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Abstract 

Aluminium (AI), when present in high concentrations, has for long been recognised as a toxic agent to aquatic 
freshwater organisms, Le. downstream industrial point sources of AI-rich process water. Today the 
environmental effects of aluminium are mainly a result of acidic precipitation; acidification of catchments leads 
to increased AI- concentrations in soil solution and freshwaters. Large parts of both the aquatic and terrestrial 
ecosystems are affected. 
In the aquatic environment, aluminium acts as a toxic agent on gill-breathing animals such as fish and 
invertebrates, by causing loss of plasma- and haemolymph ions leading to osmoregulatory failure. In fish, the 
inorganic (labile) monomeric species of aluminium reduce the activities of gill enzymes important in the active 
uptake of ions. Aluminium seems also to accumulate in freshwater invertebrates. Dietary organically complexed 
aluminium, maybe in synergistic effects with other contaminants, may easily be absorbed and interfere with 
important metabolic processes in mammals and birds. 
The mycorrhiza and fine root systems of terrestrial plants are adversely affected by high levels of inorganic 
monomeric aluminium. As in the animals, aluminium seems to have its primary effect on enzyme systems 
important for the uptake of nutrients. Aluminium can accumulate in plants. Aluminium contaminated 
invertebrates and plants might thus be a link for aluminium to enter into terrestrial food chains. 

Introduction 

Acidic waters have been recognised as a problem for 
freshwater fisheries in certain regions of Norway since the 
1920s (Dahl, 1927). Forty years later a link between acidic 
waters and pH of precipitation was hypothesised 
(Dannevig, 1959). Aluminium:(Al) as a toxic element in 
acidic waters was recog.~w ,nearly 20 years later 
(Schofield, 1977, Dickson, 1979). Today the two elements, 
H + (pH) and AI, are still considered to be most important 
causes of toxicity in freshwater biota (Wood and 
McDonald, 1987). 

The biological significance of Al-speciation and the 
toxicity of the monomeric labile Al-species on fish was 
demonstrated by Driscoll et al. (1982). Heriksen et  al. 
(1984) demonstrated their relevance during episodic 
changes in water quality occurring in streams and rivers. 

Freshwater invertebrates disappear in acidic waters as 
a response to low pH and aluminium (Herrmann, 1987a). 
In addition, bioaccumulation of aluminium in invertebrate 
prey organisms has been suggested as a possible 
explanation to the impaired hatching success observed 
among birds (Nyholm, 1981), as dietary fed A1 
accumulates in both birds and mammals. 

In the late 1970s, another part of the terrestrial 
ecosystem, forest trees, was suspected to be threatened by 
acid rain (Ulrich, 1980). Today, in many of the forested 
areas of central Europe, trees are dying. Aluminium 
concentration in the soil solution increases due to soil 

acidification. Aluminium has been shown to have a 
negative effect on the root systems of herbaceous plants 
and trees, and might thus be one of the factors involved in 
the forest decline. 

This paper reviews the role of aluminium in terrestrial 
and aquatic ecosystems affected by acid rain. 

Effects of Aluminium on Vascular Plants at Low pH 

Aluminium is the third most abundant element in the soil, 
constituting on the average 8% of the minerals. On 
weathered mineral surfaces A1 exists as oxides and 
polymeric hydroxides. Under acidic conditions these 
compounds dissolve to form the hydrated ion A1 (H20)6 3+ 
(written AI 3+ for simplicity) or hydrolysis products of this 
ion. The AI ions bind to cation- exchange sites on soil 
particles and are thus accessible for plant roots. 

A13+ is the dominant A1 ion at pH < 4.5. Since the 
beginning of this century, A13+ has been regarded as an 
important growth limiting factor in acid soils, together with 
low pH and lack of macronutrients in such soils. 
Experiments to elucidate the effects of A1 have been done 
mainly with herbaceous species (for review, see e.g. Foy, 
1974). During the last 40 years several studies have also 
been done with tree species, especially after Ulrich et  al. 
(1980) claimed that A1 ions might be an important factor 
in the forest decline in central Europe. 

Aluminium taken up by roots is mainly found in the 
mucilage layer on the root tip surface (Horst et  al., 1982) 
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and m the walls of the epidermis and cortex cells (Huett 
and Menary, 1980). In the cell wall pectins, A1 ions 
compete with Ca z+ for the same absorption sites 
(Wagatsuma, 1983). Some Al is taken up in the cytoplasm 
and bound to nucleic acids and acid soluble phosphates 
(Wagatsuma, 1983). Aluminium is translocated only to a 
small extent to shoots. 

All studies of growth and mineral nutrition in the 
presence of A13+ (e.g. GOransson and Eldhuset, 1987) 
confirm that after AI addition, symptoms are first seen in 
roots by a reduction in length growth, root thickening and 
root tip dieback. New side roots are short, thick and brittle. 
and sometimes loss of geotropism occurs. With prolonged 
A1 treatment, symptoms are also seen in shoots as growth 
reduction, yellowing and purpling, wilting, and sometimes 
loss of apical dominance. Ca and Mg concentrations are 
also greatly reduced in roots and shoots of Al-treated 
plants. 

AI 3+ is al~so toxic to many fungi. Thus, AI may 
negatively affect the symbiosis between fungi and roots, 
the so-called mycorrhiza, where the ecto-mycorrhiza seems 
most affected (Rolf A. Olsen, personal communication). 
Mycorrhiza is important for the water and nutrient uptake 
in plants. 

A13+ affects several physiological processes. One 
irnportant effect is reduced membrane potential in root 
cells, probably due to A1 interference with the Ca- binding 
protein, calmodulin (Siegel and Haug, 1983a). A1 reduces 
the activity of several enzymes, including ATPases 
important in cation uptake (Siegel and Haug, 1983a, 
Suhayda and Hang, 1986). The ATPases are activated by 
Ca- calmodulin and are involved in cation uptake. A1 ions 
and nutrient cations compete for the same uptake sites on 
cell surface (Kinraide and Parker, 1987). Increased 
permeability of non-electrolytes and decreased water 
permeability in cortex cell membranes, probably due to 
changes in membrane lipids (Zhao et al. 1987), are also a 
significant response to A1. Aluminium phosphate 
complexes in mucilage and cell walls reduce P availability 
(McCormick and Borden, 1974). Inhibition of DNA 
synthesis in cel! nuclei is observed, probably due to A1 
binding to phosphate groups in DNA (Matsumoto and 
Morimura, 1980). This may be one reason for inhibited cell 
division and root growth (Horst et al., 1983). 

Plants growing on acid soil may have developed 
mechanisms for tolerating high A13+ concentrations in the 
soil. Such mechanisms might i~dude excretion of organic 
acids which act as complexing agents for Al3+ (Lee and 
Foy, 1986), increase of pH outside roots so that A1 is 
polymerised or precipitated (Taylor and Foy, 1985), and 
active e• of Al outside the plasmalemma of root 
cells (Wagatsuma and Yamasaku, 1985). 

Not only the absolute concentration of A13+, but also 
the molar ratio of Al3+ to other ions in soil or nutrient 
solution is important for the extent of Al toxicity. This is 
especially true for Ca 2+. increasing Ca concentration 
decreases AI toxicity (Rost-Siebert, 1983; Abrahamsen, 
1984; Alva et al., 1986a). The activity of other monomeric 
forms of Al (Alva et a l . ,  1986b) or total monomeric AI 
(Wright and Wright, 1987) may in some cases be a better 
measure of Al-toxicity than is the A13+ concentration. 

Experiments to determine toxicity of AI are most 
often done on young plants growing in nutrient solutions 
in a growth chamber or glasshouse. Such experiments 
generally indicate that growth reductions start at external 
A1 concentrations below 5.4 mg/L in herbaceous species 
and above 20 mg/L in tree species adapted to growth on 
acid soils. There are great variations among species. Also, 
the tolerance threshold for a species is to some extent 
dependent on which growth parameter is measured. The 
growth systems mentioned are simple and verifiable, but 
the results cannot be directly transferred to the field 
situation. 

Most tree roots are situated in the upper soil horizons, 
i.e. the O, A, and the upper B horizon. The total A1 
concentration increases with soil depth, and in the O and 
A horizon the organic A1 complexes dominate (Nilsson and 
Bergkvist, 1983). These are regarded as non-toxic. In the 
B horizon from acid podzolic forest soils in Scandinavia, 
total AI concentrations of maximum 5.4 mg/L (typically 
less than 2.7 mg/L) have ben measured (Abrahamsen, 
1983; Nilsson and Landmark, 1986). 

On the other hand, in some forest soils in southern 
Sweden there has been a long term decrease in pH 
(HallNicken and Tamm, 1986), a decrease in Ca/A1 ratio 
(Tyler, 1987), and an increase in inorganic AI 
concentration (Bergkvist, 1987). The same tendency has 
been seen in West Germany (Ulrich, 1980, 1981). 

Among the common forest tree species in 
Scandinavia, Scots pine (Pinus sylvestris) seems to be more 
tolerant to A1 than white birch (Betula pendula), which is 
again more tolerant than Norway spruce (Picea abies). The 

3+ latter shows growth reductions at AI concentrations of 
20-27 mg/L (Abrahamsen, 1984; Eldhuset and Gtransson, 
1989). These results indicate that Norway spruce may 
respond adversely to a further increase in exchangeable AI 
in the soil. 

Effects of Aluminium on Aquatic Biota 

Although high A1 concentrations in waters polluted by 
industrial sources are toxic to invertebrates and fish 
(Hunter et al., 1980; Lamb and Bailey, 1981), it is the 
acidification caused by acid rain that has caused the 
ecological significance of Al toxicity. 

Aquatic plants have so far not been demonstrated to 
be affected by elevated levels of A1 in acidified freshwaters 
(B. ROrslett, personal communication), pH and A1 affect 
both invertebrates and fish, and the effects are dependent 
not only on species but also on life history stage of the 
animals. In the field, the effects of A1 alone is difficult to 
isolate from a variety of potentially interrelated adverse 
factors. Especially during episodes, large variations in pH, 
Al-species distribution and calcium can occur (Henriksen 
et al., 1984; Gagen and Sharpe, 1987; Lacroix and 
Townsend, 1987); all influence the biological response. In 
the laboratory, the effects of A1 per se can be studied at 
given levels of pH, Ca etc. The results from such studies 
will be used in the following, presenting only the specific 
Al-response. 

In experiments, A1 has been added either as A1CI3 or 
A12 (SO4)3. The chemical used might be of importance as 
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to the specific animal response, as many experiments using 
A12(SO4)3 have induced an increased mucus production at 
the fish gills, whereas use of A1C13 or natural acidic waters 
have not. In the following, however, no distinction is made 
between experiments using the different chemicals. 

Whenever a specific response is related to certain 
species of aluminium, i.e. the monomeric inorganic species 
termed "labile AI" (LA1), the separation technique of 
Driscoll (1984) with or without minor modifications, has 
been used. 

Effects of  Aluminium on Invertebrates 

Acidification has generally been accompanied by declining 
numbers of both planktonic and benthic invertebrates 
(Leivestad et al., 1976; Haines, 1981; Okland and Okland, 
1986). However, the mechanisms by which A1 per se can 
act as a harmful agent on these organisms are largely 
unknown (He~H~,ann, 1987a). 

HtmstrOm et al. (1984) indicated that AI could affect 
the zoo-plankton community in acidified surface waters. 
On adding A1 to an acid stream, Hall et al. (1985; 1987), 
Raddum and Fjellheim (1987) and Ormerod et al. (1987) 
observed an increased drift of mayfly nymphs, chironomids 
and .dixid midges. Many of the animals related to the 
surface film were found dead, presumably caused by 
reduction of surface tension; this was indicated by a 
pronounced foam production (Hall et al. 1985; Ormerod et 
al., 1987). A1- induced mortality on stoneflies, the isopoed 
Asellus and caddis larvae was reported by Burton and Allan 
(1986), who also demonstrated a reduced mortality 
whenever the organic content of the water was high. The 
counteracting effect of humic acids relative to Al-toxicity 
was also demonstrated by Petersen et al. (1986) on blackfly 
larvae. 

Not all invertebrate species tested have shown high 
sensitivity to A1. No additional mortality due to A1 was 
observed on bivalves and gastropods (Mackie, 1986) or 
crayfish (Berrill et al., 1985) in acidic waters. Appelberg 
(1985), however, demonstrated reduced haemolymph Na + 
content in crayfish exposed to acidic Al-rich waters. 

At very low pH, high concentrations of A1 can have 
an ameliorating effect, on for example mayfly nymphs 
(Heptogenia sulphurea) (Herrmann, 1987a) and small 
planktonic crustacean (Daphnia magna) (Havas, 1985; 
Havas and Likens, 1985). The mechanisms involved might 
be the same as found for fish (see below), but in both cases 
the actual concentrations of A1 are much higher than 
normally found in acidic waters containing these 
organisms. 

Raddum and Steigen (1981) found that the caloric 
content of stone flies and caddis flies from acidic rivers was 
lower than from more neutral rivers; this implies an 
increased energy consumption (metabolism) in acidic 
waters. Increased respiration was later demonstrated to be 
a response to AI, most pronounced for the most sensitive 
mayfly species (Herrmann and Andersson, 1986). As is the 
case with fish (Rosseland, 1980), pH alone seemed less 
important for the respiratory response. 

Aluminium can also impair reproduction, shown on 
Daphnia magna (Beisinger and Christensen, 1972). 

Otto and Svensson (1983) suggested ,that as in fish, 
A1 affects invertebrates by disturbing osmoregulation. 
Appelberg (1985) demonstrated a reduced haemolymph 
Na § content in crayfish in response to A1, and Malley and 
Chang (1985) showed a reduced Ca 2+ uptake. In Daphnia 
magna, AI reduced the Na + influx and to a lesser extent 
increased the outflux, thus impairing osmoregulation 
(Havas and Likens, 1985). The temporal reduced outflux at 
low pH might explain the reported beneficial effects of A1 
at low pH. Witters et al. (1984) demonstrated reduced 
haemolymph Na § content in Corixa exposed to high A1- 
concentrations, and Herrmann (1987b) found that A1 
caused a reduced Na § content of mayfly nymphs at low pH. 

As in fish, AI acts on the respiratory organs of 
invertebrates, for example, the anal papillae of the phantom 
midge (Havas, 1986). This might explain why air-breathing 
invertebrates like the waterboatmen (Corixa) are very 
tolerant to acidic waters (Vangenechten et al., 1979; 
Witters et al., 1984). 

Aluminium can accumulate in the bodies of 
invertebrates living in acidic waters (Hall and Likens, 
1981; Herrmann, 1987a). Insects with aquatic larvae and 
nymph stages leave their "metal content" in their excuviae 
on emerging, thus only the water stage in their life history 
is metal-contaminated (Otto and Svensson, 1983). Birds 
such as the pied flycatcher, which lives on insects in or 
close to acidic lakes, have been reported to have high AI- 
concentrations in bone marrow and eggs indicating a 
food-chain transport (Nyholm, 1981). The impairment of 
egg hatching of these birds might therefore link the 
environmental catastrophy appearing in the acidic aquatic 
ecosystem to the terrestrial. 

Effects of Aluminium on Fish 

Until recently, pH alone was considered to be toxic at the 
egg stage with an increasing influence of AI with age after 
hatch (Baker and Schofield, 1980; 1982; Wood and 
McDonald, 1982). Leivestad et al. (1987), however, 
demonstrated that A1 reduced both the ion uptake at the 
eyed-egg stage and the activity of the Na-K-ATPase in the 
embryo. 

After hatch, the main target organ for the Al-effects 
is the gill where the ion and gas exchange takes place. In 
addition to 1-I +, A1 causes loss of plasma ions (Na +, CI-), 
reduced osmolality, and increased hematocrit (Muniz and 
Leivestad, 1980; Rosseland, 1980; Rosseland and 
Skogheim, 1982; 1984; 1987; Rosseland et al., 1986a, b; 
Fivelstad and Leivestad, 1984; Neville, 1985; Witters, 
1986; Leivestad et al. 1987; Wood and McDonald, 1987). 

In acidic waters (pH 4.6-5.3) with low levels of 
calcium (0.5-1.5 mg Ca/L), labile A1 between 25-75 ~tg/L 
is toxic (Henriksen et al., 1984; Rosseland et al., 1986a; 
Rosseland and Skogheim, 1987; Skogheim and Rosseland, 
1986). The Al-induced ion loss reflects both an increased 
outflux and a decreased influx of ions (Dalziel et al., 1986; 
1987; Wood and McDonald, 1987). The effect on influx is 
probably caused by a reduced activity of enzymes as Na- 
K-ATPase, Mg-ATPase and carbonic anhydrase (Staurnes 
et al., 1984; Kjartansson, 1984; Leivestad et al., 1987; 
Reite and Staurnes, 1987). Aluminium acts specifically on 
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~e enzymes of the gill, as neither the ATPase systems in 
the pseudobranch or the kidney was affected (Kjartansson, 
1984). The Al-induced efflux is considered to reflect 
modifications on opening of the tight junctions of the 
paracellular channels (Wood and McDonald, 1987). The 
ameliorating effect of Ca on A1- and pH response 
~eivestad et al., 1980; Brown, 1983) is by tightening of 
the junctions, thereby preventing the passive loss of ions 
(Wood and McDonald, 1987). 

Fish exposed to acidic Al-rich waters will accumulate 
Ai on the gill surface (Schofield, 1977; Schofield and 
Trojnar, 1980; Muramoto, 1981; Buergel and Soltero, 
1983; Pagenkoff, 1983; Skogheim et al., 1984; Neville, 
1985; Karlsson-Norrgren et  al., 1986a, b; Harvey and 
McArdle, 1986; Witters et  al., 1987; Wood and McDonald, 
1987; Jagoe e t  al . ,  1987). The precipitation and 
accumulation is due to the negative charge of the mucus 
caused by sialic acid residues (McDonald, 1983). The gill 
also serves as an excretion organ for ammonia (NH4 +) 
(Masoni and Payan, 1974). At low pH and high A1, the 
reduced blood pH (acidosis) and increased CO2 
(hypercapnia) will interfere with the formation from 
ammonium (NH3) to ammonia, thus more is excreted as 
NH3. At the interface between mucus and water, the 
ammonium will be transformed to ammonia, changing the 
pH and thus enhancing precipitation of A1 at the gill surface 
(Wood and McDonald, 1987). 

There are species and strain differences in sensitivity 
to low pH (Grande et  al. 1978; Gjedrem, 1980) and A1 
(Rosseland and Skogheim, 1984; 1987; Rosseland et al., 
1986b; Wood and McDonald, 1987). These species 
differences are also reflected in the accumulation rate of AI 
on the gills, as well as the whole body (wb) ion 
concentration, i.e. fish with the lowest wb Na (greatest loss) 
have the highest Al-concenlration on the gill surface 
(Wood and McDonald, 1987). Precipitated Al-complexes 
can irritate the gill and cause inflammation, oedema, 
swelling and sometimes irradation of the secondary lamella 
(Schofi led,  1977; Schofield and Trojnar, 1980; 
Karlsson-Norrgren et  al., 1986a, b; Jagoe et al., 1987). Also 
an increased number of mucus cells (Linnenbach et  al., 
1987) and chloride cells (Jagoe et  al., 1987) have been 
observed relative to Al-accumulation onto the gills. In spite 
of high Al-concentration on the gill these histopathological 
changes are not observed when the humus content in the 
water is high, indicating a labile Al-dependent irritation 
(Karlson-Norrgren et al., 1986b). 

Although increased levels of AI in blood plasma have 
not been found (Neville, 1985; Wood and McDonald, 
1987), M-accumulation in body tissue does occur (Hunter 
et al., 1980; Muramoto, 1981; Buergel and Soltero, 1983; 
Haines et  al., 1987). In the field, such accumulation might 
reflect both a direct gill-dependent uptake and a food chain 
dependent uptake (Haines et  al., 1987). It was suggested 
by Muramoto (1981) that A1 could pass through the gill as 
metal-complexes in the presence of complexing ligands. 

Sometimes extensive mucus-clogging of the 
secondary lamella has been observed (Muniz and 
Leivestad, 1980; Rosseland, 1980; Rosseland and 
Skogheim, 1984). This response is not universal, as fish 
dying in field in natural acidic waters at labile A1- 

concentrations of 59-110 ~tg/L have not shown excess 
mucus despite an Al-accumulation on the gills (Skogheim 
et  a/.,1984; Rosseland et  al. ,  1986a). Adding excess 
aluminium as A12(SO4)3 to such waters (LA1 130 ~tg/L) 
rapidly induced mucus clogging (Muniz and Leivestad, 
1980; Rosseland, 1980; Rosseland and and Skogheim, 
1984). The relevance of the mucus clogging might 
therefore be questioned with respect to natural conditions. 

Both histophathological changes and increased mucus 
layer will serve to increase the diffusion distance for 02 
and CO2 between the water and blood. This can lead to a 
decreased oxygen tension in the arterial blood, reduced 
hemoglobin oxygenation and pH, and an increased blood 
CO2 and blood lactate (Neville, 1985; Malte, 1986; Wood 
and McDonald, 1987). At low pH, the increased mucus 
layer will reduce the rate of ion loss, thereby temporarily 
increasing the resistance, as observed by Baker and 
Schofield (1982), Hutchinson et  al. (1987) and Wood and 
McDonald (1987). At such high concentrations of I-I + and 
AI, the primary cause of mortality might thus be respiratory 
rather than osmoregulatory failure (Rosseland, 1980; 
Muniz and Leivestad, 1980; Neville, 1985; Wood and 
McDonald, 1987). 

Metabolic activity, measured as oxygen uptake, is not 
affected by I-I + alone, but increases as a response to A1 in 
the water (Rosseland, 1980; Neville, 1985; Malte, 1986; 
Wood and McDonald, 1987). The increased respiratory and 
heart rate observed in acidic waters (Rosseland, 1980; 
Muniz and Leivestad, 1980; Ogilvie and Stechey, 1983; 
Giles et al., 1984; Fivelstad and Leivestad, 1984; Neville, 
1985; Malte, 1986; Leivestad et al., 1987; Wood and 
McDonald, 1987) are not believed to cause the increased 
energy expenditure p e r  se, as the increased metabolism 
rather reflects the increased activity of the intrinsic 
compensatory mechanism trying to restore homeostasis 
(Rosseland, 1980). In long-term experiments, even low 
concentrations of A1 have reduced growth (Sadler and 
Turnpenny, 1986). Hyperventilation in acidic waters is a 
specific response to the labile Al-concentration, as the 
addition of chelator  such as citrate depresses 
hyperventilation (Leivestad et  al., 1987). 

Prolactin and cortisol are important hormones related 
to osmoregulation (Potts and Flemming, 1970; Johnson, 
1973); prolactin reduces ion-permeability and increases 
mucus production, while cortisol stimulates the onset of 
cellular proliferation and differentiation in the primary gill 
epithelium, and increases the specific activity of 
Na-K-ATPase. Both hormones are affected by acidic 
waters (Wendelaar Bonga and Balm, 1987). Plasma 
cortisol increases in fish exposed to low pH and high AI 
concentration, presumably as a response to compensate the 
I-I+/AI - response (Kjartansson, 1984). Prolactin production 
increases in acidic waters mainly as a response to a drop in 
plasma electrolytes (Wendelaar Bonga et  al., 1987). 

Avoidance reactions to low pH waters have been 
observed when plasma cation concentrations have been 
reduced by acidic waters (Pedder and Maly, 1987). 
Olfaction is an important part of behavioural response and 
can lead to both positive and negative chemotaxes, 
including avoidance. Low pH alone reduces the olfactory 
response to aminoacids and increases the mucus layer in 
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the olfactory organ (Thommesen, 1975; Klaprat et al., 
1988). Adding A1 to the water depresses olfactory response 
even more and causes histopathological changes such as 
irradation of the microvillie, swelling and disformation of 
the olfactory epithelium (Klaprat et al., 1988). During 
episodic changes in water quality related to snowmelt or 
heavy rain, fish are often observed gathered at the outlet 
of, or having migrated into, a less acid brook or stream 
(Muniz et al., 1978; Rosseland, 1986). Chronic exposure 
to sublethal acidic conditions causing disturbances of the 
olfactory sense prior to a toxic episode, might thus reduce 
the chance for a fish population to find refuges and survive 
in their environment. 

Effects of Aluminium on Terrestrial Animals 

When related to other metals, the toxicity of dietary AI has 
been regarded to be low. The intestinal absorption of 
orally-ingested AI salts is poor, and the small amount 
absorbed is almost completely excreted in urine under 
conditions with normal kidney function (Ganrot, 1986; 
S~rensen et al., 1974). However, from medical research A1 
is known under certain conditions to cause severe 
disturbances, especially in the mineral balance and nervous 
system, mostly in connection with renal failure. In the last 
decade an increasing number of human as well as animal 
studies have been conducted, both in vivo and in vitro, and 
these reveal several physiological and biochemical 
implications of AI (reviewed by Haug, 1984; Siegel, 1985; 
Ganrot, 1986; Trapp, 1986). 

Environmental impacts of A1 on terrestrial wildlife, 
however, are poorly known. The only experimental 
evidence for such a connection is that of Nyholm (1981), 
who proposed a possible etiological role of AI in breeding 
impairment observed in wild passerines at some lakes in 
Swedish Lapland. The impairment was caused by severe 
eggshell defects as well as reduced clutch sizes and high 
incidences of mortality. Since these findings were 
restricted to birds nesting by the shore of a lake suspected 
to be acid-stressed, some kind of poisoning associated with 
the lake was proposed (Nyholm and Myhrberg, 1977). 
Extensive analyses excluded DDT, PCB and metals such 
as Cd, Cr, Cu, Pb and Hg to be the causal factors (Nyholm 
and Myhrberg, 1977). In 1981, however, the specific 
occurrence of AI in birds producing defective egg- shells 
was demonstrated semi-quant i ta t ively by X-ray 
multielement microanalysis in bone marrow tissue of 
humeri of pied flycatchers (Ficedula hypoleuca), one of the 
most affected species (Nyholm, 1981). A possible route of 
transport of A1 to the birds was presented, in which insects 
swarming from the acidic lakes was the proximate link. 
Emerging insects collected from the lake contained on dry 
weight basis 70-1,230 mg Al/kg (Nyholm 1982). In 
comparison, Hall and Likens (1981) reported 840 + 140 mg 
A1/kg in aquatic insects in an artificially acidified stream 
of pH 4. 

Several findings, such as successively increasing 
severity of the shell defects with the egg-laying sequence, 
very porous structure of the defective shells, and less 
apatite depositions in marrow cavities of limb bones (a 

necessary Ca storage for formation of eggshell, Simkiss 
(1967)), indicated Ca depletion (Nyholm, 1981). 

The complex mechanism by which A1 induces 
osteomalecia is not yet fully understood. The presence of 
A1 in bone marrow associated with the reduced apatite 
deposition (Nyholm, 1981) seems, however, to be in 
agreement with the principal results from human studies as 
well as animal experiments. Both from in vivo and in vitro 
studies A1 is reported to accumulate in the calcification 
front of bones, inhibiting calcium phosphate precipication 
by some physical chemical action. AI may also interfere 
with biochemical reactions as well as cell functions 
important in the mineralisation processes (reviewed by 
Kanis, 1981; Parkinson et al, 1981; Goodman, 1985; 
Kreuger et al., 1985; Ganrot, 1986; Starkey, 1987). 

From the study area of Nyholm (1981), two to three 
times higher blood plasma Ca have been found in affected 
pied flycatchers relative to birds producing normal 
eggshells several kilometres from the lake shore. Also the 
Ca concentration was similar or even somewhat higher in 
the shell gland tissue of affected birds compared to 
non-affected birds (Staumes, M. and Nyholm, N.E., in 
preparation). Both these findings may also indicate some 
direct dysfunctions in the shell formation processes. 

Calmodulin is a multifunctional, Ca-dependent 
protein that regulates a variety of cellular reactions 
(Cheung, 1980). This Ca-binding protein seems to be of 
crucial importance in stimulation of the shell gland 
secretion (mediation of Ca- dependent formation of 
prostaglandins, and Ca-dependent binding of progesterone 
to its receptors), as well as the ATP-dependent transport of 
Ca into the shell gland lumen (Lundholm, 1987). This 
process involves the enzymes Ca-Mg- and Na-K-ATPase. 
Another enzyme important in the egg-shell formation is 
carbonic anhydrase (Simkiss, 1967; Simkiss and Taylor, 
1971). In fish gills, A1 inhibits these enzymes (Kjartansson, 
1984, Staurnes et aL, 1984; Leivestad et al., 1987). A1 
binds to calmodulin (Siegel and Haug, 1983b). As the 
eggshell-thinning effect of the biocide DDE mostly seems 
to be mediated by its inhibition of calmodulin ~undholm, 
1987), a similar role of AI might be hypothesised. 

A four-month feeding period with an experimental 
diet supplemented with 1,000 mg AI/L as A1 sulphate, 
however, did not result in any effect on egg production, 
fertility, hatchability, or fledging success in ringed 
turtle-doves, Streptopelia risoria (Carfi~re et al., 1986). 
Compared to controls given the same diet without 
supplemental AI, egg permeability was decreased initially 
but subsequently recovered to a normal level. Plasma Ca, 
P, and Mg of adults were not affected. Dietary A1 (1,500 
mg/L, 63 days) did not affect growth rate of juveniles 
although A1 tended to accumulate in the bones of sternum, 
but not in leg and wing bones. In treated adults, however, 
there was a significant accumulation also in leg and wing 
bones. The overall conclusion, however, was that A1 had 
no significant influence which could support Nyholm's 
(1981) hypothesis of an adverse effect of A1 on the 
Ca-metabolism. 

Japanese quail (Coturnix coturnixjaponicia) has been 
shown to be especially sensitive to reproductive effects of 
Pb (Edens and Garlich, 1983). Al-citrate in drinking water 
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(250 and 750 mg A1/L, 37 days), however, did not cause 
reproductive failure in spite of elevated levels of A1 in 
bones was well as liver, kidney and brain (Nyholm, N.E., 
Gohenson, A. and Paulsson, J., in preparation). 

Both in the experiments of Card&e et  al. (1986) and 
Nyholm et al. (in preparation), the diet Ca content was 
about 1% and P content 0.5-0.9%. Carri~re et al. (1986) 
stated that the lack of effect in their study could be due to 
higher concentrations of both Ca and P in the experimental 
diets compared to the feed levels which may occur in 
acidified areas. In rabbits, A1 ingestion lowered the 
inorganic P in plasma and bone (Cox et al. 1931). In 
humans, extensive use of M-containing antacida can result 
in a similar P-depletion which may cause osteomalacia 
(Spencer et al., 1975; Spencer and Lender, 1979). Dietary 
A1 has also been reported to lower plasma P levels in 
poultry species (Deobald and Elvehjem, 1935; Storer and 
Nelson, 1968; Lipstein and Hurwitz, 1981), but Street 
(1942) concluded from experiments with rats that such 
lowering is likely to occur only when the concentration of 
A1 equals the concentration of P. Experiments with lower 
P level than A1 (dose range 2,000-25,000 mg/L as sulphate 
and hydroxide) in the diet of young chicks has shown to 
cause decreased growth and increased mortality (Deobald 
and Elvehjem, 1935; Storer and Nelson, 1963) as well as 
wing and leg weakness (Steinborn et  al., 1957). These 
effects, which Deobald and Elvehjem (1935) found most 
marked when dietary AI levels attained more than 50% of 
the P dietary level, were ameliorated by supplemental 
dietary P (Steinborn et  al., 1957; Lipstein and Hurwitz, 
1981). 

Thus, with respect to potential environmental effects 
of A1, the risk for a similar P-depletion due to restricted 
availability and intestine retention is obvious in both 
mammals and birds. In most acidified areas, Ca 
concentration is low, at least in the freshwaters. In 
association with Pb intoxication, low dietary Ca is known 
to increase strongly the intestinal absorption of Pb in 
mammals (Six and Goyer, 1970; Mahaffey et  al., 1973; 
Stowe et  al., 1973; Van Barneveld and Van den Hamer, 
1985), as well as in birds (Carlson and Nielson, 1985). Pb 
can occupy the Ca-binding sites of an intestinal Ca-binding 
protein (Barton et  al., 1978), thus representing an efficient 
route of intestinal absorption. The basis for the increased 
uptake may be induction of synthesis of this protein in 
response to the low dietary Ca (Scheuhammer, 1987). As 
a result the Pb accumulation in egg-laying birds is several 
times that of non-laying females (Finley and Dieter, 1978) 
and in males (Kendall and Scanlon, 1981). In view of the 
binding of A1 to calmodulin (Siegel and Haug, 1983b), the 
possibility for a similar effect of AI should be elucidated. 
Moreover, both Card,re et  al. (1986) in their experimental 
administration of Al-sulphate to ringed turtle-doves, and 
Nyholm et  al. (in preparation) feeding Al-citrate to 
Japanese quail, reported much higher A1 absorption and 
accumulation in laying females than in males. This might 
indicate a similar Ca-deficiency induced increase in 
Al-absorption as was demonstrated for Pb. 

Increased parathyroid activity and vitamin D level 
found in egglaying birds is known to enhance the 
absorption of several metals in chicks (Worker and 

Migicovsky, 1986a, b). In pregnant women there is an 
elevated level of PTH (Cushard et al., 1972). The role of 
parathyroids and PTH in relation to A1 accumulation has 
been a matter of dispute, some claiming that PTH might 
increase the A1 absorption (Mayor et al., 1977; 1980), 
while this has been questioned by others (Alfrey et  al., 
1979; Alfrey, 1980). 

Nevertheless, in view of the effects of PTH on 
absorption of other metals and the findings of increased A1 
accumulation in laying birds, especial attention should be 
paid to the possibility of A1 intoxication during periods of 
high demands of Ca as in rapidly growing young animals. 
This is particularly relevant during reproduction where 
increased levels of PTH may mediate AI absorption and 
accumulation. Naturally, the risk for such an intoxication 
would be highest in areas with a high load of bioavailable 
A1 accompanied with low availability of Ca. Both 
conditions normally hold for acidified areas. Interestingly, 
secondary hyperparathyroidism provoked by chronic 
deficiency of Ca, Mg and causing increased absorption of 
toxic metals including A1, has been postulated by Yase 
(1977) to be the most plausible explanation to the high 
incidence of amyothrophic lateral sclerosis (ALS) and 
Parkinsonism-dementia (PD) in some indigenious 
populations in western Pacific. Red A1- and Fe-rich soil 
with very low Ca content is common to these areas. A1 has 
been suggested to be important in the etiology since the 
reported AI content in spinal cord and brain as well as the 
pathologic changes are comparable to those from human 
and animal studies where A1 has been associated with 
disorders in the central nervous system (discussed by 
Ganrot, 1986). The neurotoxicity of A1, characterised by 
degeneration of neurons with A1 accumulation in dense 
tangles (neurofibrillary degeneration) and interactions with 
several biochemical reactions, is well documented from 
both human and animal studies (reviewed by Alfrey, 1978; 
Crapper et al., 1978; 1981; Liss, 1980; Parkinson et  al., 
1981; Kreuger et  al., 1985; Perl, 1985; Ganrot, 1986; 
Starkey, 1987). 

In nature even minor behavioural abnormalities may 
be critical for reproduction success and survival. Chronic 
exposure to neurotoxic contaminants might cause changes 
in behavioural pattern at levels insufficient to produce 
increased mortality or other acute effects (Heinz et  al., 
1983; Peakall, 1985; Donald e t  al . ,  1986). Animal 
experiments have shown that A1 administration may be 
accompanied by behavioural and motor disturbances 
(Crapper and Dalton, 1973; Crapper et  al., 1973; Petit et 
al., 1980; 1985; Commissaris et  al., 1982; Rabe et al., 
1982; Yokel, 1984; 1985; 1987; Bernuzzi et  al., 1986) even 
at AI levels that do not cause overt signs of ill health 
(Commissaris et  al., 1982). Since neurotoxicity of AI 
normally has been associated with slow- operation, 
low-dose effects, often i'elated to ageing processes of the 
individual neurons as well as the whole organism 
(reviewed and discussed by Ganrot, 1986), it is reasonable 
to anticipate that longliving animals would be most 
vulnerable. These are normally at the top of the food chain 
and also most vulnerable to accumulation of other 
pollutants. In acidified areas the increased A1 load in 
freshwaters is also accompanied with higher bioavailable 



B. O. Rosseland, T. D. Eldhurst and M. Staurnes 23 

concentrations of other metals (Haines et al., 1987), and 
elevated levels of several heavy metals are demonstrated in 
terrestrial animals from areas exposed to acid rain 
compared to uncontaminated areas (Fr0slie et al. 1984; 
1985). However, nothing is known about potential 
synergistic effects of  AI with other metals, but 
contaminants interfering with the renal functions as Cd 
(Whiteetal. 1978; Goyeretal.,  1984) and Hg (Wareetal., 
1975), would be suspected to strengthen potential 
deleterious effects of A1 due to the risk for decreased 
excretion and thus increased accumulation. 

Routes for entry into and degree of accumulation of 
A1 along food chains have not been investigated. The 
findings of Nyholm (1981; 1982) indicate that increased A1 
concentrations in streams and waters may cause A1 
accumulation in terrestrial animals eating prey originated 
from contaminated water. 

The forest vole (Clethrionomus glareolus) is one of 
the small rodents which are correlated to be key organisms 
in the terrestrial food chain. Feeding on blueberries from 
an acidified area (containing 156 mg AI/L) resulted in a 
significant higher A1 content in bones than feeding on 
blueberries from an uncontaminated area (57 mg A1/L) rE. 
Nyholm, P. Mattson and P. Slanina, in preparation). Thus, 
the increased concentrations of labile AI in acidified soil 
may enter the food chain directly through plants. Human 
and animal studies have shown that complexes as Al-citrate 
are much more readily absorbed and accumulated than the 
inorganic salts of A1 (Slanina et al., 1984; 1986; Yokel and 
McNamara, 1987). The short period of exposure of the 
mice (one week), along with the relatively moderately 
elevated levels of AI in the blueberries, may indicate that 
AI in plants is bound to similar easily-absorbed complexes 
which strongly enhance the bioavailability of A1. The 
potential toxicity of such easily-absorbed complexes is 
seen from an experiment with one week old chicks of wood 
grouse (Tetrao urogallus), where addition of Al-citrate to 
commercial bird feed to give 4,000 mg AI/L strongly 
increased the mortality compared to those given 
uncontaminted feed; none survived two weeks exposure 
(M. Staurnes and T.K. Spidso, in preparation). The same 
dose of AI caused accumulation in kidney and liver of five 
week old chickens, but no mortality. Similarly, Nyholm 
observed especially high mortality just after hatching in the 
populations of passerines with impaired breeding in 
S wedish Lapland (N.E. Nyholm, personal communication). 
Thus, at least in birds, the greatest risk for acute 
intoxication seems to be during the earliest life stages. 

Future studies, however, will show if the increased 
concentration of AI associated with acidification, either as 
labile AI or organic-complexed represents a potential risk 
for birds and mammals as well as other terrestrial animals. 
The degree of and routes for bioaccumulation, differences 
in species and life-stage sensitivity, occurrence and toxicity 
of different AI compounds, potential synergistic effects 
with other contaminants, and potential interactions because 
of restricted availability of substances as Ca and P will all 
be key questions in future studies. A comparative study of 
wildlife in regions with a naturally high concentation of A1, 
as those mentioned areas in western Pacific, where 
occurrence of ALS and PD are high, could possibly 

contribute to a better understanding of potential 
environmental hazards of A1 as well as adaptation 
mechanisms. 
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