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Summary. This paper examines the possibility that the linkage arrangements 
and regulatory properties of genes may be influenced by selection. A mathemat- 
ical hypothesis is developed in order to show how selective properties of  hemo- 
globin beta chains could have influenced the linkage and regulation of their 
structural genes. The hypothesis is applied to the case of mouse hemoglobin beta 
chains. In most mice, closely-linked pairs of  loci (doublets) code for two struc- 
turally divergent beta chains in unequal amounts. Some mouse strains have singlet 
alleles, however, coding for another beta chain variant. With the mathematical 
hypothesis, one can show that selectively determined "evolutionary potentials" 
may have favored changes in proportions of major and minor chains produced 
by a doublet allele. In the extreme case, zero production of  the minor chain may 
give a selective advantage, leading to a ringlet; conversely, selection may favor 
linking another gene to the singlet locus to give a doublet. A specific prediction 
of the model is the stable maintenance under certain conditions of multiple alleles 
at regulatory loci. The concept of evolutionary potential thus suggests that selec- 
tion could have influenced the evolution of  genotypic fitnesses, in addition to 
causing changes in gene frequencies as in standard population genetics models. 

Introduction 

Studies of  hemoglobin structure and genetics have revealed the existence of  many cases 
of duplicated loci, or "doublets". In humans, there are two closely-linked loci for variant 
beta chains (/3 and 6) (Boyer et al., 1963) as well as duplicated alpha and gamma chain 
loci (Hollan et al., 1972; Schroeder and Huisman, 1974). In the laboratory mouse (Mus 
musculus), many strains have doublet beta chain loci, and doublet alpha chain loci have 
also been studied (Russell and McFarland, 1974; Hilse and PopA p, 1968). 

In adult laboratory mice, the doublet beta chain allele HbbUproduces unequal quan- 
tities of its two beta chains, fldmaj and/~dmin (80% and 20%, respectively) (Hutton et al., 
1962a,b). A systematic change in proportions of  the two chains occurs during mouse fetal 
development, in the direction of diminishing the amount of minor chain, ~dmin (Whitney, 
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Fig. 1. The hemoglobin beta chain polymorphisms of Mus musculus and Mus cervicolor. Mus 
musculus has the Hbbd-Hbb s "doublet-singlet" polymorphism. The singlet codes for/3s, while the 
doublet codes for unequal quantities of 0dmaj and t3dmin (about 80% and 20% respectively). Mus 
cervicolor has a "doublet-doublet" polymorphism. Both doublets code for the minor chain ~3cmin, 
while they differ in their major chains -/3cmaj (s-like) versus #cmaj (d-like). See Gilman (1976a,b) 
for a discussion of the sequence differences among the various mouse major and minor beta chains 

1977). This suggests that  the specific amount of minor chain ¢ldmin produced by  the 
adult animal could have adaptive significance. 

The existence of a hemoglobin beta chain polymorphism in laboratory mice also 
suggests a certain adaptive relevance to the amount  of minor beta chain produced: the 
alternative allele, Hbb s, produces no minor beta chain in adult mice. Hbb s produces only 

the 13s chain, which is closely related to 13dmaj (Gilman 1976b). I call Hbb s a singlet locus, 
because it controls the production of only a single beta chain. 

Another species of mouse, Mus cervicolor, has a genetic polymorphism for major beta 
chains similar to that for musculus chains/3s and/3dmaj, and yet  both cervicolor alleles 
are doublets (Gilman, 1976b). Fig. 1 illustrates the beta chain breeding unit alleles for 
Mus musculus and Mus cervicolor. 

Spofford (1972) has presented a mathematical hypothesis which relates the fitness 
of an organism to the microfitnesses of its various enzyme types. In this paper, that  
hypothesis is developed to show how selection could have caused the evolution of a 
doublet  gene system in which variant beta chains were produced in unequal amounts. 
The hypothesis also illustrates how selection could have led to a switch from a doublet- 
singlet polymorphism (as in Mus musculus) to a doublet-doublet  polymorphism (as in 

Mus cervicolor), or vice versa. Beta chain structural evolution is seen to lead to the de- 
velopment of "evolutionary potent ial" ,  which may favor a switch in polymorphism type, 

or a change in the proport ions of major and minor chains produced by a doublet .  

The Mathematical Hypothesis 

The model of this paper derives from the two chain hybrid dimer hypothesis of Spofford 
(1972), and it extends the hypothesis to the case of N+I chains produced by N doublet  
alleles at a single locus. Focus will be on three chains produced by two alleles. This 
three chain case is mathematically equivalent to the population genetic model  for the 
three allele balanced polymorphism maintained by selection. A biological rationale for 
the hypothesis is not  presented. It was used because it is simple, and lends itself readily 
to a discussion of the relationship between variability on a protein level and fitness on 
a genotypic level. This paper uses the hypothesis to show how selection for properties 
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Table 1. Application of the mathematical hypothesis of Spofford (1972) to 
the case of N doublet alleles a 

Doublet Major chain Minor chain Fraction of Fraction of 
allele of doublet of doublet major chain b minor chain 

B1 fll flN+l Xl l - x 1  

B2 ~2 ~N+I x2 l - x 2  

BN fiN flN+l XN 1 - x N 

aA doublet is defined as two very tightly-linked genes which produce closely 
homologous polypeptide chains; ball doublet alleles produce the same total 
quantity of beta chain (major plus minor), equal to 1 

of the hemoglobin tetramer could have influenced genetic organization and regulation 
at the hemoglobin beta chain locus. 

Genotypic Fitness Values as Determined by Molecular Properties 

Table 1 shows how the hypothesis of Spofford (1972) is applied to the case of N doublet  
alleles. Each doublet  allele B i is assumed to code for a major beta chain/3 i, as fraction 

x i of its total  beta chain, and the minor chain/3N+ 1 as fraction 1-x i. 
This model assumes a type of dosage adjustment:  each allele produces the same total  

quanti ty of beta chain. Thus, a singlet allele (producing only/3 i) is defined by setting x i 
equal to one. 

In any given animal, only two alleles are present, B. and B.. In eeneral, each red cell 
1 j "~ 

of a particular animal will have one alpha and three beta chains, Hi, ~j, and/3N+ 1. Each 
beta chain is found as the same fraction of total  beta in every red cell: X 1 = xi/2 

(fraction of/3i) , X 2 -- xj/2 (fraction of/3j) and X 3 = (2-xi-xj)/2 (fraction of fiN+l). 
With up to three beta chains in an animal, up to six hemoglobin types a2/3i/3 j are 

formed by  randomly combining chains/3 i and ~j. Then, in this model, the fitness of the 

BiBj animal is given by 

Wij = kZ1 Wpkp I XkXl 

where P l  = i, P2 = J,/13 = N + 1, and the summation goes from 1 to 3. The WpkPl may 

be considered "microfitnesses" of  the hemoglobin types a2~3pk~p 1. 

Applications to Real Polymorphisms 

This model, which assumes variation only in the major  beta chains ~3i, is appropriate 
to a number of  important  human beta chain polymorphisms, such as that  for sickle 
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Table 2. Genotypic fitnesses as a function of hemoglobin microfitnesses for a two-allele 
polymorphism a 

Genotype Genotypic fitness 

B1B1 

BIB2 

B2B2 

Wll = Wss(Xs) 2 + 2WmsXs(1 -Xs) + Wmm(1 - Xs)2 

W12 = Wdd(Xd)2/4 + Wss(Xs)2/4 + Wmm(2 - x d - Xs)2/4 + WdmXd(2 - x d - Xs)/2 

+ WrnsXs(2 - x d - Xs)/2 + WdsXdXs/2 

W22 = Wdd(Xd) 2 + 2WdmXd(1 - Xd) + Wmm(1 - Xd)2 

aA doublet-singlet polymorphism is obtained by setting x s = 1. The doublet-doublet poly- 
morphism discussed further in this paper has x s = x d 

cell hemoglobin. In Mus musculus, no minor beta chain structural variation is involved 

in the Hbbd-Hbb s polymorphism (Gilman, 1976b), which is widespread in North 

America (Selander, 1970). The same is true for the polymorphism of Mus cervicolor 

(see Fig. 1). A third Mus musculus allele, HbbP, will not be considered here, as it dif- 

fers in structural variation of the minor beta chain (Gilman, 1976b) ;HbbP of present 

day laboratory mice may derive originally from Asian animals (Morton and Tobin, 

1977). 
To apply this model to Mus musculus and Mus cervicolor polymorphisms, allele B 1 

will be considered to code for chains/3 s and/3m, as fractions x s and 1 - Xs, respectively. 

The alternate allele, B2, will be considered to code for ~d and/3 m, as fractions Xd and 

1 - xd, respectively. 
Up to six hemoglobins may be found in a given animal: a2~3~s, with microfitness 

value Wss, a2/3d/~d (microfitness Wdd), ~2t3m/3m (microfitness Wmm), a213d13m (micro- 

fitness Wdm = Wind), a2/3rrfls (microfitness Wins = Wsm), and a2~d~s (microfitness 
Wds = Wsd). Table 2 gives the genotypic fitness values as functions of the microfit- 
ness values, for the two allele polymorphisms of both Mus musculus (x s = 1) and 

Mus cervicolor (x s = Xd). 

The Optimally Fit Single Animal 

For a given fixed set of microfitness values Wss, Wds, and so on, the fittest possible 
animal may have one, two, or all three beta chains. With the model of this paper, one 
determines the proportions of each beta chain which optimize an animal's fitness by 
the same mathematical methods one used to determine equilibrium gene frequencies 

for an N allele polymorphism (see Crow and Kimura, 1970, pp. 270-277). 
For example, if the optimally fit animal has only two chains, ~d and 13m, then the 

fraction Xo of 13 d which optimizes its fitness is given by: 

Xo = (Wdm - Wmm)/(2Wdm - Wmm" Wdd) (1) 

For Xo to give a fitness maximum, one must have Wdm > Wmm and Wdm > Wdd, 
by analogy with stability conditions for a two allele balanced polymorphism, as des- 

cribed below. 
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The Optimally Fit Population 

For an N allele polymorphism, the equilibrium population fitness W may be calculated 
as 

W = ..Y' piP:Wi:j J 
1j 

assuming that Pi values represent equilibrium allele frequencies which are in Hardy ° 
Weinberg proportions. The Wij values are fitnesses of genotypes BiBj. For the two 
allele polymorphisms under consideration in this paper: 

~/" = W l l (  1 _ p)2 + 2W12P( 1 _ p) + W22p2 (2) 

where p is the equilibrium frequency of allele B 2. 
A stable equilibrium for the two allele polymorphism exists if W12 > Wl l  and 

W12 > W22 (Nagylaki, 1977, pp. 56-58). Population fitness will be maximal at the 
point of  equilibrium, with p = (W12 - W11)/(2W12 - Wl l  - W22). 

Mutation Leading to Optimally Fitter Populations 

For fixed values of  microfitnesses w and major beta chain fractions x s and Xd, the 
genotypic fitnesses W 11, W12 and W22 are fixed, and a stable two allele polymorphism 
for B 1 and B 2 may exist. However, a mutation in a beta chain structural gene could 
occur. This would introduce a new allele B 3 into the population, coding for a beta 
chain with altered structural and perhaps functional properties. It may also happen 
that a mutation occurs at a regulatory site, giving rise to an allele B 3 with altered pro- 
portions of  the two beta chains produced by the doublet. 

Population genetics theory (Wright, 1969, p. 44; Nagylaki, 1977, pp. 65-66) shows 
that the new allele B 3 will be maintained in the population if and only if 

(Wl 3 - W11)/(W12 - Wl 1) + (W23 - W22)/(W12 - W22) > 1 (3) 

Then, either B 3 will become the only allele in the population, or a new two allele 
polymorphism will arise (for B 1 and B3, or B2 and B3) , or the three allele polymor- 
phism (for B1, B2, and B3) will be stable. 

As a guide to whether a new allele B 3 might lead to a greater average population 
fitness, one can examine how the equilibrium population fitness W would change if 
allele B 3 arose by mutation of  B2, and replaced it. For equilibrium fitness W, 3W/3p = 
o, so that equation (2) implies that the incremental change in equilibrium population 
fitness due to incremental changes in genotypic fitness is given by. 

dW = p2dW22 + 2p(1 - p)dW12 + (1 - p)2dWll  (4) 
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Using equation (4) and the formulas for genotypic fitnesses given in Table 2, one 
can show that W will always increase as microfitnesses w increase. However, if one holds 
microfitnesses constant and changes only Xs and Xd, W may reach a local maximum. 
For a simplified doublet-doublet  polymorphism, with x = Xd = Xs, setting dW/dx = 0 
allows one to derive the following formula for the value of x which maximized equili- 
brium population fitness W: 

X~max = [8(Wdm - Wmm)K + 4(Wms- Wdm)(K + 2 L -  2M)]/[8KM- ( K -  2L + 2M) 2] (5) 

where K = 2Wds - Wdd - Wss, L = 2Wdm - Wdd - Wmm, and M = 2Wms - Wss - Wmm. For 
this value of  x to give a maximum for W, the bracketed denominator in (5) must be 
positive. 

For a doublet-singlet polymorphism such as Hbbd-Hbb s of Mus musculus, setting 

dW/dxd equal to zero gives a cubic equation in Xd. However, by means of  equation (4) 
one can show that  letting Wins = Wds leads to a simplification: The value of x d which 

maximizes W is Xo, where Xo is given by  equation (1). 
Thus, the doublet-singlet populat ion,  with Wms = Wds, has maximal equilibrium 

populat ion fitness '~, at fixed microfitnesses, when Xd = Xo. As shown above, x o is 
also the value of Xd which maximizes the fitness of the doublet-doublet  homozygote,  

and one can easily show that,  for Wins = Wds, Xo also maximizes the fitness of the 
doublet-singlet heterozygote. 

Evolution of  xd, The Fraction of  Major Chain Produced by a Doublet 

For the simplified doublet-singlet polymorphism just described, with Wins = Wds , one 
can show that  evolution in the value of Xd will be in the direction of  the value Xo, given 
by  equation (1). Such evolution in the value of xd for the doublet  can only occur if 
mutant  doublets with altered values of xd arise in the population.  Once a mutat ion of 
the old doublet  allele B2 to the new allele B 3 occurs, B 3 must become established 
in the populat ion and replace B 2. 

Once B 3 arises, it will become established in the population if and only if inequality 
(3) is satisfied. For the doublet-singlet population with Wms = Wds, this inequality will 
certainly be satisfied if allele B 3 has its value of Xd closer to Xo than allele B2. This can 
be most easily seen by  considering the populat ion 's  genotypic fitnesses, given in Table 
2, as expressed in a new coordinate system centered on Xo. In this new coordinate sys- 
tem, x d for allele B2 is equal to b 2 + Xo, while x d for allele B 3 is b 3 + x o. The geno- 
typic  fitnesses in the new coordinate system are given in Table 3. 

Inspection of Table 3 shows that  (b2)2 ~> (b3)2 implies that W13 > W12 and 
W23 > W22, if one assumes that  Wdm > Wmm. This assumption, and the assumption 
that  Wdm > Wdd, are necessary if the value of x o in equation (1) is to give a maximum 
equilibrium populat ion fitness; these assumptions will be made throughout  this paper. 

Since stability of the original polymorphism required that  W12 > W l l  and W12 > W22, 
inequality (3) will be satisfied. Thus, B 3 will become established in the population if 
(b2) 2 > (b3)2 , which means that  Xd for B 2 is farther from x o than Xd for B3. 
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Table 3. Genotypic fimesses, in a transformed coordinate system a, for three alleles 

(singlet B 1 and doublets B 2 and B3) 

Genotype Genotypic fitness b 

BIB1 

B1B2 

B2B2 

BIB 3 

B2B3 

B3B3 

W l l  = Wss 

W12 = (Wll  + W22)/4 + Wins/2 

W22 = [(Wmr n - Wdm)/Xo] [(b2)2 - (Xo)2 ] + Wmm 

W13 = (Wl l  + W33)/4 + Wins/2 

W23 = [(Wmm - Wdm)/Xo] [(b2 + b3)2/4 - (Xo)2] + Wmm 

W33 = [(Wmm -Wdm)/xol  [(b3)2 - (Xo)21 + Wmm 

aThe transformation is in Xd, from a coordinate system centered on zero (as in Table 2) 
to one centered on x o :x d = b+ x o. x o is the value of  x d which maximizes equilibrium 
population fitness W for the doublet-singlet polymorphism, when Wms = Wds; x o is given by 
equation (1) of the text. For allele B2, x d = b 2 + Xo, and for allele B3, x d = b 3 + Xo; bfor these 

formulas, it is assumed that Wins = Wds 
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Fig. 2. Equilibrium population fitness W as a function of Xd, the fraction of major chain produced 
by  a doublet. For three sets of  microfitness parameters, W is plotted for both doublet-singlet 
(x s = 1) and doublet-doublet (x s = Xd) polymorphisms. All three sets of microfitnesses have Wdm = 

Wds = Wms = O, Wdd = -1, and Wmm = -4, and differ only in Wss: Wss = -0.3850, • (doublet-singlet), 
o (doublet-doublet); Wss = -0.8000, • (doublet-singlet), u (doublet-doublet); Wss = -1.662, • 
(doublet-singlet), ~ )  (doublet-doublet). In every case, equilibrium population fitness W of the 
doublet-singlet is maximal when x d = 0.8, and the frequency p of  the doublet allele at x d = 0.8 
goes from 0.15 (Wss = -0.385) to 0.50 (Wss = -0.8) to 0.85 (Wss = -1.662). For the middle and upper 
sets of curves, the doublet-singlet points were plotted for the range of  x d for which the polymor- 
phism was stable (x d > 0.23, and x d > 0.53, respectively). For the doublet-singlet of the lower 
set of  curves, and for all three doublet-doublet examples, the polymorphisms were stable for 
0 < x ~ < l  
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For evolution of the doublet-singlet polymorphism to occur through replacement 
of B2 by B3, neither the two allele polymorphism for B2 and B3, nor the three allele 
polymorphism for B1, B2, and B 3, can be stable. However, the two allele polymor- 
phism for B1 and B 3 must be stable; this is certainly possible, as Fig. 2 shows. Exami- 
nation of Table 3 demonstrates that a two allele polymorphism for B2 and B 3 would 
not be stable, since it is impossible to have both W23 > W33 and W23 > W22. One 
can also show that stability of the two allele polymorphisms, for B1 and B2, and 
B 1 and B3, implies instability of the three allele polymorphism for B 1, B2, and B3, 
if b 2 and b 3 are of the same sign. If b 2 and b 3 have different signs (b2 negative and 
b 3 positive, for example), then the three allele polymorphism may be stable. 

The mathematical model therefore allows the possibility that the fraction x d of 
major beta chain produced by a doublet, in a doublet-singlet population, may have 
evolved under the influence of selection. 

Discussion 

Mathematical models for evolution are often concerned with the effect of genotypic 
fitness values on gene frequencies at or near equilibrium, and the rates at which equili- 
brium is approached. The model of this paper, however, considers how parameters 
determined directly by the gene products might influence the evolution of the geno- 
typic fitnesses. The model is based on that of Spofford (1972), which derives the 
genotypic fitnesses for a single locus from the microfitness values of dimeric enzymes 
whose production is controlled by that locus. I have applied this model to the case 
of mouse hemoglobin beta chains, in order to show how properties of the hemoglobins 
could have led to evolution in properties of the genes producing the hemoglobin beta 
chains. 

Fig. 1 has illustrated the hemoglobin beta chain polymorphisms of two mouse 
species, the laboratory mouse Mus musculus, and the Asian species Mus cervicolor. 
Both species have doublet alleles producing a major beta chain and a minor beta chain. 
For the purpose of discussing the mathematical hypothesis, these chains are called 
fld and/3m, respectively, for either species. The doublet allele controlling their produc- 
tion is called B2. For both species, there is an alternate allele B1, which produces a 
variant major chain/3s. In Mus cervicolor, B1 is a doublet, coding for/3s and t3m in 
approximately the same proportions as for ~d and ~3m of B2. In Mus musculus, B 1 is 
a singlet, controlling production of only/3s; B1 produces no minor chain ~m. 

In an arbitrary animal, up to six hemoglobins may be found (for simplicity, this 
model does not consider a chain variation): a2/3fls, ~2/3d~3s, and so on. Associated 
with each hemoglobin in a microfitness value: Wss , Wds, and so on. The fitnesses 
W11, W12, and W22, for genotypes B1B1, B1B2, and B2B2, are determined by 
the microfitness values w, as well as by the fraction of major chain produced by B1 
(x s) and B 2 (Xd). Genotypic fitnesses are given in Table 2, above. 

Could Selection Have Favored Unequal Production of Two Beta Chains o f  a Doublet? 

In the mathematical model of this paper, doublet-singlet populations will have different 
equilibrium fitnesses W, depending on the fraction x d of major beta chain produced by 
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the doublet. In a set of  such populations with the same values for their microfitnesses, 
one population with a particular value of  Xd may have greater fitness than any other. 
This is also true for the doublet-doublet polymorphism, and formula (5) above gives 
the value of x d for maximal equilibrium population fitness ~W when Xd = Xs. 

Fig. 2 illustrates this feature of  the model. Fitnesses W for doublet-singlet popula- 
tions are represented by filled symbols, and those symbols for populations with the 
same microfitness values but different Xd values are Connected by solid lines. Corres- 
ponding doublet-doublet fitnesses (unfilled symbols) for populations with the same 
microfitness values are connected by broken lines. Three different sets of microfitness 
values are considered, which differ only in Wss (Wss = -1.662, -0.8, and -0.385, for the 
lower, middle, and upper sets of  curves, respectively). For every curve of Fig. 2, there 
is one value of x d which maximizes the equilibrium population fitness W. 

Early in the evolutionary history of mouse beta chain genes, one imagines that popu- 
lations may have had doublet loci coding for equal amounts of two divergent beta 
chains. Suppose that the population has a doublet-singlet polymorphism, with the 
singlet allele B 1 (coding for ~s) and the doublet B 2 coding for equal quantities of ~d 
and tim. If a mutation occurs in B2, generating the new doublet B 3 producing more 
fld than/3m (for example, 70%/M and 30% ~m), will B 3 replace B27 

'Examination of Fig. 2 suggests that this may be possible, since doublet-singlet 
population fitness W increases as Xd goes from 0.5 to 0.8, at which point W is maxi- 
mal. The analysis of  the mathematical hypothesis presented above shows that a more 
definite answer can be given. Applied to the doublet-singlet populations of Fig. 2, with 
Wms = Wds and Wss = -0.8 or -1.662, the analysis shows that B 3 (with Xd = 0.7) will 
replace B2 (with Xd = 0.5). Then, once equilibrium is established for the doublet-singlet 
polymorphism with alleles B 3 and B1, a mutation in B 3 creating B4, with Xd = 0.75, 
will lead to a new doublet-singlet polymorphism for B4 and B1. 

This process could continue until a doublet is generated with x d = 0.8, as long as 
new doublet alleles have x d greater than that of the old allele, and less than or equal 
to 0.8. If, however, a new doublet is generated with Xd on the other side of  the maxi- 
mum (x d > 0.8), then the three allele polymorphism may be stable. For example, 
consider the doublet-singlet polymorphism for B1 and B4, with Xd = 0.75. Micro- 
fitness values for the lower set of  curves will be assumed (Wss = -1.662). Numerical 
calculations show that a new allele BS, with 0.82 ~< Xd ~< 0.93, will become estab- 
lished in the population as part of  a three allele polymorphism for B 1 (the singlet), 
B4 (xd = 0.75), and B 5. For B 5 with x d = 0.82, allele frequencies at equilibrium will 
be 0.15, 0.03, and 0.82, respectively. 

This discussion of  the mathematical model therefore suggests that selection could 
have favored evolution of the doublet from Xd = 0.5 to Xd = 0.8, which is the value 
for the Hbbd-Hbb s potymorphism of Mus musculus. With a fixed set of hemoglobin 
microfitness values, at x d = 0.5 an "evolutionary potential" favored evolution of 
the value of  x d towards x d = 0.8. The discussion also suggests that a real population 
might have many doublet alleles, with a distribution of Xd values centered approxi- 
mately at 0.8. Evidence for multiple alleles at regulatory loci closely linked to hemo- 
globin structural loci has been reported for the deer mouse (Snyder, 1978). 
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Why Does Mus musculus have a Doublet-Singlet Polymorphism ? 

A singlet may be thought of as resulting from regulatory mutation of  a doublet, so that 
Xs has evolved to a value of 1. In this sense, the question of why one mouse species 
has a doublet-singlet polymorphism and the other a doublet-doublet may be no differ- 
ent from the question of why a doublet produces unequal amounts of its two chains. 

For the lower set of curves of  Fig. 2 (Wss = -1.662), one sees that at Xd = 0.8 the 
doublet-singlet population is less fit than the doublet-doublet (Xs = Xd = 0.8). Numeri- 
cal calculations show that a mutation of singlet B1 (Xs = 1) to doublet B3 (Xs = 0.8) 
would lead to a new doublet-doublet polymorphism, for B2 and B 3. 

An evolutionary potential may also favor the change from a doublet-doublet to a 
doublet-singlet polymorphism: This is the case for a doublet-doublet population, with 
Xd = Xs -- 0.8 and mierofitnesses as for the lower curves of Fig. 2, except that Wmm = 
-3.8 and Wins -- -1 (instead of Wmm = -4 and Wms = 0). Thus, ancestral Mus musculus 
populations with the doublet-singlet polymorphism may have been fitter than if they 
had possessed a doublet-doublet polymorphism. The mathematical model allows the 
possibility that selection determined polymorphism type in Mus species, given that 
the appropriate genetic variability was present in early populations. 

The Development of  an Evolutionary Potential 

Examples have been presented of evolutionary potentials for change in the proportions 
of major and minor chains produced by a doublet. A special case of this is the evolu- 
tionary potential just described, for change from a doublet-doublet to a doublet- 
singlet polymorphism. 

Evolutionary potentials such as those discussed may exist because genetic con- 
straints prevent the population from achieving the fitness of  an optimal single animal. 
For example, suppose that the optimal animal had only the two chains ~d and ~m, 
and no ~3s. Then x o of equation (1) gives the fraction of  ~d in the optimal animal, as a 
function of Wdd, Wdm and Wmm. The only way population fitness could reach the 
optimal level of a single animal would be if all animals were homozygous for doublets 
producing fraction x o of ~d and ~m. An evolutionary potential therefore exists for 
the emergence of  such a doublet: if a genetic event occurred giving rise to it, and if its 
gene frequency initially increased due to selection, it would probably supplant pre- 
existing lo ci. 

A situation of stasis will never come about in this mathematical model, however, 
even though the population now has optimal fitness for its given microfitness values 
Wdd, Wdm and Wmm. The reason is that there is always an evolutionary potential for 
increases in microfitness values as the result of mutations in the structural genes coding 
for ~d and ~m. An increase in microfitness values is always translated into increased 
equilibrium population fitness W. This increase in microfitness values may then lead 
to a new evolutionary potential for change in proportions of chains t3d and ~m. Struc- 
tural gene mutation may also eventually lead to the existence of  new beta chain poly- 
morphisms and consequent new evolutionary possibilities. 

Fig. 2 above, illustrates how change in the microfimess value Wss leads to an evolu- 
tionary potential for change in polymorphism type. For the lower set of curves (Wss -- 
-1.662), at x d - 0.8, the doublet-doublet population is fitter than the doublet-singlet. A 



Evolutionary Potential 11 

population initially in the doublet-doublet state will stay that way. As Wss increases, 
Fig. 2 shows that the doublet-singlet population is eventually fitter, at Xd = 0.8; numeri- 
cal calculations show that the singlet allele will become established, if introduced into 
the doublet-doublet population with Wss = -0.385. The three allele polymorphism, for 
the singlet and both doublets, will be stable. Thus, an increase in the value of  Wss has 
led to an evolutionary potential for establishment of  the singlet allele in the doublet- 
doublet population. 

Fig. 3 shows how the development of an evolutionary potential due to increasing 
microfitness Wds could have played a role in the evolution of  the Mus musculus Hbbd- 

Hbb s polymorphism. Fig. 3a shows a schematic evolutionary pathway, in four stages, 
from an original singlet locus to the doublet-singlet polymorphism of today. Fig. 3b 
shows the effect of changing Wds on two possible populations of  stage 4. 

Stage 1 of Fig. 3a shows that the original mouse beta chain gene is assumed to code 
for fd, the ancestor of  3dmaj of the present Hbb d locus. In stage 2, the initial gene 
has undergone mutation so that there are now two alleles, coding for ~d and the vari- 
ant chain ~m. The two alleles will be maintained as a balanced polymorphism, if one 
assumes that Wdd = -1, Wdm = 0 (as for Fig. 2), and -3 < wmm < -1/3. If we let Wmm = 
-2, then equilibrium fitness W for the two allele singlet-singlet polymorphism of stage 
2 is-0.958. 

(a) 

(I) (2) (3) (4) 
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Fig. 3. A hypothet ical  scenario for the  evolution of  Mus muscu lus  breeding uni t  alleles. (a) A pos- 
sible evolutionary pa thway  from ancestral singlet to a doublet-singlet po lymorphism,  with the  
double t  producing equal amoun t s  o f  bo th  chains. A similar pathway,  which bypasses the  singlet- 
singlet stage (step 2), has already been suggested (Gilman, 1976a). See text  for details. (b) This 
plot o f  equilibrium popula t ion fitness W-versus Wds illustrates how W would change if amino acid 
subst i tu t ions  occurred in 3s or 3d, such that  Wds increased f rom 1.1 to 2.015. Values o f  the  other  
microfi tness parameters  are assumed to remain cons tant  (Wdm = 0, Wmm = -0.897, Wins = -0.9, 
Wdd = -1, Wss = -1.414). Plots are given for two populat ions,  one  with x d = 0.5 (e), and one with 
Xd = 0.8 (o) 
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In stage 3, a genetic event has occurred linking genes for ~d and ~m on the same 
chromosome. As the simplest assumption,/~d and ~m are considered to be produced 
in equal amounts. Since the polymorphism of stage 2 was maintained by heterozygote 
superiority, it is fairly obvious that linking the genes for/3~cl and ~m ought to give the 
population increased fitness. It also happens that the new doublet coding for ~d and ~m, 
and the old singlet coding for/3d, will form a two allele doublet-singlet polymorphism, 
if Wmm < -5/3. As this condition holds (Wmm = -2), the doublet-singlet polymorphism 
is stable, and equilibrium population fitness W has increased to -0.740 in stage 3. 

In stage 4 of Fig. 3a, evolution of beta chain sequences has occurred. The doublet 
codes for j3d and/3m in equal quantities, while the singlet now codes for/3s. In conse- 
quence, microfitness values have evolved: Wmm has increased to -0.897, while Wms = 
-0.9, Wss = -1.414, and Wds = 1.1. Equilibrium fitness for the population has risen to 
-0.472. Given these microfitness values, any deviation from equal production of  both 
chains of the doublet would only lower the equilibrium population fitness W. An evolu- 
tionary potential does exist for the generation of a new doublet coding for approxi- 
mately equal quantities of/3d and j3s. However, crossover suppression is now assumed 
to be operative, as it may be in present day mice (Tiemeier et al., 1978). As the new 
doublet cannot easily be generated by unequal crossing over, further evolution must 
await changes in microfitness values. 

Fig. 3b shows how change in ~3d or fls, leading to change in Wds, could give rise to 
an evolutionary potential for change in the fractions of major and minor chains pro- 
duced by the doublet. All other microfitness values are assumed to remain constant. 
Plots of equilibrium population fitness W versus Wds are given for two populations, the 
existing one with Xd = 0.5 (filled symbols), and an alternate doublet-singlet popula- 
tion, W increases as Wds goes from 1.1 to 2.015. However, for the alternate popula- 
tion with x d = 0.8 (unfilled symbols). For the existing population, W increases as Wds 
goes from 1.1 to 2.015. However, for the alternate population with Xd = 0.8, W in- 
creases much faster. When Wds = 2.015, the fittest doublet-ringlet population is one 
for which the doublet produces 80%/3d and 20%/3m, as in the present day Hbbd-Hbb s 
polymorphism of Mus musculus. 

One can show that such evolution in Wds can occur, because a new allele in the 
doublet-singlet population, giving a higher value of Wds than the old allele, will replace 
the old allele. Once Wds = 2.015, an evolutionary potential exists for replacement of 
the old doublet (Xd = 0.5) by one with x d = 0.8. If a new doublet arises which pro- 
duces 80% l~d and 20%/3m, it will replace the old doublet. A population similar to 
that of present day Mus museulus will have evolved. 

Conclusion 

The mathematical model described here related the fitness of an animal to its hemo- 
globin microfitnesses. As applied to mouse hemoglobin beta chain genes, the model 
has suggested that a population may be able to maximize its fitness by several means: 
Evolution of sequences of proteins and consequently of their functions, regulation 
of the relative amounts of major and minor chains produced by a doublet, and change. 
in types of alleles (doublet or singlet) present in a polymorphic population. These 
processes may interact with each other, with the result that one type of alteration may 
lead to an evolutionary potential for another type of change. From a population 
genetics standpoint, evolutionary potentials are seen as leading to changes in genotypic 
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fitnesses. These changes are then reflected in increased population fitness at equilibri- 
um. 

While the model of  this paper assumed an ideal "Darwinian" situation, it is con- 
ceivable that even "non-Darwinian" evolution could lead to development of evolu- 
tionary potentials for selectively advantageous change. It may also be possible to apply 
some of the ideas concerning evolution of  genetic systems to the evolution of the pro- 
tein molecule itself. Since the protein is a constrained system, molecular evolution of 
parts of  it could lead to an evolutionary potential for change in other parts. Coates 
(1975) used the term "preadaptation" to describe such a process. 

It may therefore be necessary to view evolution of an organism, or even of a protein 
molecule, as a dialectical process, in which one type of  evolutionary change may inter- 
act with or facilitate another. 
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