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Abstract: In this paper, we consider the stochastic games of NHAPLEY and prove under certain conditions 
the stochastic game has a value and both players have optimal strategies. We also prove a similar 
result for noncooperative stochastic games. 

1. Introduction 

A stochastic game is determined by the following objects: S, A(s), B(s), q, r. 
Here, S is a nonempty Borel subset of a Polish space, the set of states of the system; 

A(s) is a nonempty  Borel subset of a Polish space, the set of actions available 

to player I at state s; B(s) is a nonempty Borel subset of a Polish space, the set 

of actions available to player II at state s. We shall assume throughout that 
A (s) c A and B (s) ___ B for every s e S where A and B are PQlish spaces, q associates 
Borel measurably with each triple (s,a,b)~ S x A x B a probability measure 

on the Borel subsets of S; r, the reward function, is a bounded measurable function 
on S x A x B. Periodically (say, once a day) players I and II  observe the current 

state s of the system and choose actions a(s)e A(s) and b(s)eB(s)  respectively; 
the choice of the actions is made with full knowledge of the history of the system 
as it has evolved to the present. As a consequence of the actions chosen by the 
players, two things happen: player II pays player I r(s,a(s),b(s)) units of money, 

and the system moves to a new state s' according to the distribution q (./s, a (s), b (s)). 
(In the noncooperative stochastic game there will be two bounded measurable 

functions rt and rz defined on S x A x B in which case players I and II will 

receive rt (s, a(s),b (s)) and r2 (s, a(s),b (s)) units of money.) Then the whole process 
is repeated from the new state s'. The problem, then, is to maximize player I's 
expected income as the game proceeds over the infinite future and to minimize 
player II 's  expected loss. (In the noncooperative case both will try to maximize 
their expected pay-offs.) 

We shall assume unless otherwise stated S, A and B to be compact  metric. 
Let PA and PB denote the space of all probability distributions on A and B 
respectively. It is well-known that PA and PB are compact  and metrizable in the 
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weak topology. We shall also assume A(s) c_ A, B(s) __c B to be non-empty and 
compact for each s ~ S. We, further, suppose the following point to set mappings 
F and G are continuous: 

F : s ~ Pa(s) 

G : s ~ PB(s). 

In other words, {s: F(s) n K ~ 0} and {s: F(s) c_ K} are open in S whenever K 
is open in PA" 

A strategy H for player I is a sequence (H~,iIz, . . . )  where / / ,  specifies the action 
to be chosen by player I on the n th day by associating Borel measurably with 
each history h = (Sl, al (s 1), bl (sO . . . . .  s,_ 1, a,_ 1 (s, _ 1), b,_ 1 (s,_ 1),s,) of the system 
a probability distribution H,(./h)~PA(s,). A strategy H is said to be stationary 
if there is a Borel map f from S to PA such that f (s)s Pa(~) and H,  = f for each 
n > 1: and in this case H is denoted by fro. Similarly strategies and stationary 
strategies are defined for II. 

Let fl be any fixed number satisfying 0 _< fl < 1. A pair (H,F) of strategies 
for players I and II associates with each initial state s an nih-day expected gain 
r. (H, F)(s) for player I and a total expected discounted gain for player I. 

I (H, F) (s) = ~ fl"-i  r, (H, F) (s). 

Positive stochastic games are those where r(s,a,b) > 0 and fl = 1. (In the non- 
cooperative case we will have a pair of total discounted expected reward functions 
corresponding to the two functions rl and r2. In this case we will write 11 (H,F)(s) 
and I2 (H, F)(s).) 

A strategy H* is optimal for player I if infsupI(lI,F)(s)<_ I(H*,F)(s) for 
F //  

every F and s ~S: a strategy [-* is optimal for player II if sup inf l(H,F)(s) >_ 
H F 

I(H,F*)(s) for every H and s ~ S. We shall say that the stochastic game has a 
value if sup inf I (H, F) (s) = inf sup I (/-/,F) (s) for every s ~ S. In case the stochastic 

H F F H 

game has a value, the quantity sup infI(II ,  F)(s) as a function on S, is called the 
17 F 

value function. (In the noncooperative case, call (H*,F*) an equilibrium pair if 

Ia(FI*,F*)(s) > Iz(FI, F*)(s)V H and s 
and 

Iz(H*,F*)(s) > Iz(H*,F)(s) V F and s. 

The stochastic game problem was first formulated by SHAPLEY [1953] who 
took S, A, and B to be finite, assumed that play would terminate in a finite number 
of states with probability one, and considered only what we have called stationary 
strategies. Incidentally, the restriction that play should terminate in a finite 
number of stages is to keep the total expected gain for player I finite; we have 
bypassed this difficulty by introducing a discount factor. GILLETTE [1957] and 
HOFFMAN and KARP [1966] have investigated the non-terminating case of a 
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stochastic game by taking the average gain of player I per play as the pay-off. 

TAKm-IASHI [1962] considered the case when S is finite but A and B are inifinite 

and A(s) =- A, B(s) =-- B. In MAITRA and PARTIaASaRATHY [1970] this problem 
was solved under suitable assumptions when S, A (s) ---- A, B (s) = B are compact  
metric spaces. ROGERS [1969] and SOBEL [1969] were the first to consider non- 
cooperative stochastic games and showed the existence of equilibrium strategies 
when S, A and B are finite. The main purpose of this paper is to get extensions 
of the known results in discounted and noncooperative stochastic games. 

Section 2 is somewhat  expository in nature where we prove a known selection 

theorem. In section 3 we prove two theorems on discounted stochastic games 

while in section 4 a theorem, perhaps known, is proved for positive stochastic 
games. Section 5 is concerned with noncooperative (discounted) stochastic 
games. The last section contains a few remarks and an open problem. 

2. Selection Theorem 

In order to state the selection theorem, we need some preliminaries. Let Y 
denote a compact  metric space and 2 r denote the collection of nonempty closed 
subsets of Y. We introduce a metric d on 2 Y - the Hausdorff  metric - as follows. 
For  any E, F ~ 2 Y, 

d(E,F) = max {sup d'(x,F), sup d'(y,E)} 
xEE y~F 

where d' is the metric on Y and d'(x,G) = infd'(x,x') for G c_ Y. It is well known 
x '  GG 

that (2r, d) is compact  metric - for a proof  see KURATOWSKI [1966]. 

Definition: 
Let X be a complete separable metric space. A map D : X ~ 2 r is called upper 

semicontinuous in the sense of KURATOWSKI if X., X G X, y, G D(Xn). x,  ~ x, 
y, ~ y as n ~ 0o implies y ~ D (x). 

Remark 2.1 : 
One can easily prove the following fact: Let D(x) be a nonempty subset of 

Y, x e X. Then {(x,y) : y E D(x)} is closed if and only if D(x) is closed for every 
x and D : X ~ 2 r is upper semicontinuous. Next we state a lemma and prove it. 

Lemma2.1: HINDERER [1970] : 
We make the following assumptions. 

(i) Yis compact  metric. 
(ii) X is a complete separable metric space. 

(iii) O(x) is a nonempty subset of Y for x e X, such that K = {(x,y):y cO(x)} 
is closed, that is, D : X --* Y is upper semicontinuous. 

(iv) w : K ~ R (=  set of all real numbers) is upper semicontinuous, that is, a,, 
a G K and a, ~ a =~ lira sup w (a,) _< w (a). 
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Let W(x) = {y :w(x ,y )=  sup w(x,y')}. Then W:X--*  2 Y is measurable  (that 
y'~D(x) 

is, {x: W(x) c~ G + 0} is Borel in X for every G ~ 2r). 

Proof: 
Let t(x) = sup w(x,y). It is not  hard  to check that  t is upper  semicont inuous.  

Let y~Dcx) 
T : { ( x , r ) : t ( x )  >_ I'} 

where r s R. Obvious ly  T is nonempty .  In part icular,  (x,t(x))e T, for every x ~ X. 

T is also closed. In fact, consider a sequence of points  (x,, r.) s T converging to 
(x, r). Then there are points  y ,  e D (x,) such that  w(x.,y,) > r,. Since Y is compact ,  
there exists a subsequence {y,~} converging to some y E Y Then (x,~, y,~) ~ (x, y) ~ K 
since K is closed. It follows that  r = lira r, < l im sup w(x,~,y,~) < w(x,y), hence 

(x,r) e r. 
Define the m a p  I~:  T ~ 2 r, by means  of I~ (x, r) = {y : y e D (x) and  w (x, y) > r}. 

Obvious ly  l~ is always n o n e m p t y  and closed, since w is upper  semicontinuous.  
N o w  we shall show that  I~ is upper  semicontinuous.  Let  (x,,r,), (x,r)e T; 
y, e # (x , , r , )  and  ( x , , r , ) ~  (x,r) and y , - - ,  y. We have to show y belongs to 

W(x,r). We have r = l i m r ,  _< l imsupw(x , , y , )  <_ w(x,y), hence y~  I~(x,r). It 

follows that  I~ is measurable .  The set T is closed, hence measurable  extension 
of I~ (which we cont inue to denote  by I~) f rom T to X x R. The  m a p  t : X --~ R 
is upper  semicont inuous,  hence measurable .  It follows that  the m a p  x ~ (x,t(x)) 
f rom X to X x R is measurable ,  hence also x ~ I~ (x~, t(x)) = W (x) is measurable .  

The p roo f  of  the l e m m a  is complete.  
N o w  we are ready to prove  the following selection theorem (see pp. 1 1 3 - 1 1 5  

in HINDERER [1970]). 

Theorem 2,1 : 
Under  the assumpt ions  of  l emma  2.1 there exists a measurab le  m a p f  : X ~ Y 

such that  
f ( x )  e D ( x ) ,  x ~ X  and 

w(x , f  (x)) = sup w(x,y) ,  x e X .  
y~D(x) 

Proof: 
It is wel l -known that  there exists a sequence of (v.) cont inuous  m a p s  v, : Y--. R 

"which separa te  points  in Y; that  is, for any pair  y, y'  ~ Y there exists some n such 
that  v. (y) + v, (y'). Fo r  every n, let us derive a m a p  V, : 2 r ~ 2 r by V, (K) = y : y ~ K, 
v,(y) = sup v,(y'). MAITRA [1968] has shown that  V, is measurable .  Let  W be 
as in l emma  2.1. Define Fo = W, F .  = V, oF._I  for every n. It follows f rom 
l emma  2.1 that  F ,  : X ~ 2 r is measurable .  For  any x the sequence of set F,(x) 

is decreasing, since V,(K) C K. Since Y is compact ,  the set F(x) = ~ F,(x) is 
n=l  

not  empty.  Fix x ~ X and consider two points  y, y '~ F(x), hence y, y ~ F,(x) for 
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every n. Hence v,(y) = max v,(z) = v,(y') for all n. Since the sequence {v,,} is 
zeFn- 1 

separating points, we have y = y', that is, F(x) is a singleton, say F(x) = { f  (x)}. 

Moreover,  we h a v e f  (x) e Fo (x) = W (x), consequent lyf  (x) e D (x) and w (x, f  (x)) = 
max w(x,y'),x e X. 

y'eD(x) 

It is well-known that for any x e X the sequence of sets F,(x), being a decreasing 
sequence of closed sets converges in the metric 2 r to F (x), The limit of a convergent 

sequence of measurable maps into a metric space is a measurable map. Hence 
F : X --+ 2 r is measurable. For any closed subset B of Y we have {x : f (x)  e B} = 

{x:F(x)  e {B}}, and the latter is a Borel set in X, since F is measurable and since 

the singleton {B} is a Borel set in the metric space 2 r. The a-algebra of Borel 

sets in Y is generated by the system of closed subsets. It follows that f : X ~ Y 
is measurable and the proof  is complete. 

We will close this section with the statement of one more selection theorem 
due to OLECH [1965] which we need in the sequel. 

Theorem 2.2: 
Let X be a Borel subset of a Polish space and let Y be a compact  subset of 

R" (=  n dimensional Euclidean space). Let w : X x Y ~  R 1. Suppose w satisfies 
that (i) w (x, y) is Borel measurable in x for each y e Y and (ii) w (x, y) is continuous 
in y for each x e X. Let D : X --~ 2 r be a measurable map. Then there is a measur- 

able function f from X ~ Y such that f ( x ) e D ( x )  and w ( x , f ( x ) ) =  sup w(x,y). 
For  a proof  of this theorem refer to OLECH [1965]. ~o(x) 

3. Discounted Stochastic Games 

In this section we shall prove two theorems on discounted stochastic games. 
We need the following lemma. 

Lemma 3.1 : 
Let X and Y be two topological spaces. Let 0 : X ~ R be continuous. Let F 

be a compact  valued function from X to Y, that is, for each x, F (x) ~ Y and compact.  
Suppose F is continuous, that is, {x:F(x)  c~ G Jf 0} and {x:F(x)  n G} are 
open in X whenever G is open. Then the numerical function M defined by 

is continuous. M(x) -- max {0(x,y) : y e F(x)} 

Proof: 
Suppose that Xo e X and let Yo be such that 

Yo eF(xo);O(xo,Yo) >_ M(xo) - ~. 

There exist neighborhoods U(xo) and V(yo) such that 

(x,y) e U(xo) • V(yo) = O(x,y) >_ O(xo,Yo) - e _> M(xo) - 2e 

and there exists a neighborhood U' (Xo) such that 

x e U ' (xo )  ~ r ( x )  • V(yo) + 0. 
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Therefore x~U(xo) n U'(xo)~M(x)>>_ M(xo)-  2e and hence M is tower 
semicontinuous. We will complete the proof  by showing that M is also upper 

semicontinuous. Suppose that xosX;  to each y in F(xo) there correspond 
neighborhoods Uy(xo) and V(y) such that 

(x ,z)  ~ u~(xo) x V(y)  ~ O(x,z) <_ O(xo,y) + ~ �9 

Since F(x) is compact,  it can be covered by a finite number of neighborhoods 

of the form V(y), say V(yl), V(y2),...,V(yn). Putting U'(xo)= ~ Uy,(xo) and 
n i = 1  

V (F Xo) = U V (Yi), we have 
i = 1  i = 1  

xe  U'(xo),y~ V(Fxo)~O(x,y) <_ maxO(xo,Yi) + e < M(xo) + e. 
i 

Moreover there exists a neighborhood U(xo) such that 

x ~ U(xo) ~ F(x )  ~ v ( r (Xo) )  

and so x E U (Xo)c~ U' (Xo)~ M(x) = max O(x,y) <_ M(xo) + e which shows m 
yEFx 

is also upper semicontinuous and this terminates the proof. 

Theorem 3.1: 
Let S, A, B be compact metric spaces. Let A (s) _r A and B (s) _r B be compact  

every ~ S. Let r be a continuous real-valued function on S • A • B. Suppose, 

whenever (s.,a.,b,)~ (so,ao,bo) in S x A • B, q(./s,,a,,b,) converges weakly 
to q(./so,ao,bo). Moreover assume that the following set valued functions 

F : S ~ 2  PA defined by F(s)=PA~) 
and 

G : S ~ 2  PA defined by G(s)=PB(s) 

are continuous, where PA stand for the set of all probability distributions on A 

etc. Then, the stochastic game has a value, the value function is continuous, 
and players I and II  have optimal stationary strategies. 

Remark 3.1 : 
This theorem is a variant of theorem 4.1 in [MAn'RA et al. 1970] where we 

assumed A (s) - A and B (s) ~ B for every s s S, as can be seen from the following 

remark:  

Remark 3.2." 
A referee points out that it is enough to define the function r only for se  S. 

a ~ A (s) and b ~ B(s). We can always extend r to S x A x B as follows: 

I r(s,a,b) if a~A(s), b~B(s) 
r(s,f(s),b) if a+A(s), b~B(s) 

r(s,a,b) = r(s,a,g(s)) if a~A(s), b~:B(s) 

~(s,f(s),g(s)) if a~:A(s), b~:B(s) 
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where f and 9 are Borel functions with f (s)e A (s) and g (s)e B (s). The existence 
of such functions follows from the assumptions of theorem 3.1. We can do the 
same for q also. The problem is essentially reduced to the case A (s) - A, B (s) - B. 

Proof of theorem 3.1: 
For each w ~ C (S) (= space of real-valued continuous functions on S) defines 

Tw as follows. 

(Tw)(s) = rain max [r(s,U,2) + fl ~ w(. )dq(./s,#,2)] 
PB(s) Pa(s) 

where r(s,#,2)=~r(s,a,b)d#(a)d2(b) and 

q(-/s,#,2) = ~ q(./s,a,b)du(a)d2(b). 

From lemma 3.1, it is not hard to check that TwsC(S).  Since r ( s ,# ,2 )+  
f lw(.)d(./s,#,2) is continuous on Pa(~) x PB(~) for every fixed s and Pa(s), PB(~) 
are compact convex, it follows from Sion's minimax theorem see PARrHhSARa:rHY 
and RAGHAVAN [1971] that 

(Tw)(s) = min max [r(s,#,2) + fl S w(.  )dq(./s,#,2)] 
PB(s) PA(s) 

= max max [r(s,#,2) + fi ~ w(. )dq(./s,#,2)] . 
PA(s) P~(s) 

Plainly T is a contraction mapping on C(S) since 0 < 3 < 1. Since C(S), when 
equipped with the supremum, is a complete metric space, T has a unique fixed 
point in C (S), by virtue of the Banach fixed point theorem. Let w* be the fixed 
point of T. Then it follows from theorem 2, that there exist Borel maps f *  and 
g* from S to Pa and PB, respectively, such that, for every s eS,  f*(s)~PA(s), 
0*(s) ~ P~(s) and 

w*(s) = min [r(s,f*(s),2) + fl ~ w*(. )dq(./s,f*(s),2)] 
PB(s) 

= max [r(s,#,g*(s) + fl ~w*(. )dq(./s,#,g*(s))] 
PA(s) 

= r(s,f*(s),g*(s)) + flw*(. )dq(./s,f*(s),g*(s)]. 

From the above equation it follows (see Lemma 4.1 in MAITRA and PARTHASA- 
RATHY [1970]) W* =I(f*(~),g*(~~ In view of this the above equation can be 
written as 

I (f*(~176176176 = max [r(s,#g*(s)) + fl ~ I (f*(~176176 )dq(./s,#,g* (s))] 

-= min [r(s,f* (s),2)) + flI(f*t~176176176 )dq(. Is,f* (s),2)]. 

It follows from a Theorem of BLACKWELL (HxNDERER [1970]) that, 

I ( f  *(o~176176 ) = sup I (II,9*(~176 = inf I (f*(~176 
F 
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for every s s S. Consequently, I(f*(~),g*(~)(s) ~ infsup I(II, F)(s). On the other 
I" H 

hand, I ( f  *(~),g*(~))(s) <_ s u p i n f I ( I I ,  F)(s). Hence infsup I (II, F)(s) = I ( f  *~), 
H F F H 

g*r176 = sup infl(II,  F)(s). This proves that the stochastic game has a value, 
H F 

that the value function is I(f*(~~ ) = w*(s) and continuous and that 
f,~),g,(Oo) are optimal strategies for players I and II respectively. This terminates 
the proof. We shall state our next theorem. 

Theorem 3.2: 
Let S be a complete separable metric space. Let A and B be finite sets. Suppose 

r(s, a, b) is a bounded measurable function in s and q (. Is, a, b) is also measurable 

in s. Then the discounted stochastic game has a value and the value function 
is measurable and the two players have optimal stationary strategies. 

Remark 3.2: 
This theorem includes theorem 1 in PARTHASARATHY [1971]. 

Proof: 
Clearly r(s,#,2) and q(./s,#,2) are continuous in (#,2) for every s. We shall  

assume without any loss of generality A(s) =- A and B(s) - B. Denote by M(s) 
the family of all bounded Borel functions on S. With each w~M(s),  define 

Tw e M (s) as follows: 

Tw(s) = min max [r(s, kt,2) + fl ~ w(. )dq(./s,#,2)]. 

Plainly T is a contraction mapping on M(s). Let w* be the unique fixed point 

of T that is, 

w*(s) = rain max [r(s,#,2) + f i~w*(.  )dq(./s,#,2)] 

= max min jr(s,#,2) + f l~w*(. )dq(./s,#,2)]. 

It follows from theorem 2.2 that there exist Borel maps f *  and g* from S to PA 
and PB respectively, such that for every s e S, 

w*(s) = rain [r(s,f*(s),2) + fl ~ w*(. )dq(./s,f*(s),2)] 

= max [r(s,#,g*(s)) + flSw*(.)dq(./s,#,g*(s))] 

= r(s,f*(s),g*(s) + fl I w*(. )dq(./s,f*(s),g*(s)). 

The rest of the proof  is similar to theorem 3.1 and we omit the details. 

Remark 3.3: 
Here the value function is Borel measurable and need not be continuous as 

in the previous theorem, for we are not having any continuity assumption on 
r(s,a,b) as a function on S. 

4. Positive Stochastic Games 

In this section we are considering positive stochastic games, that is, we shall 
assume r(s,a,b) is non-negative and fl = 1. We prove the following theorem. 
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Theorem 4.1: 
Let S, A and B are finite sets. (For simplicity we assume A(s) =- A and B(s) -~ B. 

Let r (s, a, b) > 0 and fl -- 1. Suppose there exists a positive constant K independent 
of/ / ,  F and s such that I (/7, F) (s) _< K for all/-/, F and s. Then the positive stochastic 
game has a value and the two players have optimal stationary strategies. 

Remark 4.1: 
The referee points out that any positive stochastic game with the above assump- 

tions is simply a terminating stochastic sequence of finite games - see SHAPLEY 
[1953], or a discounted stochastic game. 

Remark 4.2: 
Suppose S is countable, A and B are finite. Then in the discounted case the 

two players have optimal stationary strategies - but in the positive case the 
players need not have optimal stationary strategies. We will give an example 
in the last section to demonstrate this. 

Proof of theorem 4.1: 
Perhaps this theorem is known but we give a proof. Let 0 < fl < 1. Let va(s) 

be the value of the discounted stochastic game. Since r is non-negative, vr (s) is 
an increasing function of ft. Let v*(s) = lira va(s). Since l(//,F)(s) <<_ K, the limit 
exists. Hence we have ~tl 

v*(s) = min max [r(s,/~,2) + ~ v*(. )dq(./s,#,2)] 
PB PA 

= max min [r(s,p,2) + ~ v*(. )dq(-/s,#,2)]. 
Pa P~ 

Here one can replace the integral sign by summation sign since S is finite. For 
every s, let f *  (s) and 9" (s) be any pair of optimal strategies for the two players 
for the finite game whose payoff is given by 

r(s,a,b) + ~ v*(. )dq(./s,a,b). 
That is 

v*(s) = max [r(s,#,9*(s)) + ~ v*(. )dq(./s,#,g*(s))] 
PA 

= min [r(s,f*(s),2) + ~ v*(. )dq(./s,f*(s),2)] 
PB 

= r(s,f*(s),9*(s)) + ~ v*(. )dq(./s,f*(s),g*(s)). 

At this stage we need the following lemma. 

Lemma 4.1 : 
Let r(f*,g*) be a vector whose S ih coordinate is given by r(s,f*(s),g*(s)). Let 

Q(f*,g*) stand for the finite stochastic matrix whose (s,s')-th element is given 
by q('/s,f*(s),g*(s)). If r(f*,g*) + Q(f*,g*)v* = v*, then 

I(f*(~176 for every s 
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Proof: 
Since r ( f* ,g*)  + Q( f* ,g*)v*  = v*, it follows 

n--1 

QK(f* ,g*)r ( f* ,g*)  + Q"( f* ,g*)v* = v* 
K = I  

where CY ~ = Q Q... (K times). To complete the proof of the lemma it is enough 
if we show Q"(f* ,g*)v* ---, 0 as in n ~ oo. Recall S is finite. I f j s S  is a transient 
state (see FELLER [1950]) then qi~ --* 0 for all i where q~ is the (ij)-th element in 
Q"(f*,g*).  i f j  is a recurrent state, v* (j) = 0; otherwise the total expected pay-off 
will remain unbounded. Hence, 

(n) , tl(n). * ( Q n ( f , g ) v ) i  = s v j  = 2 .~ij, vj, 
j j, 

(Here summation is taken over all j '  which are transient states.) But the last 
expression obviously goes to zero for every i, since ql~.. ) ~ 0 whenever j '  is transient J 

and since S is finite. Thus the proof of the lemma is complete. 
Now we continue the proof of theorem 4.1. From the lemma it follows that 

v* (s) = I(f*(~176176 It is not hard to check that f *(~~ and g *~) are optimal 
strategies and that v* (s) is the value of the positive stochastic game. Thus the 
proof is complete. 

Remark 4.3: 
Lemma 4.1 is false if S is not finite. 

5. Noncooperative Stochastic Games 

Non-cooperative stochastic games were first studied by ROGERS [1969] and 
SOB~L [1969] who proved the existence of equilibrium strategies for the two 
players under the assumptions S, A and B are finite and that the play terminates 
with probability one. We shall prove a similar result when S is countable and 
A and B are finite. Precisely we prove the following theorem. 

Theorem 5.1 : 
Let S be countable and A,B  are finite, (For simplicity we shall assume A (s) - A, 

B(s) =- B for every s.) Let rl and r 2 be bounded measurable functions on S x A x B. 
Then in the discounted noncooperative stochastic game the two players have 
equilibrium stationary strategies. 

Proof: 
Let f :  S ~ PA and g : S -~ PB. Let v 0 and u I be the unique fixed points of the 

operators 7"1 and Tz on M(s) defined as follows. For every w ~ M(s)  

(T~ w) (s) = max [r (s, I~, g (s)) + fl ~ w ( . )  d q (./s, #, g (s))] 
PA 

and 
(T2 w) (s) = max [r2 (s ,f  (s), 2) + fl ~ w ( . )  d q ( . / s , f  (s), 2)]. 

PB 
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Define G : P s x ps  ~ pS x pS as follows. For  every f ,o ~ pS x pS, G( f , g )=  
{( f ' ,g ' ) :ul (s  ) = r2(s,f(s),g'(s)) + fl S ul ( ' )dq( ' /s , f (s) ,g ' (s) )  and vo(s ) = 
rl(s,f '(s),g(s)) + f lSvo(.)dq(. /s , f ' (s) ,g(s))  for each s e S } .  Clearly G(f,g) is 
nonempty, compact and convex for every ( f ,g)e  ps  x ps. We shall now prove 
that the set valued function G is upper semicontinuous, that is y"e  G(f",gn), 
yn ~ yO, ( f , ,g , )  ~ (fO, gO) ~ yO ~ G(fO,gO). For this we need the following lemma. 

Lemma 5.1: 
Let S be countable, A and B be finite. Let u, be the fixed point of the operator 

T, on M (s) defined as above corresponding to the functionf,.  Suppose u, (s) ~ u (s) 
andf ,  (s) ~ f  (s) for every s e S. Then u is the fixed point of the operator T associated 

w i t h f  

Proof: 
un(s) = max [r2(s,f,(s),2) + fl u~( . )dq((. /s,fn(s),2)). Letf~(s) = (~  (s),~ (s) . . . . .  ~'~(s)) 

and f (s) = (~l (s) . . . . .  ~k(S)). Since u,(s)--* u(s) and fins are uniformly bounded 

S u~(" )dq(./s,  ai,bi) 

for every a, e A and bj ~ B and for s s S. 

IS u,( .  )dq(./s,f ,(s),2) 

<- ]S u,( .  )dq(./s,f ,(s),2) 

--* ~ u( ,  )dq(./s,  ai,b3) 

- ~ u(.  )dq(./s,fo(s),2)l 

- ~ u(.  )dq(./s,f~(s),)c)l 

+ [~ u(.  )dq(./s,f ,(s),2) - ~ u( .  )dq(./s , f(s) ,2)l  

< ~ ~(s)[ ~ (u, ( . )  - u(.  ))dq(./s,a~,)c)l 
i 

+ Z I r - r I lu( �9 )]dq(./s, ai,2). 
i 

Here both the terms tend to zero uniformly in 2 for every fixed s as n ~ oo. From 
this it follows 

u(s) -- max (r2(s,f (s),2) + fl S u( .  )dq ( . / s , f  (s),~,)). 
P~ 

Since the fixed point is unique, u is the fixed point of the operator T associated 
with f We now continue the proof of the theorem. From the lemma, it is not 
hard to check that G is upper semicontinuous. Hence we can conclude from 
Kakutani's fixed point theorem that there exist ( f* ,  g*) such that ( f* ,  g*) ~ G ( f* ,  g*), 
that is, 

ur (s) = m a x  [ r  2 (S, f *  (S), 2) + fl I UI* (") d p (./s, f *  (s), 2)] 
PB 

= r2 (s,f*(s),g*(s)) + fl ~ ul.  ( �9 )dq(. /s , f*(s) ,9* (s)) 
and 

re(s) = max [rl (s,#,O*(S) + fl ~ r e ( .  )dq(./s,#,g*(s)) 
P.4 

= rl(s,f*(s),g*(s)) + fl I vo*(" )dq(./s,f*(s),g*(s)).  

From these equations it is not hard to check that 
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uy.(s) = Ia (f*(~176176 = sup I2 (f*(~),Y)(s) 
and r 

vo.(s) = 11(f*r~),g*(~~ = sup 11 (H,g*(~~ . 
11 

That is, ( f * ~ , 9  * ~ )  is a pair of equilibrium strategies for the two players. This 
terminates the proof of the theorem. 

Remark 5.1: 
When r2 = - r l  for every s, a and b then we are in the set up of stochastic 

games considered in section 3. 

Remark 5.2: 
Theorem 5.1 is a slight extension of [ROGERS 1969] and [SoBEL 1969]. The 

proofs in [ROGERS 1969] and [SouEL 1969] with some modifications, apply to 
theorem 5.1. Alternatively, one could build a proof around Derman's "Markovian 
Sequential Control processes - denumerable State space", Jour. Math. Analy 
and Appl. Vol. 10, 295-302 ,  1965. The author is grateful to one of the referees 

for pointing out this reference. 

6. Miscellaneous Remarks 

We now present an example to show that theorem 4.1 is false when S is countable 
and compact and A and B are finite. 

Example: 
Let S = {1/2,2/3,3/4 . . . .  } v2 { 1} vo { t} and A = {0,1} B = {0}. Let r(s,0,0} : s 

and r(s, 1,0) ~ 0 and t is a terminal state where you do not receive any reward. 
The transition probabilities are given as follows 

q(./n/n + 1,],0) =6(n  + 1In + 2) 

q (./n/n + 1, O, O) = 3 (t) 

q( . / l , l ,0 )  = 6(1) 

q ( . / 1 , 0 , 0 )  = ~ ( t ) .  

This example is actually a maximizing one-person game (dynamic programming). 
Plainly the value of the game v*(s) - 1 for s ~f t and v*(t) = 0; it is not hard 
to check that there is no optimal stationary strategy. The same example shows 
that lemma 4.1 is false. Le t f*(s )  = 1. Then it follows 

r(s,f*(s),O) + ~ v*(. )dq(./s,f*(s),O) = v*(s) 

for every s. Obviously I(f*(~),{O})(s) ~ 0 for every s but v*(s) - 1 for every 

s + t; that is, 
v*(s) ~- l(f*<~),CO})(s) for any s ~= t .  

We conjecture that theorem 5.1 will be true with the following assumptions: 
S, A, B are compact metric and A(s)=-A,  B(s)=---B for every s ~ S. Suppose 
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rl(s,a,b), r2(s,a,b) and  (q(./s,a,b) are con t inuous  in S • A x B. In the proof  

of theorem 5.1, measurabi l i ty  quest ion does no t  arise since S is assumed to be 

countable .  The conjecture is true in the discounted case - see theorem 3.1. 
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