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Summary. Cornish-Bowden and Marson have recently suggested that the finite 
sampling component of Q, a measure of nonrandomness in the amino acid 
composition of  proteins, may have been underestimated because it was 
calculated on the basis of the genetic code table frequencies rather than on the 
basis of the average natural abundance with which the twenty amino acids 
actually occur in proteins. This underestimate would lead to an overestimate of 
Qc a measure of  selective effects above and beyond those imposed by the average 
natural abundance of  the amino acids. In this paper the finite sampling com- 
ponent of Q is quantitatively estimated on the basis of these natural abundances 
and found to reduce Qc from its previous average value of 24.3 to the lower 
value of 9.7, with the standard deviation of the population of Qc values being 
12.5. Individual Qc values are given for 81 protein families of mean composition 

per 61 codons of Alas.3Arg2. 4 Asn3. 0 ASP3.6 CySl. 5 Gln2. 6 Glu3. 5 GlY4. 7 
His1. 3 lie3. 4 Leu4. 5 Lys4. 2 Met1. 0 Phe2. 3 Pro2. 3 Ser4. 2 Thr3. 6 TrP0. 8 Tyr2. 6 
Val4. 2. The mean Qc value of 9.7 is notably small, and indicates that quantitatively 
minimal adjustments away from the average protein composition are necessary 
to maintain many different biological functions. This small value, however, 
is shown to differ significantly from the value of  zero expected were the natural 
abundances of the amino acids the only selective constraint. These small 
deviations from the natural abundances are thus effectively selected for in 
the Darwinian sense. 

Key words: Amino acid composition of proteins - Compositional selection 
for biological function 

Introduction 

The relationships between the chi-square distributed statistic 19X2 (Laird and 
Holmquist, 1975) - designated Z by Cornish-Bowden and Marson (1977) - which 
describes the overall nonrandomness in amino acid composition for proteins, and 
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2 the twenty binomially distributed statistics pX i defined for each amino acid type 
are simply summarized: 

20 20 ( P i _ e i ) 2  2 Z = 1 9 x 2 = T  )2. pX i = T  
i = 1  i = 1  ei 

(1) 

where T is the number of amino acid residues in the protein and Pi and e i are the 
observed and expected (under the hypothesis of interest) proportions of amino acid i. 

Another statistic which has been used (Holmquist, 1975; Holmquist and Moise, 
1975) to describe overall compositional nonrandomness is 

20 
Q=  100 2~ Ipi - ei[ , (2) 

i = l  

where ei'was taken as Ni/61 , N i being the codon multiplicity of amino acid i in the 
genetic code table (N i is 3 for isoleucine, for example). The expectation values, 
<Z> and <Q>,  of Z and Qare nonzero, the expectation of the former being 19 and 
independent of protein length, and that of the latter being closely proportional 
to 1/x/T and hence dependent on protein length. 

Biologically Q is the sum of the excess or deficit of the experimentally observed 
proportion of each amino acid relative to the proportion expected from the genetic 
code table. Because of this direct conceptually simple interpretation, for which 
there is no clear analogue in Z, our preference has been to deal directly with Q 
or its related measure Qc: 

Qc = Q -  <Q> , (3) 

this form being chosen because Qc has an expectation value of zero if the amino acids 
in the protein examined are multinomially distributed with their expected propor- 
tion being given by the genetic code table. 

Distributions of 19X2 and Q 

Despite the conceptual simplicity of Q, the occurence of the absolute values in the sum- 
mands in Eq. 2 sufficiently complicates the calculation of statistical tables of critical 
values so that none have yet been published for determining the significance level for 
a given observed value of Q. On the other hand 19X2 ha~ the classical chi-square 
distribution with 19 degrees of freedom for which tables of critical values are readily 
available. Moreover, the significance level of each of the twenty components, 
pX i, of 19X2 , can be determined as described in Laird and Homquist (1975). Because 
of this simplicity in the mathematics of Z = 19X2, Z may be more amenable to further 
development. Cornish-Bowden and Marson (1977) have made an interesting start 
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along this line in determining < Z> for what they call a "partially random protein": 
that is a protein which contains a total of T residues for which M are essential in the 
sense that any mutation other than a synomymous one among these M residues is 
fatal, while the compositon of the remaining T - M  residues are multinominally 
determined. 

Estimating the Effects of Natural Selection 

Because any pattern of amino acid compostion, nonrandom or random, could have 
resulted from the superposition of various selective factors, it is not in principle. 
possible to isolate the selective component from the stochastic (Holmquist, 1976) 
using protein sequence data alone. 

It is meaningful however to consider one by one the individual constraints upon 
amino acid composition which result from the interplay between individual well- 
defined components of natural selection and particular well-defined stochastic pro- 
cesses, and to ask, and answer, the question "How much of the experimentally observed 
data can be explained by these posited components?" 

As a concrete illustation of this approach let us posit for the stochastic component 
that amino acid composition is multinomially determined. For the selective component 
we consider two possibilities: the expected frequency of each amino acid is 
Hypothesis 1) proportional to its codon multiplicity in tbe genetic code table. 
Hypothesis 2) proportional to its average natural abundance in proteins. 

It is worth noting that because the multinomial distribution is a function of the 
expected frequencies of the twenty amino acids, even at this elementary level, which 
is the most simple possible consistent with remaining at all faithful to the biology, the 
stochastic and selective components are not separable and it is accordingly meaningless 
to ask which is more important: both are. 

Taking as a measure of the overall nonrandomness Q (Eq. 2), because we are familiar 
with it (other measures such as the Z values of Cornish-Bowden and Marson (1977) 
or the compositional entropy D 1 of Gatlin (1974) or the somewhat similar measure S 
of Vogel (1975) lead to analogous results), the expectation value of Q, <Q>,  and 
the population standard deviation OQ can be calculated under the two hypotheses 
by Monte-Carlo simulation (Holmquist and Moise, 1975), or analytically (Cornish- 
Bowden and Marson, 1977). Expected values of Q under the two hypotheses are in 
Table 1. The average natural abundance of each amino acid was calculated for 81 
protein families (Table 2) comprising 189 individual sequences, and is per 61 codons 

Alas.3 Arg2.4 Asn3.0 ASP3.6 Cysl.5 Gin2.6 Glu3.5 GIY4.7 His1.3 Ile3.4 Leu4.5 
Lys4. 2 Met1. 0 Phe2. 3 Pro2. 3 Ser4. 2 Thr3. 6 TrP0.8 Tyr2. 6 Val4. 2. These frequencies 
do not reflect the codon multiplicities for each amino acid as given by the genetic 
code table. We have described this phenomenon for a somewhat smaller collection 
(68 families) as selection against the genetic code (Jukes, Holmquist, and Moise, 1975). 
For the present collection this phenomenon is graphically depicted in Figure 1. 

From its definition Q must lie between 0 and 200. The highest value achievable in 
practice is 197 for polytryptophan (Cornish-Bowden and Marson, 1977). Note in 
Table 1 that even under the first hypothesis expected values of Q are greater than zero, 
because the finite length of real sequences prevents the observed number of residues 
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Table 1. Expectation value <Q> and polulation standard deviation aQ (in paren- 
theses) for different protein lengths T (in residues) under two hypotheses 

T Code-Random a Abundance-Random b 

1 187.3(5.35) 188.8(5.00) 
2 175.7(7.66) 177.9(7.31) 
3 165.0(9.67) 168.5(9.06) 
4 154.9(10.66) 159.0(10.55) 
5 146.1(11.84) 151.0(11.69) 
6 136.7(12.66) 142.1(12.77) 
7 128.7(13.24) 134.7(13.30) 
8 121.6(14.03) 127.8(14.46) 
9 114.5(14.09) 120.7(14.59) 

10 107.7(14.91) 114.5(15.27) 
11 103.9(13.93) 109.9(14.69) 
15 88.2(13.30) 95.1(14.04) 
20 77.1(11.94) 83.8(12.82) 
40 53.7(9.98) 63.4(9.87) 
60 42.2(7.88) 53.9(8.98) 
80 37.8(6.81) 50.2(7.92) 

100 33.7(5.97) 47.4(7.25 ) 
140 28.4(4.82) 43.8(6.23) 
220 22.6(3.92) 40.3(5.01) 
300 19.3(3.52) 38.7(4.37) 
360 17.6(3.32) 37.8(3.92) 
400 16.7(3.19) 37.4(3.92) 
500 15.0(2.60) 36.7(3.68) 

oo 0(0) 33.86(0) c 

a Amino acids were generated with a frequency proportional to their codon multi- 
plicity in the genetic code table. The results are plotted in Figure 2 (lower solid 
curve ) 

b Amino acids were generated with a frequency proportional to their average 
natural abundance in proteins (see text). These results are plotted in Figure 2 
(upper solid curve) 
For each protein of T residues, 1000 sequences of length T were generated and the 
average Q and standard deviation for these 1000 sequences were calculated. Con- 
vergence was satisfactory, the values at 500 and 1000 iterations being within 
about 1% of each other 

c This value is exact as it was calculated directly from the differences between the 
natural abundance frequencies and the genetic code table frequencies and not 
by simulation 

of  a part icular  amino acid f rom always assuming a value which is an integral mult iple  

of  its codon mult ipl ici ty.  Even for  prote ine  whose lengths are integral mult iples  o f  61, 

statistical scatter  will rarely permit  all twen ty  amino acids to be present  at exact  

mult iples  of  their  codon mult ipl ici t ies  as given in the genetic code table. The value for  

< Q >  at T = oo (last entry,  33.86, of  co lumn 3 in Table  1) for the  second hypothesis  

(abundance-random) does not  tend to zero because in the defini t ion of  Q (Eq. 2) the 

e i are the code-random not  abundance- random expec ted  frequencies.  This convent ion 
¢ 

was chosen because the e i are stable, i.e. t rue constants,  whereas the  natural  abundances 
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Fig. 1. Selection against the genetic code. The ordinate expresses the excess or deficit of the 
observed number n of residues of each of the twenty'amino acids relative to the expected number o 
n e of the collection of proteins in Table 2. The vertical bars span one standard deviation 

shift somewhat  depending on the data col lect ion f rom which they  are culled. The ap- 

p rox imate  inverse dependence  of  Q on the square-root  of  protein length is i l lustrated 

by the  solid curves in Figure 2. 

Exper imenta l  values of  Q (the open circles in Figure 2) were calculated for  this 

col lect ion of  81 protein families, no family  being represented more  than once in this 

col lect ion which represents a cross-section of  biological  func t ion  and specifici ty 
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Fig. 2. Q as a function of protein 
length; open circles are the ex- 
perimental values for 81 protein 
families, the lower solid curve 
represents the values expected for 
a protein of the given length under 
Hypotheses 1 in text, and the 
upper solid curve the values ex- 
pected under Hypothesis 2 
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Table 2, Q£ values for 81 protein families comprising 189 individual sequences 

Protein a Length in Residues Q£ 

Actin 357 0 
Acyl cartier protein 77 19 
Adrenodoxin 114 2 
Alcohol dehydrogenase 374 4 
c~-S 1-casein 199 6 
Aspartate aminotransferase 412 -11 
Amyloid protein 76 16 
Avidin 128 10 
Azurin 129 5 
~/-casein 209 19 
Carbonic anydrase B 260 - 8 
Carboxypeptidase A 307 - 4 
Coat protein 117 1 
Chymotrypsinogen A & B 245 0 
Cytochrome b 5 90 7 
Cytochrome c 106 12 
Cytochrome c 2 112 18 
Cytochrome c 3 102 20 
Cytochrome c551 82 12 
Cytochrome c 551.5 68 31 
Cytochrome c 553 82 41 
Deoxyribonuclease A 257 - 5 
DNA binding protein 88 - 9 
Elastase 240 1 
Endolysin 154 - 5 
Ferredoxin plants 97 2 
Ferrodoxin bacterial 55 22 
Fibtinopeptide A 15 1 
Fibtinopeptide B 20 17 
"Fibrous" proteins 983 62 
Flavodoxin 137 21 
Gastric juice peptide 10 - 13 
3,-crystallin 165 2 
Glyceraldehyde-3-P O4-dehydrogenase 133 9 
q-l-acid glycoprotein 181 7 
Glutamate dehydrogenase 499 1 
Haptogtobin 114 18 
Hemerythrin 113 16 
Hemoglobin 143 9 
High potential iron protein 86 14 
Histories 123 4 
Immunoglobulin 160 - 2 
Keratin 98 11 
Lactalbumin 123 12 
Lactogen 191 2 
Lactoglobulin 162 10 
Lac-repressor 347 - 2 
Leghemoglobin 142 15 
Lipoprotein 79 14 
Luteinizing hormone a-chain 96 9 
Lysozyme 141 1 
aqytie protease 198 10 
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Table 2 (continued) 

Protein a Length in Residues qc 

Muscle calcium binding protein 108 35 
Myelin membrane protein 170 6 
Myoglobin 152 17 
Nerve growth factor 118 2 
Neurotoxins 64 8 
Neurophysin II 97 14 
Protease inhibitor proteins 84 8 
Papain 212 5 
Penicillinase S.aureus 257 18 
Penicillinase B.licbeniformis 265 7 
Pepsin 327 6 
Phospbolipase A 129 2 
Proinsulin 81 7 
Prolactin 198 -11 
Protamines 34 45 
Nuclease 149 9 
Ribonuclease 125 4 
Ribonuclease (Bamasc) 110 0 
Ribonuclease T ~ 104 9 
Ribosomal protein 50S A1 120 42 
Rubredoxin 53 18 
Serum albumins 580 16 
Steroid-A-isomerase 125 10 
Subtilisin 275 14 
Thermolysin 316 9 
Thioredoxin 108 8 
Tryptophan synthetase 267 3 
Triose phosphate isomerase 248 8 
Trypsinogen 229 11 

aThe specific sequences used are the 78 in Table 1 of Holmquist and Moise (1975) 
plus DNA binding protein (Nakashima et al., 1974), "fibrous proteins" (myosin, 
collagen, elastin, and silk fibroin; see Table 5-3 in Lehninger, 1970), and the 
serum albumins (bovine fraction V, Brown, 1975; and human serum albumin, 
Behrens et al., 1975) 

(see Table 2). It is clear that neither hypothesis adequately explains the experi- 

mental data, though as might be expected, the second does better than the 

first. 
In practical terms Figure 2 tells us that the stochastic component determining 

protein composition is more complex than a simple multinomial distribution would 

lead us to believe and/or there are additional selective constraints determining 

protein composition beyond the limits imposed by the natural-abundance of each 

amino acid. The distinction between "essential" and "non-essential" amino acid 

residues mentioned above in connection with the recent work of Cornish-Bowden 

and Marson (1977) may help in understanding these additional constraints. 

The excess of the experimentally determined Q value and that expected from 

the natural abundance (Hypothesis 2) of each amino acid (the difference between 
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Fig. 3. The excess, O~, of the experimentally dete/Tnined Q value and that expected from the 
natural abundance of each of the twenty amino acids and finite protein length, as a function of 
protein length; open circles are the experimental values. Dashed lines represent the 2.326 a 
margins and are given to give some idea of the expected scatter at each length. Because Q~ 
is not normally distributed, these limits are not meant to be used to determine statistical 
significance levels 

the ordinates of the experimental points and the upper curve in Fig. 2), designated Qc 
is plot ted in Figure 3 ; the values for particular proteins are in Table 2. The mean experi- 
mental O~ value is 9.7 and the populat ion standard deviation is 12.5. 

The mean excess, <Qc > , of the experimentally determined Q values over that  
expected on the basis of Hypothesis 1) was previously shown (Holmquist and Moise, 
1975) to be 24,3, with a population standard deviation of 10.3. Cornish-Bowden and 
Marson (1977) are thus correct in their observation that Holmquist and Moise (1975) 
probably underestimated the magnitude of the finite sampling component  of Q by using 
code-random frequencies rather than frequencies proport ional  to the natural abundance 
of each amino acid, the quantitative effect on the finite sampling component  being 

given in Table 1, and leading to the lower mean of 9.7 vs. 24.3 and lower individual Qc 
values (Table 2) relative to the Qc values calculated by Holmquist and Moise (1975). 

Is the Observed Qc Mean Significantly Different from That Expected from the Natural 
Abundance of  the Amino acids? 

In the preceding section the basic experimental  results of measurements on amino acid 
composit ion were set forth, and it was suggested that  there are additional selective 
constraints determining protein composit ion above and beyond those imposed by the 
natural abundance of each amino aicd. 

In this section the justification for the existence of these additional selective con- 
straints is given. 

As the population of Q~ values has a finite variance and mean, and here the sample 
size is large (n = 81), the central-limit theorem applies (Mood, 1950a) and the 
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distribution of the mean approaches the normal distribution with variance o2/n. 
Estimating a by the (unbiased) population standard deviation, the standard deviation of 

the mean is x/[ (12.5)2/811 or 1.39. The 99% confidence limits on this mean are given by 

2.58 amean. Thus <0~> = 9.7 + 3.6. To check that the sample size was indeed large 
enough for these calculations to be valid, one may note that in the limit of large n, the 
near normalcy of the distribution of the mean implies that the sample means be distribut- 

ed approximately symmetrically about the true population mean. In this limit the ex- 
pectation value of the median of the distribution must approach the mean itself. And 
provided the distribution can be reasonably approximated by a continuous distribution 
function which is not grossly asymmetrical, the sample median will be near the sample 
mean. To see if this is true for the sample considered here, the (unrounded) Qc values, 
from which the rounded values in Table 2 were obtained, were ordered from the largest 
to smallest; the median, u, was found to be u = 8.2. It is not necessary to know the 
distribution of Qc to find confidence limits for the median as these are readily found by 
"distribution-free" or "non-parametric" methods which in the present case place 99% 
confidence limits on the median of • = 8.2 -+ 2.9 (Mood, 1950b), in reasonable agree- 
ment with the values found from the central-limit theorem above. 

From this anaysis, it is clear that the mean of the experimental distribution of Q'c 
is not zero as would be expected under Hypothesis 2. However in order to show con- 
clusively that the observed mean differs significantly from zero, i.e., could not  with 
reasonable probability have arisen from sampling error if Hypothesis 2 were true, the 
mean and standard deviation of a sample set of 81 proteins, with the specified lengths 
in Table 2, was calculated by Monte-Carlo methods under Hypothesis 2. Four such 
replications gave mean Qc values of -0.50, 0.73, 1.12, and 1.04. The combined mean 
and population standard deviation were 0.60 and 13.17 respectively; the standard 
deviation of the mean was 0.75 in satisfactory agreement with the central-limit theorem 
value of the population standard deviation divided by the square root of the sample 
size: 13.17 ~/(81 x 4) = 0.73. (This serves as an additional check that the sample size 

is large enough for the central-limit theorem to hold.) The probability that the observed 
difference in means of 9.1 (i.e. 9 .7-0 .6)  could have arisen under Hypothesis 2 is less 
than 10 -8 (t = 5.76). 

The natural abundances of the amino acids thus does not suffice to explain the ex- 

perimentally observed range of amino acid compositions. Additional selective constraints 
exist. Only in a few fortunate situations are there sufficient data to point directly at 
the nature of these additional constraints: one such case is in the hemoglobins, where 

a consideration of the contact regions between the 0~- and/3- chains, clearly shows some 
of the additional constraints that can be involved (Vogel and Zuckerkandl, 1972; 
Goodman et al., 1975). 

Discussion 

In interpreting the above values, it is necessary to distinguish clearly between the 
magnitude of selective effects, and the effectiveness of selective effects. A small structural 
stress in an airplane wing can have a quite effective (and fatal) "selective" effect. 
Whereas in population genetics it makes sense to talk about the strength of selection in 

terms of the magnitude of the selection coefficient s, because the magnitude of s implies 
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a definite rate of dynamic changes in the population leading to some final equilibrium 
values, in discussing compositional changes, the measures Z, Q, or S do not play a 
role analogous to that of s. These measures do not imply anything about the dynamic 
changes in amino acid composition as evolution proceeds; rather they summarize the 
resultant of these changes at the present time as observed experimentally in protein 
sequences isolated from contemporary organisms. It is thus necessary to clearly 
maintain both the real and semantic distinctions between the terms magnitude, 
strengtb, and effectiveness. They are not synonymous, and particular restraint 
should be exercized in drawing analogies and using'terms developed in other disci- 
plines in situations in molecular studies to which they do not correctly apply. Just 
as the observation of  randomness or near-randomness in some measured character 
does not imply selective neutrality or near-neutrality, the observation of a character 
of small magnitude does not imply its impotence. 

A Qc value of 24, the excess of the observed Qvalue beyond that expected from 
the genetic code table, is reasonably called moderate, and a Qc value of 9.7, the 
excess of the observed Q value beyond that expected from the natural abundance of 
the amino acids is reasonably called small. 

It is not reasonable to "wave these figures away" by stating that these low values 
"....may simply reflect the fact that grossly abnormal compositions are required to 
produce high values of the index." (Cornish-Bowden and Marson, 1977). The com- 
positional experimental data are quite clear: glossly abnormal compositions simply 
do not occur, with the infrequent exceptions of highly specialized proteins such as 
the histones. The compositional deviations are small, on the average, and this is 
fully compatible with selection pressure to maintain these small deviations. Bigger is 
clearly not better in this case. 

Why Large Deviations from Compositional Norms Are So Rare 

Earlier we have stated that the small magnitude of compositional deviations may be the 
result of selection for molecules with high potentials for adapting to environmental 
changes and thus is no evidence for selective neutrality or otherwise weak selective 
effects. (Holmquist, 1975, Holmquist and Moise, 1975). In this view selection has 
been for those structures having compositions not far displaced from the composi- 
tional norm given by the natural abundances of the amino acids, and adequate 
selective reasons exist to explain these deviations (Jukes, Holmquist, and Moise, 1975). 

Another reason also exists. The function of a protein is determined importantly 
by its three-dimensional structure. There exists a subset of sequences, consisting of 
a great many primary amino acid sequences, and hence compositions, which are com- 
patible with this three dimensional structure within a given range of compositional 
limits not far from the norm. It is thus unneceassary to select for molecular forms 
outside this subset expect for the most specialized functions. Indeed since such grossly 
compositionally abnormal forms are rare, they have clearly been selected against in 
most cases. 

Within a given protein family, selection has been still stronger, narrowing the sub- 
set of near abundance-random sequences still more as evidenced by the covarion 
estimates of  Fitch and Markowitz, (1970), our own estimates of the number of 
varions T 2 (Moore et al., 1976; Holmquist et al., 1976) and the calculation of the 
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number of essential residues M for a partially random protein by Cornish-Bowden and 
Marson (1977). 

Conclusions 

Darwinian selection is fully compatible with the observed moderate deviations from 
the genetic code table frequencies and small deviations from the natural abundances 
of each amino aicd. These small to moderate deviations are not an artifact of the 
mathematical structure of the various measures of compositional nonrandomness now 
in use, but reflect positive Darwinian selection for molecular structures not far from 
the norm. All of these quantitative measures D 1 (Gatlin, 1974) ; Q (Holrnquist, 1975 ; 
Holmquist and Moise, 1975), compositional entropy S (Vogel, 1975), and Z, i.e., 
chi-square, (Cornish-Bowden, 1977) are consistent with respect to the weak to 
moderate magnitude of the compositional deviation, and in attributing them to positive 
Darwinian selection for functional structures. It appears that quantitatively minimal 
adjustments away from the average composition are necessary to maintain very dif- 
ferent protein functions. Though small in magnitude, these deviations are.effectively 
selected for; otherwise the occurence of proteins with compositions more deviate from 
the norm would be commonplace rather than rare. 
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