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Summary. A procedure is presented that forms an 
unrooted tree-like structure from a matrix of  pairwise 
differences. The tree is not formed a portion at a time, 
as methods now in use generally do, but is formed en 
toto without intervening estimates of  branch lengths. 
The method is based on a relaxed additivity (four-point 
metric) constraint. From the tree, a classification may 
be formed. 
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Introduction 

It is frequently the task of  investigators to represent 
a collection of  items or categories in a simple but struc- 
tured fashion that shows how those items may be related 
to each other. The items or categories may be the lan- 
guages of  linguistics, psychological traits, economic 
factors, medical diseases, anthropological races, eco- 
logical niches, or botanical species, among others. Such 
structures are commonly adduced starting from a matrix 
that contains a measure of  the relationship among the 
items. The degree of  relationship may, broadly, be either 
one of  similarity or dissimilarity since one is transform- 
able into the other. There are many ways of  producing 
such a structure (Sneath and Sokal 1973, Hartigan 
1975). They are all sequential procedures in the sense 
that the structure is built in a piece-meal fashion with, 
1, the various items being added one at a time to the 
growing structure in agglomerative procedures or, 2, 
the amorphous whole being successively subdivided by 
some divisive procedure, both on the strength of  one or 
more criteria that varies from procedure to procedure. 

I shall detail a procedure that is unique in that it prod- 
uces a structure in whole, rather than sequentially. 

The structure that results from the different proce- 
dures may take many forms, but I shall restrict myself 
to a tree structure in which the items to be classified 
are at the tips of  branching structures such as those 
shown in Fig. 1. As a biologist interested in evolution, 
my favorite trees are phylogenetic trees and geneal- 
ogies. Such trees are normally rooted, that is, some point 
on the tree is marked to show the historical origin or 
common ancestor of  the items at the tree tips. The 
procedure I shall present does not require that such a 
root exist and provides no information on its location 
if it does exist. The method simply provides a tip-la- 
belled, unrooted, bifurcating branching structure of  rela- 
tionship, i.e., a labelled topology. Placement of  a root, 
if one is desired, is independent of  the creation of  the 
branching structure and is left to the investigator. 
Branch lengths may be assigned to the segments of  the 
tree to depict the distances between the objects under 
study but that is also a separate task not discussed herein 
and readers are free to use their own favorite method 
for that purpose as well. A classification scheme inheres 
in the tip-labelled topology if some rooting point, arbi- 
trarily or otherwise, is selcted. That transformation of 
a tree to a classification is also left to the reader. 

While the method is general in that it can be used on 
data of  diverse origin, this procedure was initially moti- 
vated by a general desire to understand evolutionary 
realtionships. It may therefore be particularly suited for 
data that resulted from a branching or Markov process. 
Moreover, to aid in understanding the method, I shall 
make its exemplification concrete by using specific 
biological terminology and examples. In particular, I 
shall be interested in the relationships among a set of  
animals, the taxa (categories) that are to be placed at 
the tips of  the unrooted topology. The measure of 
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Fig. 1. To the left and right of 
the asterisks are shown two 
hypothetical evolutionary trees 
leading to four sequences shown 
at the branch tips. The number 
and branch location of the 
changes (A -~ C) are the same in 
both trees but their location 
causes the number of observable 
differences between the c~ and 6 
sequences to differ so that the 
table of differences on the left 
is additive while those on the 
right are not 

relationship between two taxa will be a distance con- 
ceived as the number of  differences between some genes 
from those two taxa, the differences arising from 
changes that occurred in the lineages since the taxa 
had a common ancestor. 

Method 

Example. Consider the part of  Fig. ,1 to the left of  the 
asterisks. It is intended to depict  a hypothet ical  ancestral 
gene sequence of  22 A's  evolving with changes to give 
rise to four descendent sequences (a,/3,  7 and 6) all of 
which differ, one from another and are the source of  
our measure of distance. The amount of  change that 
occurred in each line of  descent is shown on the tree. 

The four sequences at the tips may be examined 
pairwise and the number of  differences in the corres- 
ponding (homologous) positions counted. The result is 
shown in the lower left hand port ion of  the matrix. The 
problem posed by this paper is how one might recover 
the branching topology of  the tree given only such a 
matrix. This may occur when the differences are de- 
tected as melting point  lowerings (DNA) or immuno- 
logically (proteins). 

To the right of  the asterisks in Fig. 1 is shown a 
different example which has, nevertheless, the identical 
amount  of  change in the various branches of  the tree. 
The matrix of  pairwise differences is not  the same how- 
ever. In particular the amount  of  observed difference 
between a and 6, d(a,6), equals 14 rather than 22. It 
is instructive to understand the basis for the difference. 

The data on the left of  Fig. 1 are perfect or "addit ive" 
data in that i f  one were to determine a phylectic or path 
distance, p(i,j), for any pair of  taxa i and j, by  summing 
the values along the branches of  the tree required to 
connect i to j, one would find that P0,J) = d0,j) for all 
i and j. I f  real data were to be so kind to be of  this form, 
our task of discovering the underlying topology would 
be trivial because additive data conform to the additive 
condition (Dobson 1974). 

d(A, B) + d(C, D) ~< d(A, C) + d(B, D) -- d(A, D) 

+ d(B, C) (1) 

for s o m e  labelling of  the tree topology. Note that  
there are only three distinct ways of  assigning the taxa, 
a, fl, 7, and 6, to the four tips of  the tree, remember- 
ing that  reflections and rotations about the nodes 
where three branches meet do not alter the topological 
relationships of  the taxa. Those three possible trees each 
have two pairs of tree neighbors 1 where neighbors 
are defined as two taxa separated on the tree but  a single 
node and two branches. The three parts of  the additive 
condit ion may be viewed as representing the sum of  
distances between the two neighbor pairs of  the three 
possible ways of  producing neighbors by assigning taxa 
to the tips of  the tree. For  the left-hand data of  Fig. 1, 
the additive condition is shown as 8 + 8 < 14 + 14 = 22 
+ 6. Since the two 8 values are from d(a,/3) and d(7, 5), 
it is clear that  the correct labelling of  the topology re- 
quires that  a and fl and that  3' and 6 be neighbors. This is 
the "historical t ru th"  we were seeking. Since this addi- 
tive condit ion is true for additive data for every subset 
of  four taxa regardless of the total  number of  taxa in the 

data set, the repeated application of  the additive proper- 
ty will, with one exception, unambiously resolve the 
topology into a strictly bifurcating labelled tree. The one 
exception is when all three sums are equal. In that case, 
all four taxa are equally neighbors. Said differently, the 
branch connecting the two pairs of  neighbors is of 

length zero. 
What are the conditions required for an evolutionary 

process to produce additive data? Let us define each po- 
sition in a sequence, such as seen in Fig. 1, as a character 
and the specific letter (A, C, G, T or whatever) that 
occurs in that posit ion as its character state. Additive 
data for the most parsimoniously evolved topology 
result if and only if  no character changes its state more 
than once. Unfortunately,  reality perversely refuses to 
provide us with data from which a matrix of  additive 

distances derives. 

1 This material was first presented at the annual meeting of the 
Classification Society, Boulder, Colorado, June 3, 1980. There, 
Douglas Carroll, to whom I am indebted, called my attention 
to the paper by Sattath and Tversky (1977), which also exam- 
ined four objects at a time within these same "additive" terms 
and it is from their paper that the term neighbor derives 
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Let us now examine the non-additive data on the 
righthand side of  Fig. 1. The causes of  the non-additivity 
are the parallel changes of  the central four characters 
from state A to state C in the descent to a and to 6. 
The result is that eight of  the actual changes between 
a and 6 produce no apparent sequence differences, the 
four central characters having identical derived character 
states in both taxa. One can also readily illustrate non- 
additivity using changes of  character states that reverse 
the original change (say C to A) or which make a change 
to a new character state (say A to G or C to G). 

If  we now examine the resultant matrix of  differences 
for the sums of  the three possible pairs of  neighbor 
distances we discover that 8 + 8 < 6 + 1 4 < 1 4 + 1 4 .  
This proves the data are non-additive since the two 
right-hand sums are not equal. However, we can see that 
the "historical truth" is still identifiable in that the 
left-hand sum still identifies a and ~ as neighbors as well 
as 3' and 6. We therefore pose the relaxed additivity 
condition. 

tween the interior nodal sequences become less and the 
number o f  character state changes in the four branches 
connecting the interior nodal sequences to the tips 
become greater, but the overall power of  this approach 
would seem to be a great improvement over current 
methods. 

To encompass problems of  the type created by 
multiple character state changes in a single character, 
we modify the neigborliness unit to allow for the case 
where two specific pairs of  taxa can't be assigned to the 
A, B and C, D of the relaxed additivity constraint 
because the data give the relation d(A, B) + d(C, D) 
= d(A, C) + d(B, D) < d(A, D) + d(B, C). In such a case 
the two units of  neigborliness must be distributed 
equally among (A, B), (C, D), (A, C) and (B, D), or 
one-half each. If  the data conform to the relaxed addi- 
tivity constraint in the form d(A, B) + d(C, D) = d(A, C) 
+ d(B, D) = d(A, D) + d(B, C), then all six pairs share 
equally one-sixth each of  the two units of  neighbor- 
liness. 

d(A, B) + d(C, D) ~< d(A, C) + d(B, D) ~< d(A, D) 

+ d(B, C). (2) 

We then define, for any four taxa and their six associ- 
ated pairwise d&tances, that those two pairs o f  taxa 
that must be equivalenced to A, B, and C, D in order to 
satisfy the relaxed additivity condition, have one unit 
o f  neighborliness each. We will use this unit subse- 
quently to quantify degrees of  neighborliness when more 
taxa will require more complicated tree structures. 

Note that in order to misidentify the true neighbors, 
there must be more than twice as many parallel (or 
back) changes in two of  the branches leading to two 
non-neighbor taxa as there are differences between the 
nodal sequences of  the true neighbors because the two 
right-hand sums of  equation 1 differ from the left-hand 
sum by exactly twice the length of  the interior interval. 
In Fig. 1 there are six differences between the nodal 
sequences so there would have to have been more than 
12 parallel character state changes in the descent to a 
and 6 to get d(a, 6) + d(/3, 3') < d(a, 13) + d(3', 6) and 
hence misidentify the true neighbors. If  parallel and 
reverse changes of  character state were forbidden and 
only changes to new character states allowed, there 
would have to be more than 24 such changes before 
misidenfification of  neighbors occurred. Moreover, 
there would have to be even more than 12 parallel 
changes if there are additional parallel changes involving 
the neighbor pairs of  taxa. 

Using All Taxa; Meal Cases. We now approach the prob- 
lem of treating more than four taxa in the same data set. 
Consider Fig. 2, with its five taxa, and the tree showing 
their relationship. There are five possible ways of  selec- 
ting a subset of  four taxa. For each subset of  four, 
consider the tree pruned down to contain no taxa 
except the selected four and no branches except those 
required to connect them and determine which pairs 
are neighbors. We shall find that a, /3 are neighbors 

all three times that they are both present in the subset of  
four (the same is true for 5, e), a, 3' (and/3, 3') are 
neighbors only that one time when 6 and e are the 
other members of  the four-set while 7, 6 (and % e) are 
neighbors only that one time when a and /3 are the 
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Modification o f  the Method. The conditions required 
for misidentifying neighbors seem sufficiently extreme 
that neighborliness might well be a powerful means of  
deciding tree structure. The conditions become less 
extreme, of  course, as the number of  differences be- 

Fig. 2. A hypothetical reconstruction of changes along the 
branches of a tree that gives phyletic distances (upper right 
of matrix) that are never less than the original distances (lower 
left of matrix). The length of the tree is minimal and its topol- 
ogy matches the neighborliness values (shown in the upper 
right half of Table 1) obtainable from the original distances 



Table 1. In the upper half of the matrix are the neighborliness 
values for the interior distances in the lower half of Fig. 2 

a ~ 3' ~ e 
** 3 1 0 0 

0 ** 1 0 0 
3" 5 5 ** 1 1 

10 10 5 ** 3 
e 10 10 5 0 ** 

other members o t  the four-set. Counting up the 10 
units from those five ways would give the results shown 
in the upper right half of  Table 1. These numbers 
are the ideal neighborliness values for the tree in Fig. 2, 
that  is, the values one gets by inspection of  the tree as 
we just  found. Now examine the distance data in the 
lower left of  the matrix and reexamine the same five 
four-sets of taxa, assigning neighborliness units in 
accord with the relaxed additivity condit ion (eq 'n 2). 
Again the result is that in the upper right half of  Table 
1. Thus the data imply the tree structure via the relaxed 
addit ivity constraint. This is an instructive case because 
the distance data do not  even obey the triangle in- 
equali ty for the sets [a, /3, 7], [/3, 7, 6] and [% ~, e] 
since, for example, d(a,  13) + d(/3, 7) < d(a, 30. Thus the 
data are not  even a simple metric ye t  the neighborliness 
units lead to the intended tree whose phyletic distances 
are shown in the upper half of  the Fig. 2 matrix,  illus- 
trating a robustness even to large perturbations of the 
sort that nature often introduces into real data. 

In the general case for t taxa, one must examine 
t ! / [ ( t ~ ) ! 4 ! ]  = s sets of four taxa with 2s units of  

neighborliness being distributed among the various 
pairs of  taxa. The maximum neighborliness any pair 
of  taxa can have is ( t - 2 )  ( t - 3 ) / 2  since that  is the 
number of  ways of  selecting the other two taxa from 
the remaining t - 2  taxa. At  least two distinct pairs of 
taxa must have ideal neighborliness values that large 
since any tree structure must  have at least two taxa 
(and at most t /2) separated by  a single interior node. 
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Each taxon can be paired with every other taxon in t - 1  
ways and the neighborliness values for any taxon 
over its t - 1  possible neighbors is always the integral 
value of  4s/t.  

Non-ideal Neighborliness Values. Despite the robustness 
of  neighborliness, real data may nevertheless yield 
neighborliness values that do not  ideally match any 
particular tree. An example of  such data is shown in 
Table 2 where, in the lower left half of  the matrix,  are 

immunoglobulin distances described by Sarich (1969) 
for seven carnivores and a monkey.  In the upper right 
half  of  the matrix are the neighborliness values for 
those distances. What tree then is closest to the neigh- 
borliness values? 

One might determine the ideal neighborliness values 
for the various possible trees to see which ideal values 
most closely correspond to those found. One might 
sum the absolute differences between the observed and 
ideal values and conclude that tree is best for which the 
sum is least. The best tree by  that criterion is shown 
in Fig. 3. The sum of  the absolute differences is 28. 
The second best tree, which interchanges the dog and 
the raccoon, and thus making the dog and bear nearest 

neighbors, gives a sum of  absolute differences of  30. 
That sum for the third best is 46 and involves inter- 
changing the mink with the sea lion-seal group. 

The advantage of this criterion is its simplicity, 
namely minimizing the sum of the errors where each 
two errors means that some subset of  four taxa im- 
properly identified two pairs of  taxa as neighbors with 
respect to the putative tree. The disadvantage is that ,  for 
large numbers of  taxa, it is not  clear how one can be sure 
one has tested all the alternative tree structures that  
are reasonable candidates for being closest to the data. 
To solve this problem I now introduce a novel unbiased 
procedure for adjusting the observational data to make 
them more additive in character. This requires an exami- 
nation of the length of  the interior branches connecting 
the two pairs of  neighbor taxa. 

Table 2. Immunological distances a and neighborliness values for eight mammalian b taxa 

Raccoon Bear Dog Seal Sea Lion Mink Cat Monkey 

Raccoon 13.0 9.0 2.5 1.5 6.0 2.0 1.0 
Bear 26 12.0 3.0 2.0 2.0 1.0 2.0 
Dog 48 32 3.5 3.0 2.0 1.5 4.0 
Seal 44 29 50 15.0 4.0 3.0 4.0 
Sea Lion 44 33 48 24 6.5 3.0 4.0 
Mink 42 34 51 44 38 9.5 5.0 
Cat 92 84 98 89 90 86 15.0 
Monkey 152 136 148 142 142 142 148 

aData from Sarich (1969) 
bTaxa are: Raccoon = Procyon Iotor; (black) bear = Ursus americanus; (domestic) dog = Canis familiaris; (harbor) seal = Phoca vitu- 

lina richardii; (California) sea lion = Zalophus californicus; mink = Mustela vison; (domestic) cat = Felis domestica; (night) monkey = 
Aotus trivergatus. The lower left half of the matrix contains the immunological distances, the upper right half the neighborliness 
values for those distances 
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Cat Bear Raccoon Dog Sea Lion Seal Mink Honkey 

Cat *~* 84 96 99 90 92 86 148 

Bear 84 *** 26 36 33 45 36 140 

Raccoon 92 26 *~* 48 45 47 48 152 

Dog 98 32 48 *** 48 50 51 155 

Sa~ Lion 86 33 44 48 *** 24 42 146 

Seal 89 29 44 50 24 *** 44 148 

M~nk 90 34 42 51 38 44 *** 142 

Monkey 148 136 152 148 142 142 142 *** 

Fig. 3. Proposed phylogeny of seven carnivores with 
the monkey as the out-group. Topology is that ob- 
tained from neighborliness values using the internal 
distances. Phyletic distances are shown in the upper 
right and the original immunological distances in the 
lower left. The topology is identical to that proposed 
by Farris (1972) although its length, at 282, which is 
truly minimal, is three units less than his tree. The 
scientific names of these taxa may be found in 
Table 2 

Interior Branch Lengths. If  the data were truly additive, 
then we could determine exactly the length (distance) 
associated with the interior branches. For example, the 
interior branch length in Fig. 1, which is 6, is necessarily 
one-half the difference between one of  the two right- 
hand sums in the additivity condition (eq'n 1) and the 
left-hand sum, in this case (28-16) /2 .  

Under the relaxed additivity condition (eq'n 2) we 
may take as the estimate of  that branch length, one-half 
the difference between the largest and smallest sums. 2 
In the right-hand side of  Fig. 1, the sums are 16, 20 and 
39 so that this estimation procedure gives us the "true" 
value in this case, but in realistic data this cannot be 
guaranteed. It is true in this case because those changes 
producing non-additivity lie in the terminal branches (a 
necessary but not sufficient condition). 

Now consider the problem in Fig. 2. If  we wish to 
determine the connectiing branch length for a particular 
non-neighbor pair of  taxa, say a/c, it is sufficient t o  
examine the data in Table 1 for the four-set a438e. That 
leads to a value of  (30-10) /2  = 10, which happens 
to be "correct" because I chose the branch lengths to 
fit the data in Table 1 in a way that would minimize 
the length of  the branches. 

It needs to be recognized, however, that choosing the 
a/38e four-set was based on knowing the topology. 
In the realistic case, it is the topology we wish to dis- 
cover. Consequently we cannot know beforehand which 

2 For Figs. 2, 3 and 4, the lengths of the branches were in fact 
determined using Linear Programming (hence are guaranteed 
to be minimal), not by using the estimating method described 
here 

other two taxa to associate with a/e. The practical 
solution is to take all possible other pairs of taxa and 
choose the largest of  the various possible interior branch 
lengths. When this is done for the other two possible 
four-sets containing a and e, namely a/33,6 and a~/Se, we 
obtain (25-15) /2  = 5 both times. These values prove to 
be the left and right halves of  the overall interior distance 
between a and e and illustrate the reason for taking 
the largest value observed from among all four-sets in 
which the two taxa are non-neighbors. These values of  
5 are the largest calculated branch lengths for a/7 and 
7/e where a/7 and ~'/e are non-neighbors. The largest 
calculated interior banch length will henceforth be called 
the interior distance to avoid any implication whether 
one or more branch lengths are involved. 

If  the process is repeated for the taxa a and/3, we 
discover that they are always neighbors and hence the 

interior distance for them proves to be zero. The same 
is true for 8 and e. 

If  one repeats the process for every t(t--1)/2 possible 
pairs of  taxa, the results are as shown in the lower 
left half of  Table 1. Note that if the 2's and 3's on the 
terminal branches were changed to zero, these interior 
distance estimates match the actual distances on the tree, 
but this is not  always the case. Where they are unequal, 
the difference can result from the occurrence of  multi- 
ple changes in a character or the failure of  the data to 
meet the triangle inequality, d(A, C) ~< d(A, B) + d(B, C). 
The triangle condition is necessarily met if the additive, 
four-point, condition (eq'n 1) is met. 

That such pruning is useful can be seen by the carni- 
vore immunoglobulin data of  Table 2 where the neigh- 
borliness values do not correspond to any specific 
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Table 3. Internal distances and neighborliness values for eight mammalian taxa 

Raccoon Bear Dog Seal Sea Lion Mink Cat Monkey 

Raccoon 15 10 3 3 2 1 1 
Bear 4.0 10 3 3 2 1 1 
Dog 5.0 5.0 4 4 3 2 2 
Seal 13.5 13.5 13.5 15 4 3 3 
Sea Lion 13.5 13.5 13.5 0.0 4 3 3 
Mink 9.0 9.0 8.5 12.0 12.0 10 10 
Cat 31.0 31.0 27.0 30.0 30.0 24.0 15 
Monkey 31.0 31.0 27.0 30.0 30.0 24.0 0.0 

Derived from Table 2, which see 

tree structure. If however, one estimates their interior 
distances as described, one gets the results shown in the 
lower left half of Table 3. They, in turn, yield neighbor- 
liness values shown in the upper right half of the table 
and these do correspond to a specific tree topology, 
namely the one shown in Fig. 3 

Higher Order lnterior Distances. The procedure for 
finding the interior distances from the original pairwise 
distances is capable of being repeated upon the interior 
distances themselves. This may be termed a second 
order interior distance. If the first interior distances 
do not  produce neighborliness values in perfect accord 
with some tree, will the second order interior distances 
do so? The answer is that this has been observed to be 
true many times, and even when there was not  such a 
perfect accord, the agreement was greater and repeti- 
tion showed that the process was converging. The 

immunological data of Case (1978) for nine species of 
Rana frogs is an excellent example of degraded data 
since nearly 30 % (25 out of 84) of the ways of selecting 
three taxa give three distances that violate the triangle 
inequality. As might have been predicted, the first 
order interior distances did not produce neighborliness 
values in perfect accord with any tree but the second 
order interior distances, shown in Fig. 4, did. The re- 
suiting tree does not  agree precisely with the tree of Case 
(1978) nor that of Farris et al. (1979) who reanalyzed 
these data. All three analyses give reasonably similar 
results. Given the uncertain quality of the data, it is 
probably not  reasonable to try to make phylogenetic in- 
ferences from them. The neighborliness tree was, never- 
theless, superior to the trees of the other authors by 

5 6 

' 7  of T I 
auro bovl case 

R. aurora *** 0.0 5,7 

R. boy lli i0 *** 5,7 

Fig. 4. Neighborliness Tree for im- R. cascadae 13 7 *** 

munological distances from nine 
R, muscosa 12 7 7 

species of ranid frogs. The lower 
left half of the matrix contains the R. temporaria 57 50 40 
original immunological distances, the 
upper right half contains the second R. pretiosa 22 9 11 
order internal distances. The dis- R. catesbeiana 86 65 54 
tances on the branches of the tree 

R, pipiens 89 67 66 
were determined by a linear program- 
ming method (a+ is one half unit) R. tarahumarae 97 72 79 

~lusc temp ,ret 

7,2 I0,7 11,2 

7,2 10,7 11.2 

4,7 8.2 9,0 

*** 5.2 7.7 

45 *** 6,0 

15 48 *** 

48 85 54 

49 83 55 

67 107 60 

8 

8+ 

cate pipi tara 

37,5 48.5 48.5 

37,5 48,5 48,5 

35.0 46.2 46.2 

31,0 42.2 42,2 

30.0 41,2 41,2 

27,7 38.5 38.5 

*** 11,2 11.2 

54 *** 0.0 

59 48 *** 
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the independent criterion those authors used. 3. Thus the 
procedure may produce a satisfactory answer even for 
difficult data. 

Discussion 

This procedure has a number of  advantages. They in- 
clude: 
1) The use of  the relaxed four-point condition mini- 

mizes the difficulty arising from the occurrence of  
multiple changes at a single location. 

2) The procedure is not  fundamentally influenced by 
differential rates of  change in various parts of  the tree 
(although the total number of  changes may affect the 
probability of  parallel and multiple changes at a site). 

3) The method does not build the tree a bit at a time 
but gives a table of  neighborliness values that contains 
all the information necessary to define the complete 
topolgy of  a tree. 

4) The same information determines the assignment 
of  the taxa to the tips of  the preceding topology. 

5) The data need not even be a simple metric obeying 
the triangle inequality although a failure to do so 
may indicate that a clearly defined result may not  
be forthcoming (see, however, the comments below 
on iterative convergence). 

6) The order in which the taxa and the data are pre- 
sented to the algorithm are immaterial. 

This procedure also has the disadvantage that, for large 
numbers of  taxa, all possible ways of  examining four of  
them may represent considerable computing time. It 
should be noticed, however, that any pair of  taxa with 
neighborliness values of  ( t - 2 )  ( t -3 ) /2  are nearest neigh- 
bors and the iteration process may proceed on one 
less taxon in the manner of  Sattath and Tversky (1977). 

Two matters of  concern need to be introduced here. 
The first matter of  concern is the meaning and effect of  
the higher order interior distances. The meaning of  the 
first order interior distance is obvious, it is the estimated 
distance between the two nodes closest to the two taxa 
for which it is the interior distance. But it is unclear 
what the second order interior distance is inside of. If 
one is only interested in getting a structure p e r  se, then 
the meaning doesn't matter. The biologist, however, 
might be well advised at this stage of  the development of  
neighborliness to submit any tree resulting from using 
higher orders of  interior distance to some outside crite- 

3 The tree of Case differed from that in Fig. 4 by joining R. 
cascadae to R. pretiosa instead of as shown. Farris et al.'s 
tree joined R. temporaria to R. pretiosa and then the pair 
of them to R. muscosa before their joining to the R. aurorae- 
R. boylii group. Both Case (1978) and Farris et al. (1979) 
used the criterion of %SD (Fitch and Margoliash 1967) to 
judge their trees. The length of the neighborliness, Case and 
Farris et al. trees is 185,189.5, and 196.5, respectively 

rion o f  its satisfactoriness. I am myself just a bit suspi- 
cious that the repetitive process may be biased toward 
the formation of  what the taxonomists call "stringy" 
trees. Stringy trees are those with few neighbor taxa, the 
stringiest having only two pairs of  neighbors. 

The second matter is that while iterative convergence 
seems always to occur, in the sense that eventually there 
will be no further change in the neighborliness values 
(or perhaps they will cycle?), it seems nearly certain 
that data can be manufactured (or even found in the real 
world) that upon convergence will produce neighbor- 
liness values that are in perfect accord with no tree. 
The extent of  this potential problem is unknown at this 
point and must be explored. 

Failure to obtain for every data set a perfect neighbor- 
liness pattern for some bifurcating tree should not be 
regarded as a defect either in the relaxed four-point 
condition nor in any procedure that attempts to use 
that constraint for tree construction. Suppose that the 
" true" distance on some interior branch is in fact 
zero. This is the case when the divergence is tri- 
chtomous rather than dichtomous. Where the distances 
actually correspond to this condition, the result will 
be to give neighborliness values that are the average of  
the expected neighborliness values for the three different 
bifurcating trees that could result if the tr ichtotomy 
were resolved into two dichotomies. Thus, what might 
seem to be a failure of  the procedure to produce a result 
consistent with a specific bifurcating tree may simply 
indicate that the truth is a trifurcation or, more plausi- 
bly, that the data are not really adequate for the purpose 
o f  confidently deciding the issue. 

Finally, there are many ways to convert a tree into a 
classification. One may choose a root by an arbitrary 
method. It could be at some point (including a node) 
that is deep within the tree or where, for biological data, 
the common ancestor of  all the taxa is expected to be. 
The two nodes closest to this root (or three nodes if a 
node was chosen as the root and assuming that a termi- 
nal node was not chosen) determine the two (or three) 
largest divisions of  the classification and each of  them 
(node/division) gives rise in turn to two subdividions 
o f  the division. The process continues until the tips are 
reached and no further subdivision or levels of  the 
classification are required. If  this produces more levels 
o f  classification that one desires, one can always reduce 
their number (possibly with some loss of  information) 
by any rule the user desires. For example, if node X 

gives rise to nodes A and Y, and Y gives rise in turn to 
nodes B and C, one could, ignoring Y, treat A, B and C 
as all members of  the same immediate subdivision of  X. 
This may be particularly appropriate when X and Y are 
in some sense very close to each other and don't  deserve 
differentiation as different levels in the classification. 
Wiley (1979) gives an excellent discussion of other ways 
to attack this problem. The point is, this paper provides 
a novel and informative tree representation of a data 
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m a t r i x  which  can readi ly  be  t r a n s f o r m e d  in to  a phy lo-  

genet ic  hypo thes i s  b y  roo t ing  it  or i n to  a c lass i f icat ion in 

a m a n n e r  m o s t  appropr ia t e  to  the  user ' s  needs.  

Acknowledgement: Thanks are due Mark Stoneking and Damon 
Smith for technical assistance. This work was supported by 
grant number DEB-7814197 from NSF. 

References 

Case SM (1978) Biochemical Systematics of Members of the 
Genus Rana Native to Western North America. Syst Zool 
27:299 311 

Dobson AJ (1974) Unrooted Trees for Numerical Taxonomy. 
J Appt Prob 11:32-42 

Farris JS (1972) Estimating Phylogenetic Trees from Distance 
Matrices. Amer Natural 106:645-688 

Farris JS, Ktuge AG, Mickevich MF (1979) Paraphyly of the 
Rana boylii Species Group. Syst Zool 28:627-634 

Fitch WM, Margoliash E (1967) The Construction of Phylo- 
genetic Trees -- A Generally Applicable Method Utilizing 
Estimates of the Mutation Distance Obtained from Cyto- 
chrome c Sequences. Science 155 : 279-284 

Hartigan JA (1975) Clustering Algorithms, Wiley and Sons, 
Ny 

Sarich VM (1969) Pinniped Origins and the Rate of Evolution 
of Carnivore Albumins. Syst Zool 18:286 -295 

Sattath S, Tversky A (1977) Additive Similarity Trees. Psycho- 
metrika 42:319-345 

Sneath PHA, Sokal RR (1973) Numerical Taxonomy, WH 
Freeman Co., San Francisco 

Wiley EO (1979) An Annoted Linnaean Heirarchy with Com- 
ments on Natural Taxa and Competing Systems. Syst Zool 
28:308 337 

Received July 28, 1981 


