
Values of Mixed Games 1) 

By SERGIU HART 2) 

Abstract: AUMANN and SHAPLEY [1973] have investigated values of games in which all players are 
individually insignificant, i.e. form a non-atomic continuum, or "ocean". In this paper we treat games 
in which, in addition to such an ocean, there are also some "atoms",  i.e. players who are individually 
significant. We define spaces of such games that are analogous to those investigated by AUMAI, m 
and SHAPLEV, and prove the existence of  values on some of them. Unlike in the non-atomic case, we 
find that in general there are infinitely many values, corresponding to various ways in which the atoms 
can be imbedded in the ocean. The results generalize those of  MILI~OR and SrlAI'LEY [1961]. Precise 
statements will be found in Section 2. 

1. Preliminaries 

All the definitions and notations are as in At:MANN and SHAPLEY [1968]. 
Let (I,C~) be a measurable space (i.e., 1 is a set and r is a o'-field of subsets of 

I), which will be fixed throughout. We will assume (AUMANN and SHAPLEY [-1968], 
assumption (2.1)) that: 

(1.1) (I,~f) is isomorphic to ([0,1],~), where ~ is the <r-field of Borel sets on [0,1] 
(i.e., there is a one-one mapping from I onto [0,1] that is measurable in 
both directions). 

A set function will aiways be a real-valued function v on ~f'such that v(0) = 0. 
The members of I are players, the members of T are coalitions, and the set 

functions are games. 
A set function v is monotonic if S C T implies v(S) <_ v(T) for S,T  e ~. A set 

function is of bounded variation if it is the difference between two monotonic 
set functions. The space of all set functions of bounded variation is called B V. 
The subspace of B V consisting of all bounded, finitely additive set functions 
(i.e., the bounded, finitely additive signed measures on (I,T)) is denoted FA. 

Let Q be any subspace of B V The set of monotohic games in Q is denoted Q +. 
A mapping of Q into B V is positive if it maps Q+ into B V § 

Let J denote the group of automorphisms of (l, ff) (i.e., one-one mappings 
of I onto itself that are measurable in both directions). Each 0 ~ J induces a 

1) This paper is part of the author 's M. Sc. thesis which was carried out under the direction of 
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linear mapping 0, of B V onto itself, defined by (O,v) (S) = v(OS) for all S ~ c~. 
A subspace Q of B V is called symmetric if 0, Q = Q for all 0 ~ J. 

Let Q be a symmetric subspace of B V. A value on Q is a mapping ~ from Q 
into FA,  which satisfies: 

(1.2) �9 is linear 
(1.3) �9 is positive 
(1.4) ~0 ,  = 0 ,~  for all 0 ~ J  
(1.5) (q~v)(I) = v(I) for all v e Q. 

On B V we define a norm called the variation norm by Ilvtl = inf(u(I) + w(l)) 
for all v e B V, where the infimum ranges over all monotonic set functions u and 
w such that v = u - w. A chain 0 is a sequence of sets of the form: 

O = S o C S 1 C ' " C S , . = I '  

The variation of a set function v over a chain O is 

m 

II li  -- Y Iv(s,) - v(s ,_  1)i 
i = 1  

It can be proved (AuMANN and SHAPLEY [1968], Proposition 4.1) that 

Ilvll = sup II vll . ,  

where the supremum ranges over all chains O. 
The space of all real-valued functions f of bounded variation on [0,1] that 

obey f (0) = 0 and are continuous at 0 and 1 is denoted b v'. The subspace of 
by' consisting of all left-(right-) continuous functions will he called lc' (re'), and 
the subspaee of b v' consisting of all continuous functions will he denoted c. 

A carrier of a game v is a coalition I' such that v(S) = v(S c~ I') for all S e ~. 
A coalition S is null if its complement is a carrier, and a player s is null if {s) is 
null. If all the players are null, the game is non-atomic. The subspace ofB V consist- 
ing of all non-atomic measures (by "measure" we mean a completely additive, 
totally finite, signed scalar measure) is denoted NA.  The subspace of B V consist- 
ing of all measures with a finite carrier will be denoted FC. All measures in B V 
that can be represented as the sum of two measures, one non-atomic and the 

other with a finite carrier, form a subspace called F L  (i.e., F L  = N A  + FC). 
The closed subspace of B V spanned by the set functions of the form f o #, 

where f e b v '  and # e N A  + is a probability measure (i.e., # ( I ) =  1), is denoted 
bv 'NA .  In the same manner will be defined bv 'FL,  lc 'FL,  rc 'FL,  cFL :  the 
closed subspaces of B V spanned by the set functions f o co where f E b v' (or Ic', 
r c', c respectively) and co e F L + is a probability measure. The subspace of b v' N A 
spanned by all powers of measures in N A  + is denoted p N A ,  and the subspace 
of bv 'FL (in fact, of eFL)  spanned by all powers of measures in F L  + will be 
called p F B. 
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2. Statement of the Results 

In this paper, we will deal with spaces of mixed oames, i.e. spaces of set functions 
defined with the aid of measures that have a finite number of atoms and a non- 
atomic part (measures in F L). We will show that on each of the spaces b v 'F L, 

l c ' F L ,  r e ' F L ,  e F L ,  p F L ,  the number of values is infinite. 
The values will be defined as follows (see definition (2.2)): 
The value of the game v to an atom is equal to the "contribution" to v of the 

atom in a "random ordering" of all the players~ the value of the game to the 
"ocean" (i.e., the non-atomic part - see MILNOR and SHAPLEY [1961]) is the 
remainder after substracting the values to all the atoms from v(I) (remember 
the efficiency condition (1.5)), and is distributed proportionally to its measure 
(weight). 

What is a "random ordering" of all the players? Let p be a continuous prob- 
ability distribution on (0,1). Think of the ocean as being uniformly a) spread 
along (0,1 ). Place each atom at random in (0,1), in accordance with the distribution 
p; the placements are assumed independent. 

One can define a similar process for distributions p on (0,1) t h a t  are not 
necessarily continuous. The ocean is spread on (0,1) as before. As for the atoms, 
take n independent random variables T1,T 2 . . . .  ,T. ,  all identically distributed 
according to p, and arrange them in non-decreasing order: 

0 < T (x) <_ T (2) ~ ...  _< T (") < I .  

Choose an order on the atoms at random 4), and insert them in the ocean in the 
order chosen, at the points T (~), T (2), ..., T ("). 

We come now to the exact definitions. 
For  each positive integer i, let J~ be the set {1,2 . . . . .  i}, and let Jo = 0. 

Definition 2.1: 

Let f ~ by', let n be a positive integer, and let ~ be a measure on J .  with 
0 < ~U.) < 1. For  each i e J .  and for each t s (0,1) define: 

A(i , t ,~ , f )  = f [ t ( 1  - (J,)) + ~(Ji)] - f [ t ( 1  - ~(J,)) + ~(J ,_ , ) ] .  

Let v = f o co, where f e b v', r9 e F L  + is a probability measure decomposing into 
measures 2 in N A  + and ~ in F C  + (i.e., ~o = 2 + 0,  and let J .  be a finite carrier 
of 3. Then A (i, t, ~,f) is the "contribution" to v of the atom i, on the assumption 
that the atoms "enter" in the order 1,2 . . . .  , n, and the measure of the part of the 
ocean preceding i is the fraction t of its total measure coif\J,) (= 1 - ~ (J,)). 

Definition 2.2: 

Let v = f o co, where f e b v', o~ e F L  + is a probability measure, co = tt + v its 
decomposition, #~  N A  + and v e F C  +. Let N be a finite carrier of v, and n the 

3) i.e., the weight of an oceanic set is proportional to its measure in (0,1). 
4) Each order with probability 1 In! 
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number of its elements. L e t / 7  be the set of all one-one mappings of N onto J ,  
(there are n! such mappings). Let p be a probability measure on the Borel sets 
of (0,1), and let T1, T2 . . . .  , T, be n independent random variables, all identically 
distributed according to p. Let 0 < T ~1) _< T ~2) < ... _< T ~") < I be the order 
statistics 

(i.e., T ~1) = 'rain (T1, T2 .... , T,) .... , T ~n) = max (T1, T2 . . . . .  T,)), 

and 
T = (T ~1), T (2) .... , T(n)). 

Define a set function q)vv in F A  by: 

(~pv)({s}) = E (  l~_, ~ A(rcs, T'~S),vor~-~,f)~, for s e N  

(~pv)(S) = o~./~(S), for S C I \N  

where the expectation E is taken over the variable T, (see remark below), and 
= %(v) is independent of S, and is defined by: 

= ~ [ f ( 1 ) - ( ~ p v ) ( N ) ] / # ( I ) ,  if # ( ' ) >  0 ~p(V) 
(o  , if p ( I ) - - 0 .  

Remark: 
f is the difference of two monotonic real-valued functions (f~bv')  hence 

measurable. Thus, the expression in the brackets is measurable, and also bounded 
(e.g., by 2 sup If (t)]), therefore the expectation exists. 

t~[0,1] 
For each such probability measure p, the function ~p defined here is a "candi- 

date" for a value on the previously mentioned spaces ofmixed games. 
The value of MILNOR and SHAPLEY [1961] was obtained in the same manner, 

using the uniform distribution (for voting games, the contribution to v can be 
only 0 or 1, and the later if and only if the player is pivotal, i.e. he and his predeces- 
sors are a winning coalition, but his predecessors alone are a losing coalition). 

A probability measure is called continuous if the corresponding distribution 
function is continuous, i.e. the probability of any single point is zero. 

Now we are in position to state the theorems we are going to prove: 

Theorem A: 
Let p be a continuous probability measure on the Borel sets of (0,1). Then 

there is a value ~bon bv'FL,  such that q~v = q~pv for all v as in definition (3.2). 

Theorem B: 
Let p be a probability measure on the Borel sets of (0,1). Then there is a value 

4~ on l c 'FL (rc'FL) such that ~v  = ~pv for all v = f  o co as in definition (3.2), 

w h e r e f  e ic' (rc', respectively). 
From the trivial inclusions p F L  C c F L  C lc 'FL, it follows that each value ~b 

of Theorem B is a value also on the spaces p F L  and r 
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3. Thi~ Main  Lennna and its Proof 

We need the following definition: 

Definition 3.1: 
Let  v = f o 09, where  f e by' and o e F L  § is a probabi l i ty  measure ,  co = # + v 

its decompos i t ion ,  # e N A § and v e F C +. Let  N be a finite carrier  of  v, and n 

the n u m b e r  of  its elements.  Let  rc be a one-one m a p p i n g  of N on to  d,. 

Le t  z = (z l , z  2 . . . . .  z.), where 0 < z 1 <_ "c 2 ~_~ "'" "~ ~n "~ 1. Define a set function 
O~,~v in F A  by:  

(O~,~v)({s})= A(Tcs, z ~ s , v o ~ - l , f ) ,  for s e N  

(~,~v)(S) = ~ . # ( S ) ,  for S C I \ N  

where  ~ = ~,~(v) is independent  of  S, and is defined by:  

~[ f (1 ) - (~ ,~ ,~v ) (N)] /~ ( I ) ,  if ~t(l) > 0 
~ , z ( I ) )  

, if /~(I) -- 0 .  

Recall ing definit ion (2.2) of  4~p v, it is clear that :  

w h e r e / - / a n d  the r a n d o m  var iable  T are defined there. 

The  crucial poin t  in the p r o o f  of  the stated theorems  is the following main  
l emma:  

Main Lemma : 
n 

Let  v = ~,fk o Ok, where f l , f 2  . . . . .  f m s b v '  and col ,o2  . . . .  , e ) m e F U  are prob-  
k = l  

ability measures ,  decompos ing :  Ok = #k + Vk, #k ~ N A + and vk~ F C  + for all 

k(1 _< k <_ m). Let  N be a finite carr ier  of  all Vk (e.g., if Nk is a finite carr ier  of  vk, 
then N is the union of  all Nk), and n the n u m b e r  of  its elements.  Le t  ~ be  a one-one 

mapping  of  N onto J ,  and l e t z  = (z l , z  2 . . . .  , z . ) ,where0  < "L" 1 ~ 77 2 ~ . , .  ~_~ Zn < 1. 

We assume that :  

(3.2) for all k, fk is cont inuous  at the points :  

for all i(1 < i <_ n). 

Then:  Z O~,~(fk ~ Ok) <--Ilvll. 
k = l  

Proof  of  the Main  Lemma: 

F o r  each k,d/~,~(fkOOk)~FA , hence the sum is also a m e m b e r  of  F A .  De- 
compos ing  I into its a toms  and its non-a tomic  part ,  we get: 
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Since n is a one-one mapping of N onto J. ,  the first term of the sum is: 
n m j 

~=1 ~- -1A( i ' '~ i ' vk~  " ( * )  

Let , k 
~#k(S)/pk(I ), if #k(I) > 0 

fig(S) -~- [ 0  , if pk(I )  = 0 

for all S C I \N.  Then /~k is either a non-atomic probability measure on I \N,  
or is identically zero�9 The second term in the right side of (3.3) thus becomes: 

(", 

We will define new functionsfk(1 < k < m) on [0,1] by: 

~( t )  = f k [ t # k ( I  ) + Vkon- l (d ( t ) ) ]  -- ~. A(i, zi ,VkOn-l, fk)  (3.4) 
i~J(t) 

for t s [0,1 ], where J (t) = {i e J ,  [ z, < t}. 
It is clear that fk is a real-valued function of bounded variation on [0,1] since 

fk e bv', and the sum ~ A( i ) i s  a jump function). Furthermore, fk(0) = 0 and fk 
icY(t) 

is continuous at 0 and 1 (0 < z i < 1 for all i), hencefk e b v '  for all k. 
m 

o '"  o denotes the sum over all such k such Let w = ~,fk #k = Z fk lak, where ~ '  
k = l  k k 

that/2k(I ) > 0 (i.e., flk + 0), thus w ~ b v ' N A .  Let �9 denote the unique value on 
b v' N A (AUMANN and SHAPLEY [ 1968], Theorem A), then: 

= = d ( i , % v  k n-a,fk) ftk �9 �9 ( 1 )  - o �9 �9 w A Ef (1) A =  
k k = l  "= 

Recalling (*) and (**), we get from (3.3): 

~1~r (fk o O)k) = a(i, zi,VkO + l[ 4~wl[. (3.5) 
k k = l  

For each k, letfk + h k be its unique decomposition into an absolutely continuous 
function gk and a singular function h k (with respect to the Lebesgue measure - 

cf.AUMANNandSHAPLEV[1968],Chapter8).Letw~ = 9k o/~kandw2 = ~ hk o I~k, 
t h e n w = w ~  +w2.  k=~ k= 

Before we go on with the proof, we have to bring some results from AUMANN 
and SHAPLEY [1968]. 

Lemma I:  
Let v in p N A  be such that there exists # , f a n d  U as follows: # is a vector of 

non-atomic measures with range R, f is a real-valued function defined on R and 
continuously differentiable there, U is a convex neighborhood in R of the diagonal 
[0,/~(I)], and 

v (S) = f (/1 (S)) whenever /~ (S) e U. 
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Then, given e > 0, for any m large enough there is a set S + C I and a chain f2 
given by: 

O = So ( S1 ( "'" ( S2m -~- I 
such that: 

(a)/~(S2j) = -~- p(I). for 0 < j _< m, 

(b).(S2j+l)=-~.(z)+~,(s*), for O ~ j < _ _ m -  1, 

and (c)Ilvllo >-- II~vll - e  
where ~ denotes the unique value on p N A. 

Proof: 
This follows from the proof of Proposition 7.6 in AUMANN and SHAPLEY [1968]: 

the chain f2 satisfying (a) and (b) was obtained there, and (c) is implied by (7.8)- 
(7.1o). 

Lemma II: 

Let g 1, g2, ... ~ gz be singular functions in b v', let v 1, v2 . . . . .  vt be pairwise different 
probability measures in NA, and let u eA C. Then 

l l 

u + E o~ov~ ---I1~11 + Z IIg~ll. 
p = l  p = l  

Proof: 
This is exactly 

version. 
Proposition 8.17 in AUMANN and SHAPLEY 1"1968], revised 

Lemma I l i :  
l 

Let v = u + ~ gpOVp, where gl,g2,. . . ,gt are singular functions in by', 
p = l  

vl, v2, ..., vl are pairwise different probability measures in NA, and ueAC. 
Let A be the subchain $1 C S C $2, and let 5 > 0. 
Then there is a set St such that: 

(a) Sl C St C S2, 
(b) for all p (1 < p < l), gp is continuous at vp(St), and 

(c) IllulIA -Ilulla~l < 5, 
where At is the new subchain $1 ( St ( $2. 

Proof: 
The proof is exactly like the first part of the proof of Proposition 8.17 in AUMANN 

and SraAPLEY [1968], revised version. 
Let v 0 in NA be such that u ~ Vo, and let ~ = (Vo, vl .. . .  , vt). By Lyapunov's 

theorem applied to I = S~S1 we may, for each t in [0, 1], find a set St such that 
S 1 ( S t ( S C S 2, and : 
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r  = r e ( s t )  + (1 - t ) r  

Then as t ~ 0, we have v o(S~S,) ~ 0, and hence l u(S) - u(S~) i ~ 0. So if t is 
chosen sufficiently small, (c) is satisfied. 

On the other hand, the gp can have only denumerably many jumps; so by 
choosing t appropriately, we can see to it that (c) holds and that the gp have no 
jumps at vp(St). 

We return now to the proof of the Main Lemma. 

Lemma 3.6: 
Given e > 0, there is a chain O on I\N with the following properties: 

(i) Ilwtll. > I I~wl l l -  8, 
(ii) for each i(1 < i < n) there is a member S of the chain O such that #k(S) = 

Z~k(I) for all k(l < k < m). 

Proof: 
m 

For  each k,gk is absolutely continuous, hence w~ = ~ gko~k is in p N A  
k=t 

(AUMANN and SHAPLEY [1968], Theorem C). By definition of pNA,  there are 
21,22,. . . ,  2, probability non-atomic measures, nl, n2 . . . . .  n, positive integers, and 
at,  a2, ..., a, real numbers, such that" 

W1 ~ /3 - aq,~0 < T "  
q=l 

Without loss of generality, {/~k[/~k ~: 0} C {21,2z . . . . .  2,) (we can add them to 
the sum with coefficient zero). 

Let 2 = (21,22 . . . . .  2,) be the vector measure, and R its range (R C [0,1]').  
We define a real-valued function f on R by: 

f (X1 ,X2  . . . . .  Xr) = ~aqX"fl for (X1,Xz, . . . ,Xr) GR 
q=l 

then f is continuously differentiable on R, and 

I lwt-  f.,~ll <-4-. 

We make use now of Lemma I (for 2 instead of#,  and all R as the neighborhood 
U of the diagonal) to get for any m large enough a chain O: 0 = So C St C ... 
C S2m = I\N such that 

(a) 2($2j) = )---" �9 e for 0 _< j ___ m 
m 

(b) 2 ( S 2 i+ t ) =  J - j ' - ' e + - ' l  2(S+), for 0 _ < j < m -  1, and 
m m 

(e) liT ;~11. -> ]]~(f ~)11 4 '  
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where e = (1, 1 .. . . .  1) = 2(/~N), S + C I \ N  and �9 denotes the unique value on 

p N A  (hence I1 11 = 1). 
Let m be large enough so that the next two conditions will also be satisfied: 

(d) between any two different consecutive zi's there is a number of the form 

J ( l < j < m - 1 ) , a n d  
m 

1 la l..  < - .  
(e) - ~ .  1 4 

Then, for each z~ there is an integer j such that j--" < zi < j + 1, and no different 
m m 

z i satisfies this (follows from (d)). 

By (a), 2(Sz~) J e, 2(Szj+2) J + 1 . . . . . .  e, hence there is a set S* whose 
m m 

measure is 2(S*) = z i . e ,  and S=~ < S* C SEj+ 2 (this follows from the convexity 
of the range of 2 by Lyapunov's theorem [LYAPONOV, 1940,1, or directly from 
AUMAN>a and SHA~'LEY [1968,1, Lemma 5.4). Now we replace Szj + 1 in the chain 
f2 by S*. Doing this for each z~ (for equal z~'s only once) we get a new chain f2* 
o n / ~ N .  Clearly f2* satisfies (ii)" if/~k ~= 0, then ftk(S* ) = z~, or #k(S) = Z~. #k(I) 
(recall that/*k = )'q for some q), and the same is true for/~k = 0 (i.e., #k = 0). 

Replacing S2j+ 1 by S*, the change in the variation of f o 2 will be 

I l l f  ~ {s2j c s2j+l z s2j+,} - I [ f  ~ {s2a c s* c s~+2}l 

<-- 21(f~ 1) - ( f  o 2) (S*) l -- 2 q=fF.,aq[2nq'(S2j+__ 1) - ;t~q(S*)-I 

<_ 2 laq l .n , .  I),q(s2j+ 1) - ;tq(s*)[ -< 2 [ a q l . n q . - -  
q = l  q = l  m 

(because j = 2~($2j) ___ 2~($2~+ 1) -< 2q(S2j+ 2) - j +___~1 and the same holds for 
m m 

2q(S*)). The number of such changes from O to f2* is at most n, hence: 

Illf ~ - Ilf ~ all~.l - n. 2 q=l laql'nq "---m < --4 

(the last inequality is (e)). From (c) we get: 
g 

I[f ~ ;tlla* > ][~(f  ~ )')11 2 

and finally: 

Ilwlll'>-IIf~176 II (f~ - 4 

3e 
II- II wl - (fo )ll 4 

3g 
>--II wlll-II lI.Nwl-fo, ll >ll wlll- . 

Thus f2* satisfies also (i), and the lemma is proved. 
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L e m m a  3.7: 

Given e > 0, there is a chain 12 on I \ N  with the following properties: 
(i) Ilwl[o > Ilow[I- ~, 

(ii) for each i(1 < i < n) there is a member S of the chain 12 such that ttk(S ) = 

ri#k(I) for all k(1 _< k < m). (Note that (ii) is the same as (ii) in lemma (3.6)). 

Proo f :  

Let 12 be the chain obtained in lemma 3.6 for 2 ;  then 

IIwllJ,  > II wlll - T ( p r o p e r t y ( i ) ) .  

First, we assume that all non-zero measures gk are pairwise different. Then 

w = wl + Y;h~. i~ 
k 

satisfies all the assumptions of Lemma III. We apply it to each S in 12 such that 
some hk has a jump at iig(S), to get a new chain 12t (still on/~N),  such that 

[[wt I[,~ > II ~wt  [I - -~- (we took 6's small enough), (*) 

and hk is continuous at ilk(S) for all S in the chain 12t and for all k (with ik ~= 0). 
Now we make use of the assumption (3.2): the continuity o f f k  at the mentioned 

points implies the continuity of fk at zi (see definition of fk -- (3.4)), hence the 
continuity of h k at z~ (Ok is absolutely continuous, thus continuous, and h k = 

- 

The chain 12 satisfies (ii), i.e., for each z~ there is a member S of 12 such that 
ilk(S) = Zi if ik + 0. Therefore, all hk are continuous at ilk(S) for all such S, and 
from the construction of 12t it is clear that they will be also members of the new 
chain 12t (they need no replacement). Hence, 12t satisfies too (ii). 

Let 12t: 0 = SO C S 1 Q "'" Q S r = I \ N ,  let I j = Sj \S j_  1 and 

As in the mentioned proof, we define w j on (I s, cgs) by: 

wJ(s)  = w ( S  k2 S j _ l )  - w ( S j _ x )  

for S e ~J and in the same manner we define w~ ; the functions h~ are defined for 
t ~ [0, ik (IJ)] as follows: 

hSk(t) = hk(t + i k ( S j - 1 ) )  -- hk ( ik (Ss -1 ) ) .  

Obviously w s = w~ + ~ ' h j ' f i  k for all j and: ~, IIhs --IIh~ll for all k. 
k j = l  

Applying Lemma 1I to w j, and using the inequality [tull -> lu(Z)l, we get 

}]will _> Jwl(Sj) - w l ( S j _ l ) ]  + Z'llh~ll 
k 
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(this is possible because h~ is continuous at 0 and f-tk(IJ), which follows from the 
construction of f2,). Let faj be a chain on I j such that 

IlwJll~, - Iwl %)  - wl(Sj_ 1)1 + ~'llhs - 2j-~+ �9 (**) 

Let f2* be the chain (on I\N~ obtained by inserting between any two consecutive 
members of f2,, S~_ ~ and $i, all the coalitions of the form S j_ ,  u T where T 
ranges over f2j. Then, by definition of w j, if follows that: 

j = l  

hence we get by summing (**) over all i < j < r 

[Iw[[~.- [wx(Sj ) -  Wl(Sj-OI + ~ ' l l h s  --Ilwlll~, + Y~'llhkll 2"  
j=1 j = l  k k 

But llWzll = Z'llh~ll (Lemma Ill), and let ~ be the unique value on bv'NA 
k 

(whose restriction on pNA is the unique value there and flail = i - cf. AtrMANN 
and SHAPLEY [1968]), then we get (recall (*)) 

Ilwll~. > II~w, II- + IIw211 2 

>-II~w*ll + II~w211-~ >-II~(wl + w2)l l -~  - I I ~ w l l -  ~. 
Thus the chain f2* satisfies (i). Being a refinement of fat, it satisfies also (ii), 

and we proved the lemma in the case that all non-zero/~k are pairwise different. 
In the general case, we may group terms in w2 (e.g., if fil =/~z ~= 0, we will 

write (h I "t- h2)o]~ 1 instead of h, o/~ + h 2 o/~2) to get a new representation 

w = w  1 + ~ " h ~ ' o / 2  k 

where the /~k in ~ "  are pairwise different, and each h~' is the sum of some hk'S, 

hence also singular and continuous at all the points z~. Using the result in the 
previous case, we get the chain satisfying (i) and (ii) (both properties are independ- 
ent of the representation of w2), and the lemma is proved. 

We return now to the proof of the Main Lemma. 
Let f2 :0  = So C S~ C ..- C S, = I\N be the chain obtained in lemma 3.7 for 

a given e > 0. 
We will build a chain ~ on I in the following manner: for each i(1 < i < n), 

let j = j(i)(1 < j < r) be the index such that #t(S#,)) = ~i#k(1) for all k (such j 
exists because f2 satisfies (ii)). We will also denote j(0) = 0 and j(n + 1) = r. 
Let ~ be the chain 

0 =  UoC U1 C'" C U~+==I 

where 

Uo=Sq_~uz-~(d~) for j ( i ) + i < q < j ( i +  1 ) + ( i + l ) ( 0 < i < n ) .  
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The meaning of this definition is that to each S in D coming between Sj,) and 
Sr ) corresponds S u n - i U 3  in f~; if S = S~i~, then both S~r n- l (J i_ t )  
and Sj,) w n -  1 (J3 are members of f}. 

Therefore, the variation of v = ~ A o ~ over the chain D can be decomposed 
k = l  

into the variation over the links {S j( o w n-~(J~_ 1) C S~(~)u r~-l(j~)} (the links 
where the atoms are added) and the variation over the rest of the chain. The first 
one is: 

[fk (~k (S~(o) 
i=I i=i I k=l 

+ ~'~ ~ ~- ~ (J3) - fk(~k(Si.) + ~'~ ~ ~- ~ (J~- 3)] l" 

By definition ofj(i), ~tk(Si.)) = z~#k(I) for all k, hence we get 

i=1  k=l 

The second variation is then 

i " i = 0  q=,/(O+ 1 t k = l  i = 0  q=j( i )  + 

o ~ - ~ G ) )  - f ~ ( t ~ ( s ~ _ ~ )  + vk o ~-'(J~))]l" 
/ 

+ Yk 

When](i) + 1 <_ q <_ j(i + l), both ~k(So) and/lk(So-t) are between z~[ =/~k(S~{0)] 
and ri+~ [ =  /ik(S~r ~)], for all non-zero fla. Recalling the definition ofj~ (3.4), the 
expression in the brackets [ ] is exactly 

[f~ (~ G)) - A (N (s~ =,))] 
(because the sum ~ d (i) to be subtracted is the same). For/)k = 0, hence #~ = 0, 
we get zero, hence finally 

~, Z '(fk" ~ #.g)" (S~) - E'(f~ ~ ~ ~k)(S,-~) = tw(Sq) - w(Sq_ ~)I 
i=Oq=j ( i )+  I k q = l  

- l lwl l .  > Ifcwll-  

(the last inequality holds because t? satisfies (i) in lemma 3.7). 
Adding the two variations we get from (3.5): 

i=1  k k = l  

But IlvH >_ tlvlI~ hence: 

(both sides are independent of e), and the main lemma is proved. 
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4. Proof of the Theorems 

Before proving the theorems, we need the following: 

Lemma 4.1 (R. J. AUMANN)5): 
Let 21,22 . . . . .  2., be measures on (I, cg). Let X 1, X2 .. . . .  X., be real-valued random 

variables on the space (J, 9). 

Then ,-'~-lXk �9 2k is a random variable (on (J,9)),  and 

Iil __  " 2 , 

Proof: 
Without loss of generality, let (I,~) be ([O,1],N) (assumption 1.i). Let ~ be 

Fm m +  1 ]  
the family of all unions of dyadic intervals (i,e., intervals of the form [_-~-, ~ j  

for positive integers m and k). 5 e is countable, and it is well known that for any 
measure 0 on (I,C~), every measurable set in I can be approximated in 0-measure 
by a member of 5 a. 

Let 2 = ~ X k ' 2  k. For each t e J ,  2(0 = ~ Xk( t ) ' 2  k is a measure on (I, ff). 
k = l  k = l  

By the Hahn decomposition, there is a set S = S (t) in ff such that 

112(t)ll--12(t)(s)l § 12(t)( s)l 
(cf. AUMANN and SHAPLEY [ 1968], proof o~f Proposition 7.6). Since we can approxi- 
mate S(t) in 2(0 - measure by members of 6e, it follows that: 

112(t) ll = sup (12(t)(s)l + (*) 
8eor 

(the opposite inequality is always true: for each S e 5a let A be the chain 0 C S C 1, 
then : 

II 2(t)ll >__ II 2(t)llA --12(t)(s)-  2(t)(O)l +12 (0 (1 ) -  2(t)(S) I = 12(t)(s)l + 12(t)(r~s)l 
because 2(0 is a measure, hence additive). For  each fixed S, 

2(S) = ~ Xk. 2~(S) 
k=l  

is a linear combination of random variables, hence measurable. Thus 12(s)l + 
12(/\s)[ is measurable for each S in b ~ Since the supremum of a denumerable 
number of measurable functions is measurable, if follows from (*) that 11211 is 
measurable, i.e. a random variable (on (J, 9)). 

Next, let ~ --- ~ E (Xk)" 2 k. Then ~ is a measure on (I,cg), and let (S, I\S) be 
k = l  

the corresponding Hahn decomposition. We get: 

s) Private communication. 
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[[r = [~(s)j + ]~(/\s)[ = rE(X(S))I + !E(X(I\S))i <_ E([X(S)i + ]X(S\S)h _< ~H~il 

as was to be proved. 

Proof of  Theorem A: 

Let v = ~ fk ~ COk be as in the main lemma. Then 
k = l  

Z ~ . (Ao  = ~ . (Ao  ~)({s}) + ~;(Ao . 
k k = l  k = l  

The first term is 

F, 7 0.,~(Ao co~)({s}) < 
s e n  - -  Yl! reelI s k = l  

The second term is 

~k l'l" rc~I'I k =  l 

(by lemma 4.1). Adding the above two inequalities, and recalling(3.3),we obtain 

k~_l~V(fk~ <__ E .-s 2 O.,r(fkoCOk) . (4.2) 
~ / ' / '  ~e//  k = l  

For each k(l < k < m),fk is the difference of two monotonic functions, hence 
the number of its discontinuities is countable. Since p was assumed to be a con- 
tinuous probability measure, the probability that at least one of the 2n points 
T ( i ) p k ( I  ) q-  v k e 7 z - l ( J i )  and T ( i ) p k ( I  ) q-  Y k o g - ' ( J i - 1 )  (1 ~ i _____ r/) is a disconti- 
nuity point of fk (i.e., (3.2) is not satisfied) is zero. Furthermore, let Mk be such 
that Ilk(t)[ _< Mk for all t e [0, 1]. Then, by (3.5) 

I/S,~,~(fkoCOk) _< ~ Z 2"Mk+ ~(2n+ 1).Mk=(4n+ 1)~ Mk. 
k = l  " i = i k = l  k = l  k = l  

Hence, the expectation in (4.2) over all values z of T such that condition (3.2) 
is not satisfied is zero (a bounded variable over a zero-probability set). Using the 
main lemma for all other values z of T, we get finally 

m 

o I l v l l .  (4.3) 

Let A be the subspace of bv 'FL consisting of all set functions v of the form 

V = ~ fk o (.Ok, where f l , f2  .. . . .  fro~ and w1,w 2 . . . .  ,w k e F L  + are probability 
k = l  

measures. We define q~ on A by: 
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) k=l k=l 
It follows from (4.3) that @ is well defined on A (i.e., for any representation of v, 
@v is the same), and [I @11 ~ I. By definition, A is a dense linear subspace of 
b v ' F L ;  @ is a linear continuous operator from A into F A ,  which is complete 
(cf. AUMANN and SHAPLEY [1968], Propositions 4.3 and 4.4). Hence @ can be uni- 
quely extended to a continuous linear operator from b v' F L into F A, (we denote 
it also @), such that I1@11 _< 1 (in fact, ll ll = 1 because the restriction of �9 over 
p N A  is the unique value there). 

We will show that @ is indeed a value on b v ' F L ,  qb is linear by definition, hence 
(1.2) holds. For all v of the form v = f o o~(f  ~ by', o~ ~ F L + a probability measure), 
(@v)(I) = (@pv)(I) = f(1) = v(I). Hence, (@v)(/) - v(I) is a continuous linear 
functional that vanishes on a spanning set of b v' F L, and is therefore identically 
zero; this proves (1.5). Let 0 be an automorphism in J ,  then it is easy to verify 
that ~O,v  = O,@v for all v = f o o~, hence for all v ~ bv 'FL(@O,  - 0,@ is con- 
tinuous and linear, and vanishes on a spanning subset); thus (1.4) holds. From 
(1.5) and II ll -< 1 follows the positivity (1.3)(cf. AUMANN and SHAPLEY [1968], 
Proposition 4.6). �9 satisfies (1.2)-(1.5), hence is a value on b v ' F L ,  as was to be 
proved. 

Proo f  o f  Theorem B: 

The proof of Theorem B is exactly the same as the proof of Theorem A, taking 
lc' (rc', respectively) instead of by'. The only thing to prove here is inequality 
(4.3) for all p (not necessarily continuous). 

Let v = ~ fk ~ e~k, wherefl,f2 . . . . .  fm ~ lc', and ah,e~2 . . . .  , (o m ~ F L + probability 
k=l 

measures. For each z satisfying (3.2), the inequality 

holds by the main lemma. We will prove that it holds for all z. 
The number of discontinuities of each fk being countable, for each z and ~ > 0 

there is z' = (~'1,~ . . . . .  z'.) (0 < ~'1 < z~ -< "'" < z'. < 1) such that: 
(i) z' satisfies (3.2) 

(ii) z'i -< zi for all i(1 _< i _< n) g 

and 
7~-I ]fk[Zittk(I) + Vk~ (Ji-1)] --fk[Z'ittk(I) + Vk~ n- i ( J i - , ) ] l  < 4n-"--~ 

for all i (1 _< i < n) and k (1 < k < m) ((iii) holds because each fk is left continuous). 
From (3.5), we get: 

[ ~  ('Ok) ~l~,z ' ( fk  Ill __~iml2 ~ ~ ~ . , d A  o - oo~0 < E "4-7-~m + 2 . -  = ~  
k=l k i= k= t= l  4 n m  " 
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Applying the main lemma to z' (by (i)), it follows: 

The inequality holds for all e > 0, hence (4.4) also h o l d s - f o r  all values ~ of T. 
Summing over rr e / / a n d  taking expectation, it follows from (4.2) that 

" Ii ~=Z 4)~(A o,o~)-< II~[I 

i.e. (4.3) is proved, and we continue as in the proof on Theorem A. In case of 
rc'FL, only condition (ii) needs changing to: z'~ > zi for all i(1 < i < n). 

5. Discussion 

It is obvious that the values we have defined are different. Let P l and P2 be 
different probability measures (we will assume them also continuous such that 
4)p, and 4)p: will be values on bv'FL), then by definition of the Borel a-field of 
(0, 1) (on which Pl and P2 are defined), there are 0 _< a < fl < 1 with p1((a, fl]) :~ 
P2 ((a, fl]). Let f e b  v' be: 

fl 0 0 < t <  
1 + (fl - ~) 

f ( t )  = fl 
1 < t < l ;  

1 + (fl - ~) 

1 
let # ~ N A  + with #(I) - 1 + (fl - a) '  and let v ~ F C  + with carrier N = {1} and 

f l - ~  v ( N ) -  l + ( f l - a ) "  Then b = f o ( # + v ) ~ b v ' F L .  It is easy to verify that 

A (i, z, v,f)  is 1 for ~ ~ (a, fl] and 0 otherwise, hence: 

(4)~, v)({ 1 }) = p~ ((~, fl]) + p2 ((~, fl]) = (4)p2 v)({ 1}) .  

Thus 4)pl v :~ 4)p~ v and 4)p, ~: 4)p:. 
Therefore, there is no unique value on the spaces of mixed games, whereas 

this is the case on the spaces of non-atomic games (cf. AUMANN and SHAPLEY 
[1968]) and games with finite carriers (i.e., "finite games" - cf. SHAPLEY [1953]). 
Furthermore, the number of values is uncountable. 

This suggests that an improvement in the definition of the axiomatic value is 
needed, such that only the value corresponding to the uniform distribution will 
be a value (cf. SHAPLEY and SHAPIRO [1960] and MILNOR and SHAPLEY [1961]; 
this is the limit of the values of games where the "ocean" was divided into a large 
number of "minor" players with measures tending to zero). 

We will remark that each value 4) defined here restricted to bv 'NA is identical 
with the unique value there, and the same is true for the space F I N  of all finite 
games (obviously F I N  C bv'F L). 
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A problem that is still open is whether Theorem A remains true for non- 
continuous probability measures p (i.e., whether ~p defines a value on bv'FL or 
not). 
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