n - 1  

k > ~ (61) 

Then/~z is a distinguished simultaneity game and the distinguished equilibrium 
set Sz contains the pure strategy equilibrium point (51) from lemma 12. The 
equilibrium payoffs at Sz are the gross profits (32) from lemma 9. 

Proof: 
The symmetries of Fz correspond to those permutations of N which leave 

Z and N - Z unchanged. Since at the equilibrium point (51) the players in Z 
have equal payoffs and the players in N - Z have equal payoffs, the equilibrium set 
Sz of this equilibrium point is symmetry preserving. 

We have to show that Fz is a distinguished simultaneity game and that Sz 
is the distinguished equilibrium set o f t  z. Since the players in N - Z are inessential 
and since every symmetry preserving equilibrium set must give the same payoff 
to all players in Z, it is sufficient to show, that the joint gross profit Pz of the 
players in Z at (51) cannot be surpassed by the joint gross profit of the players 
in Z at any other equilibrium point of Fz. 

For any supply decision subgame of Fz the joint equilibrium supply Xz of the 
players in Z is bounded by the right side of (37). If the lower bound for k from 
(61) is inserted on the right side of (37) we get 

1 
Xz < -~-. (62) 

It can be seen from (50), that in the interval 0 < Xz < 1/2 the joint gross profit 
Pz of the players in Z is a monotonically increasing function of Xz. Therefore 
Pz cannot be greater than the profit at the upper bound of Xz in (37) which is 
assumed at the supplies specified in (31). This shows that the equilibrium set 
Sz is the distinguished equilibrium point of Fz and that the equilibrium payoffs 
at Sz are the gross profits (32). Obviously Fz 1 is a distinguished simultaneity game. 
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Lemma 13." 
Let F z be a truncated cartel bargaining subgame, where the number k of non- 

participators satisfies the inequality 

n - - 1  
k _< ~ (63) 

Then the following system of proposals Y is an equilibrium point in pure strate- 
gies for/~z- 

Y = (Yi)i~z where for every i ~ Z 
1 (64) 

Yi=(Yij)i~z with Y~J= 2 ( n - k )  for all j ~ Z .  

The equilibrium payoffs at this equilibrium point are the following gross profits: 

1 
P~= 4 ( n - k ) ( k +  1) for i ~ Z  (65) 

1 
P ~ = - 4 ( k + l )  z for i ~ N - Z .  (66) 

Proof: 
Let F~ be the supply decision subgame resulting from (64) and let (x 1 ... . .  x.) 

with the total supply X be the equilibrium point of Fy. Obviously the binding 
quota vector (Yl ... . .  y,) of Fr is as follows: 

1 
for i ~ Z (67) 

Yl = 2(n - k) 

Yi= ~ for i e N - Z .  (68) 

Because of (28), (29) and (30) the total supply X satisfies the condition 

X = k ( 1 - X ) + ( n - k ) m i n  l - X ,  2 ( n - k )  " 

In the following it will be shown that we must have 

min I - X ,  2 ( n - k )  = 2 ( n - k ) "  

If (70) were wrong, (69) would assume the form 

X = n(1 - X). (71) 
This yields 

n 
X = - - -  (72) 

n + l  ' 

Consequently (70) cannot be wrong unless the following is true 

1 1 
- -  < ( 7 3 )  
n + 1 2(n - k) " 
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It is an immediate consequence of (63) that we must have 

( n - l )  
2 ( n - k ) > _ 2  n ~ = n + l .  (74) 

This contradicts (73). Therefore (70) is correct. By theorem 11 we have xi = qi(X). 
With the help of (20) this yields 

1 
for i ~ Z .  (75) xi = 2(n - k) 

The equilibrium supplies for i t  N - Z, can be computed from (75) and (36). 
We receive 

1 
for i o n  - Z .  (76) x i =  2 k + l  

The profit margin # at (xl . . . . .  x,) is given by 

1 
g = 2(k + 1) " (77) 

It follows that the gross profits at (xl .... ,x,) are the gross profits P~ in (65) and 
(66). 

It remains to be shown that the proposal system (64) is an equilibrium point 
of Fz. It is not necessary to look at the inessential players in N - Z. Consider 
a player j ~ Z. Player j has two kinds of deviations. Some deviations have the 
result that the new binding quota vector gives a quota of oo to every player 
including player j. As we can see from lemma 9, if this happens player f s  payoff 
after the deviation is equal to 1/(n + 1) 2. Later we shall show that (63) implies 

1 1 
>__ (78) 

4 ( n - k ) ( k + l )  ( n + l )  2 " 

This inequality together with (65) has the consequence that a deviation of the 
kind considered above is unprofitable. The only other possibility of a deviation 
of a player j ~ Z is a deviation to a proposal for the one-person coalition {j} 
which would result in some binding quota yj for player j and binding quotas 
y~ = oo for all other players i. 

From the fact that the proposal system (51) from lemma (12) is an equilibrium 
point, where according to lemma 9 every player receives 1/(n + 1) 2 as his equilib- 
rium payoff, we can conclude that such deviations are not more profitable than 
those which yield binding quota vectors Yi = oo for all players i. 

In order to prove that (63) implies (78), we observe that the partial derivative 
of 4(n - k)(k + 1) with respect to k is 4(n - 1 - 2k). Obviously this is positive, 
if k satisfies 0 < k < (n - 1)/2. Therefore in the interval 0 _< k < (n - 1)/2 the 
gross profit P~ in (65) is a montotonically decreasing function ofk. At k = (n - 1)/2 
the gross profit Pi assumes the value 1/(n + 1) 2. This shows that (78) holds for 
k < (n - 1)/2. 



178 R. SELTEN 

Remark: 
In the course of the proof of lemma 13, it has been shown that for k _< (n - I)/2 

the gross profit (65) of a participator is bounded by (78). The lower bound 
1/(n + 1) z is the supply decision equilibrium payoff of the unrestricted case. 
If k is equal to (n - 1)/2 then (64) is an equilibrium point in the equilibrium 
set Sz from theorem 12. In this case the cartel agreement resulting from (64) 
is inessential. Note that both for i~ Z, and i ~ N - Z the equilibrium payoffs 
become smaller if the number k of non-participators is increased within the 
interval 0 < k __ (n - 1)/2. 

Theorem 13: 
Let Fz be a truncated cartel bargaining subgame, where the number k of non- 

participators satisfies the inequality 
n - 1  

k < ~ (79) 

Then F z is a distinguished simultaneity game and the distinguished equilibrium 
set Sz of r z contains the pure strategy equilibrium point (64). The equilibrium 
payoffs at Sz are the gross profits (65) and (66) from lemma 13. 

Proof: 
Let Sz be the equilibrium set of the equilibrium point (64). In the same way 

as in the proof of theorem 12 we can see that Sz is symmetry preserving. 
In order to show that Fz is a distinguished simultaneity game and Sz is the dis- 

tinguished equilibrium set of Fz it is sufficient to show that the joint equilibrium 
payoff of the players in Z cannot be surpassed by the joint gross profit of the 
players in Z at any other equilibrium point of Fz. It can be seen from (65) that 
the joint equilibrium payoff of the players in Z is equal to the upper bound in 
(48). This upper bound cannot be surpassed by the joint equilibrium gross profit 
Pz of the players in Z in any supply decision subgame of Fz. This completes the 
proof. 

Remark: 
Generally Sz contains many equilibrium points. This can be seen easily for the 

trivial case n = 1, and k = 0 where any binding quota Yl -> 1/2 is compatible 
with the monopolist's optimal supply xl = 1/2. For n > 1, it is also possible 
that Sz contains more than one equilibrium point. In order to see this, one may 
look at the case n = 4, k = 0. There one can find equilibrium points which 
achieve the binding quota vector of (64) by two 2-person agreements. Since 
this is an unimportant detail, no proof is given here. 

4.5. The Participation Decision Brick 

Let /~ be the indecomposable L-truncation r = T(F,L) of the extensive form 
of the model./~ will be called the participation decision brick. In r each player 
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i has  t w o  s t ra teg ies :  he  m a y  c h o o s e  zi = 0 o r  zi = 1. T h e  p a y o f f  f unc t i on  o f  the  

p a r t i c i p a t i o n  dec i s ion  b r i ck  is d e s c r i b e d  in t h e o r e m  14. U p  to  n = 10, t he  n u m e r i c a l  

va lues  o f  t he  payoffs  a re  t a b u l a t e d  in T a b l e  1. 

Theorem 
Le t  z = (zl . . . .  , z,) be  a p u r e  s t r a t egy  c o m b i n a t i o n  for  the  p a r t i c i p a t i o n  dec i s ion  

b r i c k / ~  a n d  let  Z be  the  set o f  all  p l aye r s  i w i th  z~ = 1 (the set o f  all  pa r t i c ipa to rs ) .  

L e t  k be  the  n u m b e r  o f  p l aye r s  in N - Z.  T h e n  p l aye r  i's p a y o f f  H~(z) in r is as  

fo l lows :  1 n - 1 

I ( n - ~  1) 2 for  i =  1 . . . . .  n ,  i f  k > 2 

1 n -  1 (80) aqi(z) = | ' ~ n - - - ~ ( k  + 1) for  i ~ Z ,  if  k < ~  

/ 1 n - 1  
for  i ~ N - Z ,  i f  k < - - - - a - - - -  

k ( k ~ - - ~  z 

Proof:  
(80) is an  i m m e d i a t e  c o n s e q u e n c e  o f  t h e o r e m s  12 a n d  13. 

4.6. Properties of the Payoff of the Participation Decision Brick 

In  th is  sec t ion  severa l  useful  p r o p e r t i e s  o f  the  p a y o f f  func t ion  /-/i o f  F shal l  

be  de r ived .  

Table 1. Payoffs for the participation decision brick up to n = 10. 

Number Number Payoff Payoff 
of of of a of a 

players non-participators participator non-participator 

n =  1 k = 0  .25000 - 
k = 1 - .25000 

n = 2  k = 0  .12500 - 
k ~ 1 .01111 .11111 

n = 3 k = 0 .08333 - 
k ~ 1 .06250 .06250 

n = 4  k = 0  .06250 - 
k = 1 .04167 .06250 
k ~ 2 .04000 .04000 

n =  5 k = 0  .05000 - 
k = 1 .03125 .06250 
k ~ 2 .02778 .02778 

n = 6 k = 0 .04167 - 
k = 1 .02500 .06250 
k = 2 .02083 .02778 
k ~ 3 .02041 .02041 
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Table 1 (continued) 

Number Number Payoff Payoff 
of of of a of a 

players non-participators participator non-participator 

n = 7  k = 0 .03571 - 
k =  1 .02083 .06250 
k = 2 .01667 .02778 
k ~ 3 .01562 .01562 

n = 8  k = 0 ,03125 - 
k = 1 .01786 .06250 
k = 2 .01389 .02778 
k = 3 .01250 .01562 
k ~ 4 .01235 .01235 

n = 9  k = 0 .02778 - 
k = 1 .01562 .06250 
k = 2 .01190 .02778 
k = 3 .01042 .01562 
k ~ 4 .01000 .01000 

n = 1 0  k = 0 .02500 - 
k = 1 .01389 .06250 
k = 2 .01042 .02778 
k = 3 .00893 .01562 
k = 4 .00833 .01000 
k ~ 5 .00826 .00826 

L e m m a  14: 

L e t  z = (z l ,  . . . , z , )  be  a p u r e  s t r a t e g y  c o m b i n a t i o n  for  t he  p a r t i c i p a t i o n  d e c i s i o n  

b r i c k  iV a n d  let  i be  o n e  o f  the  p layers .  Le t  m b e  the  n u m b e r  o f  n o n - p a r t i c i p a t o r s  

in N - {i}. De f ine  

T h e n  we  h a v e  

A(n,m)  = 

B(n,m) = 

1 n - 3  
4 ( m + 2 )  2 for  m <  

1 n - 3  
for  m >_ 

(n + 1) 2 2 

1 
for  r n < ~  

4(n - m) (m + 1) 

1 
( n +  1) 2. for  m>_ 

n - 1  

2 

n - 1  

2 

(81) 

(82) 

I~i(z ) = A(n ,m)  for  z i = 0 (83) 

IT~(z) = B(n,m)  for  zl = 1 .  (84) 

P r o o f :  
T h e  l e m m a  is an  i m m e d i a t e  c o n s e q u e n c e  o f  t h e o r e m  14. In  t he  case  o f  z~ = 0 

we  h a v e  k = m + 1 a n d  in t he  case  o f  z i = 1 we  h a v e  k = m. 
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Lemma 15: 
Let m and n be integers with 0 < m < n. Define 

D(n,m) = A(n,m) - B(n,m). 
We have 

I 1 1 n - 4  
4 ( m + 2 )  2 - 4 ( n - m ) ( m + l )  for m_< 

1 1 3 
D(n,m)= ( n + l )  2 4(n m ) ( m +  1) for n -  - -  _ ~ _ m ~ _ ~  

0 for m>_ n - 1  
2 

and 

(85) 

n - 2  
2 (86) 

n - 3  n - 2  
D(n,m)<O for ~ < m < ~  (89) 

n - 1  
O(n,m)=O for m > ~  (90) 

Proof: 
(86) is an immediate consequence of lemma 14. The equation D(4,0)= 0 

follows by (86). Now assume n > 5 and m < (n - 4)/2. Under this condition 
(88) is equivalent to 

(n - m) (m + l) - (m + 2) 2 > 0 .  (91) 

Because of n > 5 this inequality holds for m = 0. Since m < (n - 4)/2 implies 
n > 2m + 4 we receive an upper bound for the left side of (91) if we substitute 
m + 4 for n - m. Thus for m > 0 inequality (91) follows by (92). 

( m + 4 ) ( m +  1 ) - ( m + 2 )  2 = m > 0 .  (92) 

In order to show that (89) is true, we have to examine whether 

4 ( n - m ) ( m +  1 ) - ( n +  1) 2 < 0  (93) 

holds for m = (n - 3)/2 and for m = (n - 2)/2. For  m = (n - 3)/2 the expression 
on the left side of (93) is equal to - 4 and fo rm  = (n - 2)/2 we receive - 1. Eq. 
(90) is implied by (86). 

Lemma 16." 
Let m and n be integers with 0 < m < n - 1. Then we have 

n - 3  
A(n,m+ 1 ) - A ( n , m ) < 0  for m < ~  (94) 

n - 3  
A(n,m + 1) - A(n,m) = 0 for m _> - - - 7 - -  (95) 

D(4,0) = 0 (87) 

n - 4  
D(n,m)>O for n > 5  and m < ~  (88) 
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B(n,m + 1) - B(n,m) < 0 

B(n,m + 1) - B(n,m) = 0 

for m < ~ (96) 

n - t 
for m > _ -  2 - - "  (97) 

Proof: 
(95) and (97) are an immedia te  consequence of (81) and (82). Obvious ly  (94) 

holds for m < (n - 5)/2. Since bo th  for m = (n - 5)/2 and m = (n - 4)/2 the 
expression 1/4(m + 2) 2 is greater  than 1/(n + 1) 2, inequali ty (94) holds for these 

values of  m too. In order  to show, that  (96) is true we observe that  the der ivat ion 
of (n - m)(m + 1) with respect  to m is equal  to n - 1 - 2m. For  m < (n - 1)/2 

this is positive. Therefore  (96) holds for m < (n - 3)/2. Fo r  m = (n - 3)/2 we have  

4(n - m) (m + l) = (n + 3) (n - l) < (n + l) 2 (98) 

and for m = (n - 2)/2 we receive 

4 ( n - m ) ( m +  l ) = ( n + 2 ) n < ( n +  1) 2 . (99) 

Thexefore (96) holds for these values of  m too. 

Lemma 17: 
The payoff  f unc t i on /7  of  the par t ic ipat ion decision brick F has the following 

proper ty :  
1 

/-Ii(z) ~ (n + 1) 2 for i = 1 . . . . .  n (100) 

and for every pure  s trategy combina t ion  z = (zl, . . . ,z,) .  

Proof: 
L e m m a  16 shows that  A(n,m) and B(n,m) are non-increasing functions of  

m. F o r  m = n these functions are equal  to 1/(n + 1) 2. The  assert ion follows by 
l emma  14. 

4.7. Pure Strategy Equilibrium Points of  the Participation Decision Brick 

One does not  have to look at the quest ion which are the pure  strategy equilib- 

r ium points  of /~  if one wants  to find the solut ion of F, but  with respect  to the 
in terpreta t ion of the solution it is of  some interest to know the answer to this 
question. The  pure strategy equi l ibr ium points  can be classified according to 
the number  k of  non-par t ic ipators .  In the case k = 0 we speak of a joint profit 
maximization equilibrium point. Here  the jo int  gross profi t  of  all players  is the 
m o n o p o l y  gross profit  1/4. If k is greater  than 0 but  smaller  than (n - 1)/2, then 
we speak of a partial cartel equilibrium point. Here  the behav ior  of  the players  
results in a cartel bargaining subgame,  whose solut ion requires an essential 
cartel  agreement ,  which is partial ,  since it does not  include the non-par t ic ipators .  
In the case k > ( n -  1)/2 we speak of  an unrestricted COUgNOT equilibrium 
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point. Here  every player receives the payoff  1/(n + 1) 2 which is the gross profi t  
connected to the COURNOT solution of the mode l  wi thout  any quo ta  restrictions. 

As we shall see, for small n, up to n = 4 jo int  profi t  equi l ibr ium points  are 

available but  not  for n > 4. This is the reason why 4 is small, but  5 is not. Par t ia l  
cartel  equil ibria can be found for every n with n > 4. The  n u m b e r  of  non-par t ic i -  

pa to r s  must  be either equal  to (n - 3)/2 or to (n - 2)/2. This  means  tha t  for 
every n >_ 4 there is only  one possibil i ty for the n u m b e r  k of  non-par t ic ipators .  

There  are a l together  (~) part ial  cartel  equi l ibr ium points,  where k is the uniquely 
de termined n u m b e r  of  non-par t ic ipa tors .  All these equi l ibr ium points  can be 

m a p p e d  into each other  by the symmetr ies  of  the game. 

Theorem 15: 
Let  z = (z 1 . . . . .  z,) be a pure  s trategy combina t ion  for the par t ic ipat ion decision 

brick F. Then  z is an equi l ibr ium point  of  r if and only if n and the n u m b e r  of  non-  
par t ic ipa tors  k connected to z satisfy one of the following three condit ions (101), 

(102) and  (103). 

k = O  

n 
0 < - -  

Proof: 

k > - -  

and n < 4 (101) 

- 3  n - 2  
_< k _< , - -  (102) 

2 2 

+ 1 (103) 
2 

In  the first par t  of  the p roof  we show that  in all three cases z is an equi l ibr ium 
point .  Fo r  every player  i let m~ be the number  of  non-par t ic ipa tors  in N - {i}. 
It  follows by l e m m a  14 that  in the case that  p layer  i is a par t ic ipator ,  he has no 
reason  to deviate, if we have D(n,m,) <_ O. On the o ther  hand,  if he is a non-  
par t ic ipator ,  he has no reason to deviate, if we have  D(n,m,) >_ O. 

If  (101) is true, then ml = 0 holds for i = 1 . . . . .  n. Eq. (90) yields D0 ,0 )  = 0, 
inequal i ty  (89) yields D(2,0) < 0 and D(3,0) < 0. Final ly  (87) covers the case 

n - - 4 .  
N o w  assume that  (102) is satisfied. I f  i is a par t ic ipator ,  then we have  m i = k. 

Inequal i ty  (89) shows that  a par t i c ipa tor  has no reason  to deviate. I f  i is a non-  

par t ic ipator ,  then mi = k - 1. Because of (102) we must  have n >_ 4. F o r  n = 4 
condi t ion (102) yields m~ = 0. Eq. (87) shows tha t  p layer  i has no reason to deviate. 
The  same is t rue for n _> 5 in view of (88) and  (102). 

In the case of (103) we have  m i _> (n - 1)/2 for i = l , . . . , n .  This means  that  
in view of  (90) n o b o d y  has  a reason  to deviate. 

In order  to prove  tha t  r has no other  pure  s trategy equi l ibr ium points  than  
those covered by (101), (102) and (103), we observe  tha t  k must  satisfy one of the 
following two condi t ions (104) and (105), if the former  three condi t ions are not  
satisfied by k: 
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n - 3  
k < ~  and n > 5  (104) 

n - 1  n 
- - ' T - -  --- k _< T "  (105) 

Consider the case (104) and assume that player i is a participator. We have 
rn t = k and (,88) shows that player i has a reason to deviate. Now consider case 
(105) hnd as~.ume that player i is a non-participator. We have m~ = k - 1 and 
(89),' shows that player i has a reason to deviate. 

Rer~ark : 
l~ote that generally (103) allows us to find very many unrestricted COURNOT 

equilibrium points. All these equilibrium points are very weak in the sense that 
no player can loose anything by a deviation as we can see from lemma 17. For 
n = 2 and n = 3 the joint profit maximization equilibrium point is strong in the 
sense that a deviation of a player decreases his payoff. This,is not true for n = 1 
and n = 4, for n ~ 5 the partial cartel equilibrium points are strong in the same 
sense. Here n = 4 is an exception. For n _ 5 the strongness of the partial cartel 
equilibrium points is due to (88) and (89); inequality (88) does not include n = 4. 

4.8. Mixed Strategy Equilibrium Points of the Participation Decision Brick 

We shall not try to get a complete overview over the mixed strategy equilibrium 
points of/*, but we must look at some of their properties in order to derive the 
solution of F. 

A mixed strategy combination of the participation decision brick r can be 
represented by a vector of probabilities 

w = (wl ... . .  w,) (106) 
with 

0 < w ~ _ < l  for i = l  .... ,n (107) 

where w i is the probability that player i selects z~ = 1. In the following this re- 
presentation of mixed strategies and mixed strategy combinations will always 
be used. H(w) = (Hl(w),...,H,(w)) is the payoff vector associated with w. 

Lemma 18: 
Let w = (wl ... . .  w,) be a mixed strategy equilibrium point for r with 

1 
/-/j(w) > (n + 1) 5 (108) 

for some player j. Then wj > w~ implies 

fls(w) </-/s,(w). (109) 
Proof: 

Let A~ be the payoff of player j which he receives if he selects zj = 0, while all 
the other players i use their mixed strategies w~ in w. Similarly let Bs be the payoff 
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of player j, if he uses zj = 1 while the others use w i. Let A-i, and B-il be defined in 
the same way for player j'. Let Wm be the probability that exactly m of the players 
in N -  { j } -  {j'} become non-participators, if these players use their mixed 
strategies wi. We have: 

n - 2  n - 2  

Aj = w-i, ~ W,,A(n,m) + (1 - w~,) ~ WmA(n,m + 1) (110) 
m = 0  m = 0  

n - 2  

Aj = ~ W,,[A(n,m + 1) + w-i,(A(n,m) - A(n,m + 1))]. (111) 
r a=0  

Similar equations hold for Bi, A~, and B-i,: 
n - 2  

Bj = ~ Wm[B(n,m + 1) + wy(B(n,m) - B(n, rn + 1))] (112) 
m=O 

n - 2  

A i, = ~ Wm[A(n,m + 1) + wj(A(n,m) - A(n,m + 1))] (113) 
m = 0  

n--2  

B-i, = ~ Wm[B(n,m + 1) + wj(A(n,m) - B(n,m + 1))]. (114) 
m = 0  

Since w is an equilibrium point, the following must be true: 

/lj(w) = max [Aj, Bj] (115) 

Hj, (w) = max [A~,, Bj,]. (116) 

Let us distinguish the two (overlapping) cases 

and /7~(w) = A-i (117) 

/-tj(w) = n-i. (118) 

As we shall see in case (117) there must be at least one m with Wm> 0 such that 
A(n,m) - A(n,m + 1) is negative and in case (118) there must be at least one m 
with Wm > 0 such that B(n,m) - B(n,m + 1) is negative. Consider the case (117). 
Let m' be the smallest number with W m, > 0. Suppose that the difference A(n,m) - 
A(n,m + 1) vanishes for m = m'. Then this difference also vanishes for all m > m'. 
This follows by (94) and (95). Moreover because A(n,m) is equal to 1/(n + 1) 2, 
Eq. (111) yields A-i = 1/(n § 1) 2. Since this is excluded by (108), the difference 
A(n,m) - A(n,m + 1) is negative for m = m'. In the same way it can be shown 
that in the case (118) the difference B(n,m) - B(n,m + 1) must be negative for 
m = m  r. 

In view of this result a comparison of (111) and (113) shows that because of 
wj > wy the following is true for Aj > B-i: 

//j(w) = A-i < Aj, < / / j , (w) .  (119) 

Similarly (112) and (114) yield in the case of B-i _> A j: 

IQj(w) = B-i < Bj, <_ Fl-i,(w). (120) 
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Lemma 19: 
Let z = (z 1 ... . .  z,) be a pure strategy equilibrium point of the participation 

decision brick F where the number k of non-participators satisfies 0 < k < n 
(i.e. z is partial cartel equilibrium point). Then for z~ = 1 and z~ = 0 we have 

1 (121) 
[~j,(Z) > l~j(Z) > (n + 1) 2 " 

Proof: 
k satisfies (102). Therefore (96) shows that B(n,k - 1) is greater than 1/(n + 1) 2. 

The payoff/~j(z) is equal to B(n,k - 1). It follows by the application of (120) 
to the special case of z, that (121) is true. 

Lemma 20: 
Let ~ be a symmetry preserving equilibrium set of the participation decision 

brick P with 
1 

H , ( S ) > ~  for i =  1 ... . .  n. (122) 

Let w = (wj . . . . .  %) be an equilibrium point in S. Then we have 

wi = w, for i = 2 , . . . ,n .  {123) 
Proof:  

iV is completely symmetric. Therefore the payoff at S is the same for every player 
i. If (123) were not true, then in view of (122) lemma 18 could be applied to w; 
this would lead to the conclusion that the payoffs of two players are not equal 
at w. 

4.9. The Solution of the Participation Decision Brick 

With the help of the results of the last section, it is now possible to find the 
solution of F. First a theorem will show that for n > 1 the game iV has exactly 
one equilibrium point with the properties (122) and (123). This equilibrium point 
turns out to be the only element in the distinguished equilibrium set of iV. 

Theorem 16: 

For n > 1 the participation decision brick iV has exactly one equilibrium point 
w = (Wl ... . .  w,) with the properties (122) and (123). Moreover the following is 
true for this equilibrium point: 

w 1 = 1  for 1 < n _ < 4  (124) 

0 < w l  < 1 for n > 4 .  (125) 

Proof: 
The possibility w 1 = 0 is excluded by (122), since wl = 0 leads to the payoff 

1/(n + 1) 2 for all players. Henceforth we shall assume wl > 0. The pure strategy 
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z~ = 0 is a best reply of player i to w if and only if the following expression D 
is non-negative. 

n - - 1  

D = ~ ("~,l)w]-"(1 - wl)"D(n,m). (126) 
m = O  

It is a consequence of the definition of D(n,m) that D is nothing else than player 
i's payoff for z i = 0 minus player i's payoff for zi = 1, if the other players use 
their strategies w~ in w. The pure strategy zi -- 1 is a best reply to w, if and only 
if D is non-positive. Let rfi be that number  which satisfies the condition 

n - 3  n - 2  
< rfi < ~ (127) 

Obviously for every n there is exactly one such number  n~. Lemma 15 shows 
that D(n, rn) vanishes for m > rfi. Therefore we have 

r~ 
D = Z ("~,l)w]-m( 1 -- wl)mD(n,m) �9 (128) 

m = 0  

For  n = 2 and n -- 3 we have rh = 0. Inequality (89) shows that D(2,0) and D(3,0) 
are negative. Therefore in these two cases D is negative for every wl with 0 < w 1 < 1. 
The same is also true for n -- 4 where m assumes the value 1; here we have 
0(4,0) = 0 by (87) and D(4,1) < 0 by (89). For  any equilibrium point w with 
0 < wl < I the expression D must vanish since both z~ = 0 and z~ = 1 are best 
replies to w. Since D is negative for every wl with 0 < wl < 1 in the cases n = 2, 

n = 3 and n = 4, this shows, that in these cases the joint profit maximization 
equilibrium point with wx = 1 is the only equilibrium point with the properties 
(122) and (123). 

In the following we shall assume n > 4. Theorem 15 shows, that there is no 

joint profit maximization equilibrium point for n > 4. Therefore we must have 
0 < wa < 1. Define 

wl (129) 
h =  l - w 1  

If one divides D by w'~-~(l - wl) ~, one receives 

D' = ~ ("~,~)hZ~-"D(n,m) = 0.  (130) 
m = O  

Obviously for 0 < w~ < I the expression D' vanishes, if and only if D vanishes. 
The condition D = 0 is not only necessary but also sufficient for a strategy com- 
bination w with (122), (123) and (125) being an equilibrium point. This shows that 
in order to find these equilibrium points we have to look for the solutions of the 
equation: 

("~')h~'-"D(n,m) = 0.  (131) 
m = 0  

It remains to be shown that for n > 4 Eq. (131) has exactly one positive solution 
h. F rom this h the uniquely determined value of w~ can be computed by 
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h 
w~ = 1 +-----h" (132) 

It can be seen from (88), (89) and (127) that the following is true 

D(n,m)>O for r e<n5  and n > 4  (133) 

D(n, rh) < 0 for n > 4. (134) 

In order to make use of this fact we rewrite (131) as follows 
~ - 1  

("m~) h~-m D(n,m) = -(":mt) D(n, rh) . (135) 
rn=O 

For n > 4 the left side of (135) is an increasing function of h which goes to infinity 
as h goes to infinity. The right side of (135) is a positive constant. This means that 
(135) has exactly one positive solution h. The proof of the theorem has shown 
that the following corollary is true: 

Corollary: 
For n > 4 the probability wl belonging to the uniquely determined equilibrium 

point w = (w~ .... .  w,) of/~ with the properties (122) and (123) can be computed 
by (132) where h is the unique positive solution of (135) and n5 is that integer 
which satisfies (127). 

Theorem 17: 
The participation decision brick/~ is a distinguished simultaneity game. For 

n > 1 the distinguished equilibrium set S of iP contains exactly one equilibrium 
point. For n = 1 ..... 4 the distinguished equilibrium set S contains the joint 
profit maximization equilibrium point where every player always chooses to 
participate. For n > 5 the equilibrium point s ~ S is a mixed strategy equilibrium 
point where each player chooses to participate with the same probability wl 
with 0 < wl < 1. This probability can be computed by (132), where h is the 
unique positive solution of (135). 

Proof: 
Obviously in the trivial case n = 1 the joint profit maximization equilibrium 

point is in S. Apart from this the theorem is an immediate consequence of lemma 
20, theorem 16 and the corollary of theorem 16. 

4.10. The Solution of the Model 

In section 2.10 we have seen that a perfect equilibrium set is fully determined 
by the equilibrium sets induced on the bricks of the game. In the preceding 
sections the L-bricks of F have been constructed and their solutions have been 
determined (theorems 11, 12, 13 and 17). Since all the L-bricks are distinguished 
simultaneity games, the game F is in the region of the distinguished solution 
function. The solution of F can be characterized as follows: 
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Theorem 18: 
The distinguished solution of F is the set S of all strategy combinations s 

for F with the property that the strategy combinations induced by s on the supply 
decision subgames Fr, on the truncated cartel bargaining subgames Fz and on 
the participation decision brick r are in the distinguished equilibrium sets of 
these games. 

Proof: 
Obviously S is a brick producing set. S satisfies the conditions 1) and 2) in 

theorem 3. Therefore S is a perfect equilibrium set. In view of the subgame con- 
sistency and the truncation consistency of the distinguished solution function, 
it is clear that S is the solution of F. 

4.11. The Participation Probability as a Function of the Number of Players 

For n > 1 the solution prescribes a uniquely determined probability of choosing 
z i = 1. We call this probability wl the participation probability. According to 
theorem 16 for n = 2,3,4 the participation probability is equal to 1. 

For  n > 4 the participation probability wl can be computed as described in the 
corollary of theorem 16. In the following the participation probability will be de- 
noted by wl(n) in order to indicate its dependence on the number of players. 
Similarly the symbol h(n) will be used for the uniquely determined positive 
solution of(135). Table 2 in subsection 5.1 shows the values ofw 1 (n) for n = 2, ..., 15. 
It is clear from this table that wl (n) is not monotonically decreasing. Nevertheless 
within the range of the table w 1 (n) has a tendency to decrease, since for n = 4 .. . . .  13 
the difference w~(n + 2) - wa(n) is always negative, even though w~(n) is greater 
than wx(n - 1) for odd values of n with n > 5. In the following we shall prove 
that w~(n) is always below a certain upper bound which goes to zero as n goes 
to infinity. 

Theorem 19: 
For  n = 5,6 .... let h(n) be the uniquely determined positive root of Eq. i135) 

and let wl(n) be the participation probability wl computed from h = h(n) by 
(132). Define 

(n - rh)O(n, rh) for n = 5,6,7,... (136) 
b(n) = - rfiD(n, rfi - 1) 

where tfi is the integer determined by (127). We have 

b(n) = 

(n + 5)(n - 1) 
( n - 4 ) ( n +  1) 2 

(n + 4)n 
2 ( n - 4 ) ( n +  1) 2 

for n = 5,7,9 .... 

for n = 6,8,10 . . . . .  
(137) 
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F o r  every n = 5,6, 7 . . . .  the fol lowing inequal i t ies  ho ld :  

h(n)  <_ b(n)  

b(n)  wl(n) <_ 
1 + b(n) 

b(n + 2) < b ( n ) .  
M o r e o v e r  we have  

(138) 

(139) 

(140) 

(141) 

rh 1 
rhD(n,  rh - 1) = 4(rfi + 1) z - 4(n - rh + 1) " (144) 

F o r  n = 5,7,9 . . . .  the integer n~ is equal  to  (n - 3)/2. In  this case Eqs.  (143) and  
(144) yield 

n + 3  1 
(n - rfi)D(n,~fi) = 2(n + 1) 2 - 2(---n + 1) 

n - 3  1 
rfiD(n, rh - 1) = 2(n - 1) 2 2(n + 5) (146) 

4 
(n - ~h)D(n, rh) = - 2(n + 1)2(n - I)  (147) 

4 n -  16 
rhD(n,  rfi - 1) = 2(n - 1)2(n + 5) (148) 

(n + 5) (n  - 1) 
b ( n ) =  ( n - 4 ) ( n +  1) 2 for n = 5 , 7  . . . .  (149) 

N o w  assume n = 6,8,10 . . . . .  Here  rh is equal  to (n - 2)/2 an d  (143) an d  (144) 
can  be eva lua ted  as follows 

n + 2  1 
(n - r~)D(n,r~) = 2(n + 1) 2 2n (150) 

n - 2  1 
rfiD(n, rh - 1) = ~ 2(n + 4) (151) 

1 
(n - rfi)D(n, rh) - 2n (n  + 1) ~- (152) 

(145) 

lim % (n) = lim h(n) = tim b(n) = O . 
n--~ oo n - - + ~  n ~ o o  

P r o o f :  

h(n) satisfies the inequal i ty  

n - - 1  (m- OD(n ,  m - 1)h(n) _< - ("~,l)D(n, rfi) (142) 

for n -- 5, 6 . . . . .  This is a consequence  of  (133) an d  (135). Inequa l i ty  (142) toge the r  

wi th  (136) shows  that  (138) ho lds  for n = 5,6 . . . . .  In  o rde r  to p rove  (137), we 

evalua te  the express ion on the r ight  side o f  (136) with the help of  (86). 

n - n ~  1 
(n - th)D(n ,  rh) = (n + 1) 2 4(rh + 1) (143) 
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2 n -  8 
rfiD(n, rfi) = 2n2( n + 4) (153) 

(n + 4)n 
b ( n ) =  2 ( n - 4 ) ( n +  1) 2 for n ' - 6 , 8  . . . . .  (154) 

In view of the fact that hi(1 + h) is a monotonically increasing function of h, 
it is clear that (139) is a consequence of (138). Since both for n = 5,7 .. . .  and 
n = 6,8 .... the nominator of b(n) is quadratic in n whereas the denominator 
is cubic in n, one can see immediately, that (141) holds. In order to prove (140) 
we look at the derivatives of the logarithms of the expressions on the right side 
of (137). In this way one can see that (140) holds for n = 5,7 .... if we have 

1 1 1 2 
n + 5  + - -  n - 1  n - 4  n + l  < 0 .  (155) 

Since n - 4 is smaller than n - 1 and n + I is smaller than n + 5, the right 
side of (155) is negative. Similarly for n = 6,8 .... inequality (140) is implied by 

1 1 1 2 
n + 4  + - -  " n n - 4  n +  1 < 0  (156) 

4.12. The Cartel Probability 

On the basis of the assumption that the solution of the model correctly describes 
the behavior of the oligopolists, it is interesting to ask the question, how often 
it will occur that the oligopolists use the cooperative possibilities of the cartel 
bargaining stage in order to collude in a significant way. As an answer to this 
not yet precise question we shall define a "cartel probability". 

As we know from 4.4, in the cartel bargaining stage the character of the behav- 
ior prescribed by the equilibrium points in the solution of the model crucially 
depends on the number k of non-participators. For  k > (n - I)/2 an equilibrium 
point in the solution may lead to cartel agreements, but these cartel agreements 
are inessential. The equilibrium payoffs in the cartel bargaining subgame are 
those, which would be obtained, if no cartels were possible. 

Contrary to this for k < (n - 1)/2, the cooperative possibilities of the cartel 
bargaining stage are used at the equilibrium points in the solution. The participators 
receive greater gross profits than they could get without cartel agreements. 
Moreover, since their joint gross profit is equal to the upper bound on the right 
side of (48), one can say that they make the best possible use of their opportunity 
to form cartels. 

In view of what has been said, it is convenient to introduce the following way 
of speaking. We say that a cartel arrangement is reached by an equilibrium point 
s of F in a cartel bargaining subgame Fz, if the equilibrium point s z induced by 
s on F z has the property that for each of the participators the equilibrium payoff 
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at s z is greater than the payoff 1/(1 + n) z, which is achieved at the unrestricted 
Cournot  equilibrium. If a cartel arrangement is reached by s in Yz, then the players 
in Z are called insiders and the players in N - Z are called outsiders with respect 
to the cartel arrangement. 

Obviously for all equilibrium points s in the solution a cartel arrangement is 
reached by s in Fz, if and only if the number k of non-participators is smaller than 
(n - 1)/2. The probability that k will be smaller than (n - 1)/2 if an equilibrium 
point s in the solution is played is the same one for all equilibrium points in the 
solution. This is trivially true for n = 1, where the case k < (n - 1)/2 cannot 
occur; for n = 2, 3 .... every equilibrium point in L(F) prescribes the same behav- 
ior in the participation decision stage, namely the selection of zi = 1 with 
probability w l(n); the probability that k will be smaller than (n - 1)/2 is uniquely 
determined by w l(n ). This suggests the following definition: The cartel probability 
is the probability that a cartel arrangement will be reached if an equilibrium point 
in L(F) is played. The symbol W(n) will be used for this cartel probability. 

As we have seen above, W(n) is the probability that k will be smaller than 
(n - 1)/2. Obviously we have 

W(1) = 0 (157) 

W(n) = 1 for n = 2,3,4. (158) 

For  n = 5, 6 .... the cartel probability can be computed as follows: 

W(n) = ~" W(n,k) (159) 
k=0 

where rfi is the uniquely determined integer satisfying (127) and where 

W(n,k) = (~) [1 - -  w l ( n ) ]  k [ w l ( n ) ]  n - k  (160) 

is the probability that there will be exactly k non-participators if the players 
choose to participate with probability wl(n). 

4.13. The Cartel Probability as a Function of the Number of Players 

Table 2 in subsection 5.1 shows the values of W(n) for 2,...,9. It is clear from this 
table that W(n) does not monotonically decrease as a function of n. A weaker 
statement about W(n) will be proved in the following. It will be shown, that 
W(n) is below a certain upper bound which goes to zero as n goes to infinity. 
With the help of this upper bound it can be seen, that W(n) is very small outside 
the table. A further property of D(n,m) is needed, in order to derive these results. 

Lemma 21: 
D(n, m) has the following property 

D(n,m + 1) < D(n,m) (161) 
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for n = 6,7 .. . .  and m = 0 .... ,rh - 2 where n] is the uniquely determined integer 

satisfying (127). 

Proof: 
In view of  (86) for m = 0 . . . . .  rh - 1 we have 

1 1 
D(n,m) = 4(m + 2) 2 - 4(n - m)(m + 1) " (162) 

In  order  to prove the l emma it is sufficient to show that  the following is true: 

8D(n,m_______~) < 0 for 0 _ m _ n~ - 1 (163) 
Om 

(162) yields 

OD(n,m) 1 n - 2m - 1 
O ~  = - 2(m + 2) 3 + 4(n - m )  2 (m + 1) 2 " (164) 

In  order  to find an upper  bound  for the right side of(164) we make  use o f  the fact 

that  m + 2 is not  greater than 2(m + 1) and that  n - 2m - 1 is smaller than 
n - m :  

aD(n,m) 1 1 
~-------~-~ < - 2(m + 2) 3 + 2(n - m)(m + 1)(m + 2) " (165) 

In view of  (162) this is equivalent to 

8D(n,m) 2 D(n,m) . (166) 
0-----~ ~ - - <  m + 2  

(88) shows that  D(n,m) is positive for m = 1 . . . . .  th - 1. 

Lemma 22: 
For  n = 5, 6 .. . .  the cartel probabi l i ty  W(n)has the following proper ty :  

W(n) < 1 + W(n, rfi) (167) 
- n - t h + l  

where th is the integer satisfying (127) and W(n,k) is defined by (160). 

Proof: 
As we have seen in the p roof  of  theorem 19 expression D in (128) is equal to 

zero for n = 5,6 . . . . .  since there wl(n) is positive and smaller than 1, which has 

the consequence that  bo th  z i = 0 and zi = 1 are best replies to w in P. If  one makes 
use of  

( n ~ n l )  = (ran) n - -  m + 1 (168) 
n 

the equat ion D = 0 can be written as follows 

W(n,m) n - m + 1 O(n,m) = 0 .  (169) 
m = O  ~1 
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It follows by (161) and (88) that for m = 1 ... . .  n] - I we have 

D(n,m) > D(n,n] - 1) > 0. (170) 
Define 

W ' =  W ( n ) -  W(n,n]) .  (171) 

In view of (170) Eq. (169) implies the following inequality 

w '  n - n] + I O ( n , n ]  - 1) <_ - W ( n , n ] )  n - n] O ( n , ~ n ) .  (172) 
n n 

With the help of (136) it can be seen that this is equivalent to 

n] 
W '  < b(n) W(n,n]) (173) 

- n - n ] +  1 

(167) is an immediate consequence of (173) and (171). 

L e m m a  23: 

For n = 5,6 .... the probability W(n,n]) has the following property: 

[b(n)] "-~ 
W(n,n]) < (~,) [1 + b(n)]" (174) 

where n] is the integer satisfying (127). 

Proof :  

For the sake of shortness we shall sometimes write wl and b instead of wl(n)  

and b(n) resp. Obviously we have 

(l"-+'b)" = \ ~ / /  \ 1 + b " (175) 

Therefore it is sufficient to show that the following is true: 

- b"-~ ( b ) ~. (176) 
w~- ' (1  - wl)  ~ < (1 + b) - - - - - - 7  1 1 +-----b- 

I n  order to prove this we show that the derivative 

0w]-~(1 - wl)~  = (n - n] - n w O w ] - ~ - l ( 1  - wl )  ~-~ (177) 
0w~ 

is non-negative in the interval 0 < Wl < b/(1 + b). This is true if we have 

b(n) n - n] 
< - -  (178)  

1 + b(n) - n 

Condition (178) is equivalent to 

n - - n ]  
b(n) <_ ~ (179) 

With the help of (137) we can compute 

b(5)  = 1.111 (180)  
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b(6) = .306 (181) 

b(7) = .375. (182) 

(180) shows that (179) holds for n = 5. Since (n - na)/n is always greater than 
1 and both b(6) and b(7) are already smaller than 1, it can be seen with the help 
of(140) that (179) is satisfied for n = 5,6,7 . . . . .  

Theorem 20: 
For n = 5,6 .. . .  define 

[ n a b ( n ) ]  [b(n)] " -~ (183) 
V(n)= 1 +  n - n a + l  (~') [1 +b(n)]" 

where na is the integer determined by (127) and b(n) is defined as in (137). The 
cartel probability W(n) satisfies the following inequality 

W(n) < V(n) for n = 5,6 . . . . .  (184) 
Moreover we have 

V ( n + 2 ) <  V(n) for n = 5 , 6 , . . .  (185) 
and 

lim W(n) = lim V(n) = 0. (186) 
n--~ oo /1.--~ oo 

Proof: 
(184) follows by lemma 22 and lemma 23. Since hi(1 + h) is a monotonically 

increasing function of h it follows by (140) that we have 

b(n + 2) b(n) 
< (187) 

1 + b ( n + 2 )  1 +b(n) 

for n = 5,6 . . . . .  In the same way as (176) has been proved in the proof of lemma 
24, one can see that (177) implies an inequality analoguous to (177), where Wl 
corresponds to b(n + 2)/(1 + b(n + 2)) and b corresponds to b(n). If one makes 
use of the relationship (175) this inequality can be written as follows: 

[b(n + 2)] "-~ [b(n)] "-~ (188) 
[1 + b ( n + 2 ) ]  m < [1 +b(n)]  m" 

This inequality will be used in order to prove (184). In order to do this we also 
have to use the following equation, which is a consequence of (137): 

( n + 3 ) ( n - 1 )  for n = 5 , 7 , . . .  
nab(n) (n - 4)(n + 1) 2 

= (189) 
n - n a + l  ( n + 2 ) n  for n = 6 , 8  . . . . .  

2 ( n - 4 ) ( n +  1) 2 

It can be seen easily that the derivatives of the logarithms of the expressions on 
the right side of (189) with respect to n are negative; therefore the first factor 
in (183) is decreased, if n is increased by 2. This together with (188) shows that 
the following is true: 

(,+z~ b(n + 2) ~ + 1 1  
V(n + 2) < (~------~ (1 + b(n + 2)) 2 V(n). (190) 
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Here it is important to notice that rh is always increased by 1 if n is increased by 2. 
Inequality (190) is equivalent to 

( n + 2 ) ( n +  1) b(n+2) 
V(n+2)< (rfi+ 1 ) ( n - l h +  1) [ l + b ( n + 2 ) ]  z V(n). (191) 

Since rh + 1 is not smaller than (n - 1)/2 and (n - rfi + 1) is not smaller than 
(n + 4)/2 we have 

( n + 2 ) ( n +  1) ( n +  1 ) ( n + 2 )  
( th+  1 ) ( n - r f i +  1) -<4 ( n -  1 ) ( n + 4 )  (192) 

(192) is equivalent to 

(n + 2)(n + 1) 28 
< 4 + (193) 

(rfi+ l ) ( n - t h + l )  ( n -  l ) ( n + 4 ) "  

Obviously the expression on the right side of (193) is a monotonically decreasing 
function of n. For  n = 5 this expression assumes the value 4.77778. 

This shows that the following is true for n = 5, 6 .... 

( n + 2 ) ( n +  1) 
_< 4.77778. (194) 

(r~ + 1)(n - .~ + 1) 

Since the derivative 

db ( l+b)  2 = (1 + b )  4 (195) 

is positive in the interval 0 < b < 1, we can conclude from 

b(7) 
(1 + b(7)) 2 = .19835 (196) 

and 

that in view of (140) we have 

b(8) 
(I + b(8)) z = .11238 (197) 

b(n + 2) 
[ 1  + b(n § 2)] 2 < .19835 (198) 

for n = 5,6 . . . . .  This together with (195) and (197) yields 

V(n + 2) < .94768 V(n) for n = 5,6,... (199) 

(186) is an immediate consequence of (199). 

Remark: 
Table 12 in subsection 5.1 contains the statement that for n = 10,11 .... the 

cartel probability W(n) is smaller than .0001.For n = 10,..., 15 the computation 
of W(n) from wl(n) shows that this is true. V(15) and V(16) are both smaller than 
.0000001. Therefore it follows by (184) and (185) that for n = 15,16 .... the cartel 
probability is below .0000001. 
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5. Interpretation of the Results 

It is the purpose of this section to discuss the intuitive significance of the results 
obtained in section 4 and to draw some heuristic conclusions with respect to 
possible generalizations to more complicated models. An informal description 
of the solution of the model is given, mainly for the benefit of those readers who 
are not interested in technical details. 

5.1. What Happens at the Solution of the Model 

Technically the solution of the model is a set of equilibrium points. Mainly 
in the cartel bargaining stage differences between the equilibrium points in the 
solution arise, but these differences are unimportant, since all the equilibrium 
points in the solution lead to the same equilibrium payoffs, not only in the game 
as a whole, but also in every subgame. 

In order to have an easy way of speaking about the behavior at the solution, 
a distinction between a cartel agreement and a cartel arrangement has been 
introduced in 4.12. Since the formation of cartels is costless, the solution does 
not exclude that economically ineffective cartel agreements are reached, where 
nothing can be gained by a cartel. Thus for example it may happen, that the 
participators agree to limit their supplies by very high quotas which do not restrict 
them in any significant way. In such cases we say that the cartel agreements do 
not constitute a cartel arrangement. We speak of a cartel arrangement, if the 
participators successfully use the possibilities of cartel formation in order to 
get a higher profit, than they would get, if cartels were not possible. 

Let us first look at the trivial case n = 1 which has the pecularity that the 
solution permits any behavior at the participation decision stage. This is due 
to the fact that here the participation decision stage is strategically irrelevant. 
As a participator at the cartel bargaining stage the monopolist should not fix 
a quota below his monopoly supply 1/2, but apart from that the solution permits 
anything. In the supply decision stage the monopolist supplies the quantity 1/2. 
His payoff is the monopoly gross profit 1/4. The monopolist never reaches a 
cartel arrangement, since he does not need any cartel agreements, in order to 
achieve his monopoly profit. 

For n = 2, 3 .... every equilibrium point in the solution prescribes the same 
behavior in the participation decision stage: each of the players decides to partic- 
ipate with the same probability wl(n). For n = 2 .... ,15 this participation prob- 
ability w~(n) is tabulated in Table 2. The participation probability w:(n) goes 
to 0 as n goes to infinity. 

In the cartel bargaining stage the behavior at the solution crucially depends 
on the number k of non-participants. Every equilibrium point in the solution 
has the property that a cartel arrangement is reached if and only if the number 
k of non-participators is smaller than (n - 1)/2. 
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Table 2. The solution up to n = 15 

num- num- gross gross gross partici- probabi- cartel expected 
ber her profit profit profit pation lity of proba- gross 
of of of an of an of a probabi- a cartel bility profit 

players out- insider outsider supplier lity arrange- of an 
siders in the merit with oligo- 

unrestricted k out- poli~ 
Cournot siders 

equilibrium 
1 1 1 

n k ~ n - ~ ( k + l )  4(k + ~ ~ wl(n) W(n,k) W(n) 

2 0 .1250 1.0000 
.1111 1.0000 1.0000 .1250 

3 0 .0833 1.0000 
.0625 1.0000 1.0000 .0833 

4 0 .0625 1.0000 
.0400 1.0000 1.0000 0.625 

5 0 .0500 .0404 

1 .0312 .0625 .0278 .5263 .1817 .2221 .0304 

6 0 .0417 .0000 
1 .0250 .0625 .0011 
2 .0208 .0278 .0118 

.0204 .1857 .0130 .0205 

7 0 .0357 .0000 
1 .0208 .0625 .0010 
2 .0167 .0278 .0093 

.0156 .2380 .0103 .0157 

8 0 .0312 .0000 
1 .0179 .0625 .0000 
2 .0139 .0278 .0000 
3 .0125 .0156 .0006 

.0123 .1067 .0006 .0124 

9 0 .0278 .0000 
1 .0156 .0625 .0000 
2 .0119 .0278 .0001 
3 .0104 .0156 .0008 

.0100 .1587 .0009 .0100 

For n = 10,11,... 
the cartel probability 
W(n) is smaller than .0001. 

number partici- 
of pation 

suppliers probability 
n wl(n) 

10 .0755 
11 .1203 
12 .0585 
13 .0971 
14 .0476 
15 .0822 
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In the case k >__ (n - 1)/2 it may simply happen that no cartel agreement is 
reached but the solution also permits the possibility that economically ineffective 
cartel agreements are reached. In the case k < (n - 1)/2 where a cartel arrangement 
occurs, the simplest way in which this may happen is the formation of one cartel 
where all the participators are members and have equal quotas, such that the 
quotas of all participators sum up to the joint quota of 1/2. The joint quota of 
1/2 maximizes the joint equilibrium payoff of the cartel in the supply decision 
subgame after the quota agreement. The solution also permits the possibility 
that the participators achieve the same quota system by splitting into several 
coalitions with separate cartel agreements. At least for some n this is possible. 

In the case k < (n - 1)/2 where a cartel arrangement is reached, the non- 
participators are also called outsiders and the participators are also called in- 
siders. For various n and k the equilibrium payoffs in the cartel bargaining sub- 
game at the solution, are given in Table 2 under the headings "gross profit of an 
insider" and "gross profit of an outsider". 

For a cartel bargaining subgame with k _ (n - 1)/2 the equilibrium payoffs 
at the solution are those of the unrestricted Cournot equilibrium. For n = 2 .. . . .  9 
these gross profits are also tabulated in Table 2. 

The solution exhibits a surprising change of behavior at n = 5. For n = 2, 
n = 3 and n = 4 each of the oligipolists decides to participate in the cartel bargain- 
ing and the outcome of the cartel bargaining is the maximization of the joint 
profit of all players. For n > 4 the joint profit maximization by all players fails 
to occur at the solution; the mixed strategy behavior in the participation decision 
stage only occasionally results in a cartel bargaining subgame, where all players 
are participators. The probability W(n,O) for this event is given in Table 2 under 
the heading "probability of a cartel arrangement with k outsiders". Already for 
n = 5 this probability is only .0404 and for n > 5 it is always smaller than .0001. 

5.2. Why 4 Are Few and 6 Are Many 

The probability that a cartel arrangement is reached, if an equilibrium point 
in the solution is played, is called cartel probability. This cartel probability 
W(n) is tabulated in Table 2. For n = 2,3,4 the cartel probability is equal to 1. 
One may say that with respect to the solution of the model up to n = 4 the number 
of oligopolists is small. For n > 5 the cartel probability is approximately 1 ~ or 
smaller, which means that an outside observer will only rarely observe a cartel 
arrangement. Economically for n > 5 the solution is not very different from the 
behavior which could be expected, if no cartel agreements were possible. This 
can be seen, if one compares the equilibrium payoff at the solution for the whole 
game with the equilibrium profit for the unrestricted COURNOT equilibrium. 
Both profits are tabulated in Table 2 under the headings "expected gross profit 
of an oligipolist" and "gross profit of a supplier at the unrestricted COUR~OT 
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equilibrium". For n > 5 the expected gross profit of an oligopolist at the solution 
is only slightly greater than the gross profit of a supplier at the unrestricted 
COURNOX equilibrium. 

The case n -- 5 may be considered an intermediate case, since here the cartel 
probability of approximately 22% is still quite substantial. Note that for n = 5 
most of the cartel arrangements are cartel arrangements with 4 insiders and 1 
outsider. 

Why is n = 5 the dividing line between the small group and the large group ? 
The main reason for this can be explained with the help of a heuristic argument. 
Assume that n is at least 3 and suppose that player j expects that each of the 
other players will decide to participate and that the joint profit of all players 
will be maximized and split evenly, if he decides to participate too. If he does 
not participate, he expects the others to form a cartel with a joint quota of 1/2 
in order to maximize the joint equilibrium payoff of the cartel in the supply decision 
stage. In the case of the joint profit maximization by all players his share of the 
joint gross profit of 1/4 is equal to 1/4n. If he does not participate, he becomes 
an outsider with respect to a cartel whose total supply is 1/2. His optimal supply 
will be 1/4, the price will be 1/4 and his gross profit will be 1/16. The basic fact 
is, that up to n = 4 the joint gross profit share of i / 4 n  is not smaller than the 
outsider gross profit of 1/16, whereas for n > 4 the outsider gross profit is greater 
than the joint gross profit share. This destroys the possibility of a joint profit 
maximization equilibrium for n > 4. 

5.3. The Strategic Situation in the Participation Decision Stage 

In order to understand the strategic situation in the participation decision 
stage, one must look at the game which has been introduced in 4.5 as the "parti- 
cipation decision brick". The participation decision brick results from the model, 
if one substitutes every cartel bargaining subgame by the payoff vector which 
is obtained in this subgame if the players behave in a way which is compatible 
with the solution. 

In 4.7 the pure strategy equilibrium points of the participation decision brick 
have been explored. For n = 1,.. . ,4 the participation decision brick has a "joint 
profit maximization equilibrium point", wher~ every player always decides to 
participate and a maximal joint profit for all players is reached. This pure strategy 
equilibrium point is not available for n > 4. There the only pure strategy equilib- 
rium point which treats the players symmetrically is the "unrestricted Cournot 
equilibrium point", where every player decides not to participate. 

For n > 4 the participation decision brick has "partial cartel equilibrium 
points" where for even n exactly (n - 2)/2 players and for odd n exactly (n - 3)/2 
players are non-participators. Here the non-participators have higher payoffs 
than the participators. The players are treated in an asymmetrical way. Therefore 
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the symmetry requirement underlying the solution concept of this paper excludes 
the partial cartel equilibrium points as possible candidates for a solution of the 
participation decision brick. Apart from the lack of symmetry the partial cartel 
equilibrium points are quite attractive. Thus for example in the case n = 5 and 
k = 1 an insider receives .0312 and the outsider receives .0625, whereas at the 
solution every player receives .0304 only (see Table 2). Nevertheless it is n o t  
implausible to expect that the players will fail to coordinate their expectations 
at a partial cartel equilibrium point, since nobody has more reason than anybody 
else to be satisfied with the less profitable role of an insider.. 

5.4. Possible Generalizations 

One may ask the question how much of the analysis depends on the linearity 
assumptions about cost and demand. Only a detailed investigation can show 
what happens if these assumptions are relaxed, but it is a plausible conjecture 
that apart from some special cases one will always find a more or less sharp dividing 
line between few and many beyond which the players fail to exhibit the typical 
small group behavior. Whether the dividing line will be at n = 5 or somewhere 
else, will depend on the cost and demand functions. 

The model is symmetric with respect to the players. It would be desirable 
to develop a theory for a more general model which admits some asymmetries 
like different cost functions for different players. For  this purpose one would 
need a more general solution concept. 
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