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Summary .  The f requency  dis tr ibut ions o f  size (molecular  weight) and of  num- 

bers of subunits were de termined  f rom lists of  over 500 mammal ian  and bacteri- 

al proteins. The size dis t r ibut ion of  polypept ides  is well f i t ted  by a lognormal  

dis t r ibut ion with a median value of  about  40,000 daltons and a deviat ion of  1.8. 

A b o u t  60% of  all proteins exist in mul t imer ic  aggregates. Of  the mul t imers  75% 

have ei ther two or four  subunits while less than 1% have an odd number  of  sub- 

units that  is greater than three. Over 90% of  the time, a given mul t imer  is com- 

posed of  subunits  of  nearly equal  size so that  the size of  a N-mer is lognormally 

dis tr ibuted with a median value of  N x 40,000 daltons and a deviation of  1.8. 

The  dis t r ibut ion of  po lypept ide  size and subuni t  number  is similar for mammali -  

an and bacterial proteins as well as for intracellular and extracellular proteins. 

T h e  sedimentat ion profiles of m R N A  f rom HeLa and CHO cells indicate 

that  the lengths of  mammal ian  m R N A  are lognormal ly  distributed with a medi- 

an value of  1.4 kb and a deviat ion o f  2.0. This implies that, on the average, a 

m R N A  species is only  about  25% larger than the mature  polypept ide  it codes 

for.  Therefore ,  at most  a small f ract ion o f  mammal ian  m R N A  could code for 

large precursor polypept ides  which are then cleaved into a number  of  mature  

polypept ides  (like polio mRNA) ,  or for 3' coterminal  mRNAs  where the larger 

species contain the informat ion  for  up to four  proteins (like adenovirus mRNA).  

The sedimentat ion profi le of  nascent nuclear R N A  from HeLa suggests that  

the length dis t r ibut ion of  t ranscript ion units has 2 components :  An exponen-  
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tial component that  decays with a half-length of 1 0 - 1 5  kb, and a high frequency 
of very short molecules. However, other distributions (for example, the lognor- 
real distribution) of transcription unit lengths could also be consistent with the 
data if one or more of the following occurred: Physiological cleavage of nascent 
chains, perturbation of non-rRNA transcription by  act inomycin D, or degrada- 
tion during isolation. 

The length distribution of HeLa nuclear RNA labeled for 60 min is similar to 
that of nascent nuclear RNA, indicating that a completed hnRNA chain is quick- 
ly transported or degraded after being cleaved. 

Key Words: Lognormal distribution - Subunit size - Mammalian protein - 
Bacterial protein -- Sedimentation profile 

Introduction 

In this paper we describe the size distributions of proteins, mRNA, and nuclear RNA. 
An important  tool  in our analysis is the lognormal distribution. The frequency curve 

of the lognormal distribution is positively skewed: It peaks early and then declines slow- 
ly. The lognormal distribution is so named because the logarithm of the variate plot ted 
against the frequency has the shape of a Gaussian or normal curve. Just as a normal dis- 
tr ibution can arise as the sum of many independent random quantities, the lognormal 
distribution can arise as the product of many independent random effects. A variate 
subject to a process of change will have a lognormal distribution if the change in the 
variate at each of the many steps in the process is a random proport ion of the previous 
value of  the variate (Aitchison and Brown, 1957). One might expect to find the lognor- 
real distribution where exponential  amplification exists; for example, where organisms 
divide or where wealth breeds more wealth. 

The lognormal distribution appears often in biology and the social sciences. For ex- 
ample, the lognormal distribution is compatible with the frequency distribution of (1) 
the weight of human beings (Yuan, 1933), (2) the number of individuals in a species 
(Williams, 1937; Preston, 1948), (3) the number of viral lesions in plants infected with 
tobacco mosaic or bushy stunt viruses (Kleczkowski, 1949), (4) income in the U.S. 
(U.S. Dept. of Commerce, 1952), and (5) the number of inhabitants per town (Gibrat, 
1931). 

We find that the sizes of both proteins and mRNA are fit well by  a lognormal distri- 
bution. In contrast, we tentatively find that  both transcription units and partially pro- 
cessed hnRNA have exponential  distributions of size. 

We feel that  the size distributions of proteins and RNA are of interest because they 
shed light on structure and on the overall organization of transcription and translation. 
They also eliminate any model  of the evolution of proteins and RNA which does not 
predict the correct distributions. 

Materials and Methods 

(a) Cell Growtb and Labeling Procedure. Suspension cultures of HeLa $3 cells ( 3 - 6  x 
105 eells/ml) and Chinese hamster ovary cells were grown at 37°C in Eagle's medium 
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(Eagle, 1959) supplemented with 5% (v/v) fetal calf serum. The cells doubled every 
24 h. 

For determination of the size distribution of mRNA, cells were concentrated to 3 x 
106 cells/ml and labeled with either carrier-free H 332po 4 (200/aCl/ml) for 4 h in 
phosphate free medium, or 20 Ci/mmole (5- 3H)-uridine (20//C1/ml) for 2 h in reg- 

ular medium. 
For determination of the size distribution of nuclear RNA, HeLa cells were treated 

with 0 .04/ lg/ml actinomycin D for 25 min to suppress the transcription of rRNA (Perry, 
1963). The cells were concentrated to 3 x 106 cells/ml and labeled with (5- 3H)-uridine 
for either 30 s or 60 rain. The cells were then poured over crushed frozen medium to 
stop incorporation rapidly (Derman and Darnell, 1974). 

(b) Isolation o f  Nuclear RNA and mRNA.  The cells were rinsed twice with isotonic buf- 
fer, swollen in hypotonic  buffer, and then mechanically broken with a dounce homoge- 
nizer (Penman et al., 1963). The nuclei were pelleted, resuspended in hypotonic  buffer, 
and vortexed 30 s with 0.1 volumes "magik" solution (1 volume 10% deoxycholate and 
2 volumes 10% Tween 40). The nuclei were pelleted and the supernatant was pooled 
with the previous one to constitute the cytoplasmic fraction. 

The nuclear fraction was extracted by a standard method which uses phenol at 65°C 
(Penman, 1966), and the cytoplasmic fraction was extracted with phenol at room tem- 
perature (Perry et al., 1972). 

The poly A-containing cytoplasmic RNA was isolated by  a modification of the meth- 
od of Malloy et al. (1974). The RNA was layered onto poly U sepharose in 0.2 NETS 
(0.2 M NaC1, 10 mM EDTA, 10 mM Tris, 0.2% SDS), rinsed extensively with 20% for- 
mamide-ETS (10 mM EDTA, 10 mM Tris, and 0.2% SDS), and then the poly A-contain- 
ing mRNA was eluted with 90% formamide-ETS. 

(c) Sucrose Gradients. RNA samples were denatured by DMSO (dimethylsulfoxide) 
treatment.  After ethanol precipitation samples were redissolved in 1 volume (usually 
0.02 ml) of  DMFO (dimethylformamide),  1 volume ETS, and 9 volumes DMSO. The 
solution was heated to 37°C, diluted 4 fold with ETS, and layered on a 15-30% su- 
crose gradient in 0.05 NETS (0.05 M NaCI,/10 mM EDTA,/10 mM Tris, 0.2% SDS) 
(Derman and Darnell, 1974). 

An aqueous gradient was used rather than a DMSO gradient because a DMSO gradi- 
ent has very poor resolving power in the bot tom half of the gradient, and there was pre- 
vious evidence that after denaturation with DMSO these aqueous gradients gave unag- 
gregated profiles (Derman et al., 1976). Since it was important  to verify that  aggrega- 
t ion did not  occur, allquots of each nuclear RNA sample were sedimented in both aque- 
ous and 99% DMSO gradients (Strauss et al., 1968). In each experiment the DMSO gra- 
dients verified that  no aggregation occurred in the aqueous gradients. As an example, 
in one experiment the percentage of cpm that  migrated faster than an internal 18S op- 
tical density marker was 82% for the aqueous gradient and 79% for the DMSO gradient. 
Likewise, the percentages of cpm migrating faster than 32S and 45S markers were 56% 
versus 55% and 33% versus 34% respectively. As a word of caution, nuclear RNA from 
Chinese hamster ovary cells does aggregate under the conditions of these aqueous gradi- 
ents (M. Harpold, unpublished results). 
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(d) The Lognormal Distribution; Tests of  Fit. A simple graphical test of  the  qual i ta t ive 

compatibi l i ty  be tween  an observed f requency  distr ibut ion of  molecular  weight  and the  

lognormal  distr ibut ion is to plot  the  molecular  weight  on the ordinate  and the percent  

of  molecules  (e.g. proteins) wi th  a molecular  weight  less than or equal  to the correspon- 

ding ordinate  on the abscissa of  logari thmic probabi l i ty  paper (Table 1). Logari thmic 

probabil i ty paper and its use are described by Aitchison and Brown (1957). The  paper 

is designed so that  if the  observed f requency  dis t r ibut ion is lognormal,  the data  will fall 

approximate ly  along a straight line. 

Let y [x] be the ordinate  corresponding to the  abscissa of  x in logari thmic probabili- 

ty  coordinates.  If the data fall on  a straight line, the median (m) is es t imated as y(50%), 

and the  deviation (d) is es t imated as d = 1/2 [ y(50%) / y(16%) + y(84%) / y(50%)] 

(Aitchison and Brown, 1957, p. 32). The  logari thm of the deviat ion equals the stan- 

dard deviation of  the normal  dis t r ibut ion produced  by taking the  logari thm of  the vari- 

ate. Therefore,  68% of molecules  have molecular  weights be tween  m/d  and m x d, and 

95% have molecular  weights be tween  m/d  2 and m x d 2. 

In all plots on logari thmic probabi l i ty  paper, we f i t ted a straight line through the 

data points  by hand because the  uncer ta in ty  in that  procedure was small wi th  these 

data. The deviations f rom the  f i t t ed  lines were neither large nor systematic.  Monte  

Carlo exper iments  showed that  the statistical eff ic iency of  est imating parameters  using 

Table 1. Example of how data are transformed for plotting on logarithmic probability paper a 

Raw data x b 

Molecular weight Number No. in that 
of Subunit in each bin and in 
(xlO -3 daltons) bin smaller bins 

(Percent of Proteins 
smaller than or equal 
to the largest member 
in the corresponding 
bin) 

o - 9  2 2 1.0 
10-19 12 14 6.8 
20-29 21 35 17 
30-39 47 82 40 
40-49  41 123 60 
50-59 34 157 76 
60-69 21 178 86 
70-79 8 186 90 
80-89  8 194 94 
90-99 5 199 96.1 

109 1 200 96.6 
130 1 201 97.1 
140 2 203 98.1 
142 1 204 98.6 
155 1 205 99.0 
160 1 206 99.5 
165 1 207 100 

a Actual data plotted in Fig. lc 
b x is plotted on the horizontal axis and the molecular weight of the largest member in the 

corresponding bin is plotted on the vertical axis of logarithmic probability paper 
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hand-fitted lines was not  greatly inferior to more refined techniques when the distribu- 
t ion underlying the data was lognormal (Aitchison and Brown, 1957). 

Where the molecular weights of  individual molecules are known, it is possible to car- 
ry  out  numerical tests for departures from a normal distribution of the logarithms of 
the molecular weights. Such tests are equivalent to tests of departures from lognormal- 
i ty of  the original molecular weights. Three such tests were applied here to mammalian 
and separately to bacterial intracellular protein subunit molecular weights: A test of 
skewness b~/2, a test of kurtosis b2, and the studentized range u = range/standard devi- 
ation (Pearson and Hartley, 1966, 1972). Each test was two-tailed, using the upper and 
lower 1% percentage points of the test statistics. 

(e) The Exponential Distribution; A Graphical Test. A measured quant i ty  (such as a 
molecular weight or length) has the exponential  distribution if the probabil i ty that the 
quant i ty  exceeds any value x />  0 is e -/~x. A graphical test of whether an observed fre- 
quency histogram (probabil i ty densi ty function) conforms approximately to an expo- 
nential distribution is to plot the logarithm of frequency on the ordinate against the 
measured variate on the abscissa. The observed points approximate a straight line if 
they  are exponential ly distributed, and the slope of  the line in such a plot  estimates -/a. 
In a plot where the abscissa is length, we define the "half length" L 1/2 to be the in- 
crease in length required for the frequency to fall by  a factor of 2. L 1/2 equals the me- 
dian value and L1/2/(ln 2) equals the mean, where In 2 is the natural logarithm of two. 

(f) Conversion of Sedimentation Profile to Length Frequency Distribution. To convert 
the  sedimentation profile of mRNA or nuclear RNA labeled for 60 min to a distribu- 
t ion of  molar frequency versus length in nucleotides, the cpm in each fraction were di- 
vided by both the mid-fraction length and the range of lengths in that  fraction. Division 
by  length corrected for the fact that  a mole of mRNA 2N nucleotides in length contri- 
buted twice as many cpm as a mole of mRNA N nucleotides in length. Division by the 
range of  lengths corrected for the fact that a fraction near the bo t tom of  the gradient 
had a much larger range of length than a fraction near the top of  the gradient. For nu- 
clear RNA labeled for 30 s it was unnecessary to divide by total  length because all sizes 
of molecules were labeled at their 3' ends with the same average number of nucleotides. 

The length of RNA was determined by L = kf 1"7, where L = length in nucleotides, 
k = a constant, and f = fraction number. This empirically derived formula gives a good 
estimate of  length throughout the gradient (Derman et al., 1976). For mRNA, k was 
determined by using 4S, 1~8S, and 28S markers, and for nuclear RNA, k was determined 
by  using 18S, 32S, and 45S markers. 

For mRNA, the high molar frequencies found in the first 3 fractions (1-260 nucleo- 
tides) are discarded for three reasons. First, given a minimum length of  70 nucleotides 
for the poly(A), the maximum size of the protein the RNA could code is 6 kd. Second, 
t iny amounts of degradation of larger mRNA will greatly amplify the frequency in 
these fractions. Finally, an abundant  species of  RNA of length 150 nucleotides binds 
to poly U sepharose columns by virtue of having sequences complementary to mRNA 
(Jelinek and Leinwand, 1978). 

The 30 s label of nuclear RNA labels nascent chains at their 3' ends. To estimate a 
frequency distribution of completed chains, we take minus the derivative of the nascent 
chain frequency distribution because: 1) completed chains of each length L produce a 
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uniform distribution of nascent chains from N to L (N = length of RNA polymerized 

during the labeling period), and 2) completed chain transcripts of equal frequency but  
different lengths contribute to the nascent chain profile in proportion to their lengths. 
Consequently, the nascent distribution (see Fig. 5A) decreases monotonically for lengths 
greater than N. The decrease in an interval reflects the relative frequency of completed 

chains in that interval (for a more detailed discussion, see Derman et al., 1976). Since 
the differences between intervals in a nascent profile amplifies small errors, we take the 
derivative of the fitted curve as a more accurate way of estimating the completed chain 
distribution. 

(g) Tbeory of Random Breakage of Molecules. Random breakage of molecules approxi- 
mates the effect of thermal and endonucleolytic degradation of RNA. The following 
calculations were carried out to determine if an observed distribution of chain lengths 
which was approximately exponential could have arisen from random breakage of an 
initial distribution of molecular lengths which was radically different from exponential. 

In the Appendix, it is shown that if molecules which are initially all exactly H units 
long are broken at random by a Poisson-distributed number of points, then the proba- 
bility that a random fragment exceeds any length x, where x is strictly less than H, is 
e -xx - 0txe -xx) / (XH + 1). In this formula X is the average number of break points per 

unit of length. Except for a non-zero probability that a "fragment" will be of length 
H because no break points occurred on a molecule, this distribution of fragment lengths 
is very nearly exponential for the values of ?t and H of interest here (see Results). 

What effect would random breakage have on molecules whose initial sizes were log- 
normally distributed? We assumed that the average number of breaks would be propor- 
tional to the initial size of the molecule. We approximated a lognormal distribution of 
median 32 kb and deviation 4 by choosing 11 lengths equally spaced on a logarithmic 

scale: H k = 2 k kb, where k = 0, 1 ..... 10. To each value of H k we assigned the proba- 
bilitiy density of such a length in a lognormal distribution (Table 2). (Technically 
speaking, we thus approximated the lognormal distribution as a discrete mixture of 

constant distributions.) We then divided the interval from 0 to 1024 kb into 512 equal 

Table 2. Approximation to a lognormal distribution with median 32 kb 
and deviation 4 

Length category Length (kb) Assigned probability 
k Hk Pk 

0 1 .008 
1 2 .028 
2 4 .064 
3 8 .122 
4 16 .177 
5 32 .201 
6 64 .177 
7 128 .122 
8 256 .064 
9 512 .028 

10 1024 .008 
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intervals of length 2 kb and computed the probabil i ty contributed to each of these in- 
tervals by the fragments randomly broken from each initial chain of  length H k. For 
example,  all fragments of the chains initially H 0 = 1 kb and H 1 = 2 kb long fell in the 
interval 0 < L <~ 2, while fragments of  chains initially H 2 = 4 kb long fell partly in the 
interval 0 < L ~< 2 and partly in the interval 2 < L ~ 4. The distribution among these 
intervals was determined using the formulas derived in the Appendix.  

These calculations were carried out  for 3 values of ~: X8 = 1/8, X32 = 1/32 and 
X128 = 1/128 (see Results). 

Results 

1) The Size Distribution of  Proteins. Mammalian cells contain more than 10,000 dif- 
ferent proteins (Bishop, 1974). The size distribution of theseprote ins  cannot be accu- 
rately estimated by separating total  cellular proteins according to molecular weight be- 
cause, even in unspecialized cells like HeLa, the great abundance of  a few proteins ob- 
scures the general pat tern (Peterson and McConkey, 1976). An alternative approach is 
to plot  the molecular weights of  the hundreds of proteins that  have been purified. Us- 
ing a comprehensive list of  the molecular weights of  over 500 multimeric proteins and 
their subunits (Darnall and Klotz, 1976), the size distribution for intracellular protein 
subunits from mammalian cells was determined (Fig. la) .  The distribution peaks early 
and then declines slowly. Graphing the data on logarithmic probabil i ty paper indicates 
that  a lognormal distribution fits the data well (Fig. lb) .  In addition, the three numeri- 
cal tests fail to detect  a significant departure from lognormality at the 2% level. We es- 
t imate a median of  m = 42,000 daltons and a deviation of d = 1.8. 

To test whether these same data are compatible with other  common distributions, 
we matched the median and variance estimated from the lognormal distribution to nor- 
mal, uniform and exponential  distributions. In each of  these three distributions, a sub- 
stantial fraction of  the molecules would have to have negative molecular weight in or- 
der  for the distribution to have the median and variance estimated from the data. This 
biologically nonsensical result argues against these alternative distributions. 

Moreover, the points in Fig. l b  are nearly linear over a 10-fold range of  molecular 
weight. The normal, uniform, and exponential  distributions all show a marked curva- 
ture on logarithmic probabil i ty  paper over a 10-fold range of  molecular weight (Fig. 2). 

When the subunit molecular weights of  intracellular bacterial proteins are graphed 
on logarithmic probabil i ty  coordinates (Fig. lc) ,  the fitted lognormal distribution has 
approximately (within 5%) the same median and deviation found with mammalian pro- 
teins. The deviations from linearity are minor and not  significant according to two of  
the three numerical tests, b 1 and u. However, b 2 is significantly high. This apparent 
departure from lognormality could arise if a few of  the published subunit molecular 
weights were not  the weights of the true minimal subunits. On the basis of  the close 
similarity of  the size distributions of  the mammalian and bacterial intracellular protein 
subunits, we accept the lognormal distribution as a good description of  the size of  bac- 
terial subunits as well. 

The distributions of molecular weights of  dimers and tetramers are fitted graphically 
by lognormal distributions of median value 88,000 daltons, deviation 1.8 and median 
value 160,000 daltons, deviation 1.7, respectively (Fig. ld) .  The increasing median and 
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Fig. 1 a-e. The Size distribution of  proteins. The source of  the data is Darnall and Klotz (1976). 
In b-d, the y-axis is molecular weight and the x-axis is the percent of  proteins with less than or 
equal that  molecular weight. When a given protein had more  than one molecular weight due to 
divergent estimates, or isolates from different organisms, one estimate was chosen using a random 
number  table. All lines were fit ted by hand. 

a, Size distribution of  153 inttacellular mammalian protein subunits. 
b. The data in a plot ted on logarithmic probability paper. 

c. The size distribution of  207 subunits o f  intracellular bacterial proteins. 
d. Size distributions of  180 dimeric (-0-) and 140 tetrameric (-X-) proteins. 
e. Distribution of subunit number from 439 proteins. 
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Fig. 2. The appearance of a (A) lognormal, (B) exponential, (C) normal, and (D) uniform distribu- 
tion on logarithmic probability coordinates. For a very wide range of values of the mean or vari- 
ance, all of these distributions but the lognorrnal show a marked curvature over a one order of mag- 
nitude range of sizes. 

the nearly constant deviation reflect the fact that over 90% of the time, the molecular 
weights of the subunits in a given multimer are within 20% of one another. 

Figure le shows the distribution of subunit number for all multimeric proteins. 
Three-fourths of the multimers are either dimers or tetramers. The number of subunits 
varies by more than a factor of 20. Over 90% of the multimers have an even number 
of subunits. Over 90% of the multimers with an odd number of subunits are trimers. 

The distributions of subunit number for both mammalian intracellular and bacterial 
intracellular multimers are very similar to the distribution for all multimers (data not 
shown). 

How does the frequency of monomeric proteins compare to the frequency of multi- 
mers? Unfortunately, no comprehensive list of molecular weights of monomers exists 
to complement the list by Darnall and Klotz (1976). However, the percentage of mono- 
meric proteins can be estimated if it is assumed that the mean molecular weight of 
monomeric proteins is close to that of subunits of multimeric proteins. The method 
of estimation we use depends only on the mean molecular weights and not on the dis- 
tribution around the means. If M is the fraction of all proteins that are monomers, 

mWmono is the mean molecular weight of monomeric proteins, mWmult i is the mean 
molecular weight of multimeric proteins, and mWtota 1 is the mean molecular weight of 
all proteins, then these quantities satisfy the equation 

M(mWmono) + (1-M)mWmult  i = mWtota 1, 

which we now solve for an estimate of M. 
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For  mammals, the mean size of  153 protein subunits is 51,500 daltons. For  bacteria, 
the mean size of 207 protein subunits is 49,600 daltons. The difference between these 
means is not  statistically significant. The mean weight of 50,400 daltons of  the com- 
bined 360 protein subunits estimates the mean molecular weight of  monomeric proteins. 

For  mammals, the mean size of 133 multimeric proteins is 215,900 daltons. For  
bacteria, the mean size of 175 multimeric proteins is 240,400 daltons. Again, the dif- 
ference between these means is not  statistically significant. The mean weight of the com- 
bined 308 multimeric proteins is 229,800 daltons. 

Finally, the mean size of  77 human plasma proteins (extracellular proteins from a 
list by Masson, 1976) is 158,700 daltons and of 95 metalloenzymes (a mixture of bac- 
terial and mammalian intracellular proteins from a list by Vallee and Wacker, 1976) is 
158,100. The difference between these means is again not statistically significant. The 
mean weight of  the combined 172 proteins is 158,400 daltons. 

Using the above equation, the fraction M of  proteins that  are monomers may be es- 
t imated as: 

M(50,400) + ( l - M )  (229,800) = 158,400, henceM = 0.40 

2) Size Distribution o fmRNA.  How does the size of mRNA compare to the size it 
must have to code for protein subunits? Unfortunately,  the size distribution cannot 
be accurately determined from specific cellular mRNAs because too few have been iso- 
lated. However, unlike the proteins the majori ty of  the mass of  mRNA in a cell like 
HeLa is divided among hundreds of  different species (Bishop et al., 1974). Therefore 
the sedimentation profile of  cellular mRNA can be used to estimate its size. 

The transformation of the sedimentation profile to the molar frequency size distri- 
bution is described in Materials and Methods. The size distribution is well described by 
a lognormal distribution with a median length of  approximately 1.4 kb and a deviation 
of  2.0 (Figs. 3a and 4a). Likewise, the size of mRNA isolated from Chinese hamster 
ovary cells is f i t ted by a lognormal distribution with approximately (within 5%) the 
same median and deviation (Figs. 3b and 4b). Although numerical tests are not  possi- 
ble here, the graphical test indicates that  the description of  the data by a lognormal dis- 
t r ibution is, if anything, even better  than for the mammalian protein subunits (Fig. lb) ,  
where numerical tests detected no departures from lognormality. 

To determine the maximal coding capacity of  mRNA, we estimate the average mo- 
lecular weight of amino acids in proteins at 110 daltons. This figure was obtained in each 
of  3 different ways: 1) from the amino acid composit ion of total  KB cell (human) pro- 
tein, 2) from the amino acid compositon of total  E. coli protein, and 3) from the aver- 
age composit ion of 30 proteins selected randomly from a compilation of  amino acid 
compositions of  purified proteins (Polasa and Green, 1967; Sueoka, 1961 ; Reeck, 1976). 
We shall assume that  the efficiency of translation, as measured by the number of  initia- 
tions per mRNA molecule per unit time, is independent  of the size of mRNA. Taking 
1.4 kb as the median length of a lognormal distribution of mRNA, 2.0 as the devia- 
tion, and 100 nucleotides as the average length of  poly A (Puckett  and Darnell, 1976; 
Sawicki et al., 1977), mRNA could, at most, produce a distribution of  polypept ide 
chains with a median molecular weight of  51,000 daltons and a deviation of  2.0. 

Since the observed distributions of polypept ide size have a median on the order of  
40,000 daltons and a deviation of 1.8, 3/4 of  the length of a typical mRNA molecule 
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Fig. 3a-c. Sucrose gradient profiles of 
mRNA and nuclear RNA. 

a. 15--30% sucrose gradient of mRNA 
from HeLa cells labeled with H 332po 4 
for 6 h. The gradient contains poly A + 
mRNA but the results also apply to poly 
A- because it has a similar if not identi- 
cal sedimentation profile (Milcarek et al., 
1974). 
b. 5-20% sucrose gradient of mRNA 
from CHO cells labeled 2 h with 3H- 
uridine. 
c. 15-30% sucrose gradient of HeLa 
cell nuclear RNA labeled with 3H- 
uridine for 30 s ( - )  and 1 h (- - -), res- 
pectively 

is translated. Since the smaller m R N A  species are too  small to code for  the  larger poly-  

peptides,  they  must  code for  the  smaller polypept ides .  Therefore  to produce  a lognor- 

real dis t r ibut ion of  protein size, the larger m R N A  molecules  must,  in general, code for  
the  larger polypept ides .  

We emphasize tha t  these conclusions only apply to the  major i ty  of  m R N A  species. 

If a minor i ty  behaved aberrantly,  they  would  no t  be de tec ted  by  these methods.  
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3) Size Distribution of  Transcription Units in HeLa Cells. To compare the size distri- 
bution of  transcription units to that of  mRNA, HeLa cells were labeled with 3H-uri- 
dine for 30 s. The nuclear RNA was extracted and then sedimented through a sucrose 
gradient under conditions that prevent aggregation (see Materials and Methods). The 
sedimentation profiles (Fig. 3c) were converted to graphs of  frequency versus length 
in kb. The nascent chain size distribution (Fig. 5a) has 2 components: (1) an exponen- 
tial component  with a half-length in the range of  1 0 - 1 5  teb (based on 3 different ex- 
perimental determinations), and (2) a high frequency of  very short molecules. 

The frequency of  very short molecules is probably a conservative estimate. Based 
on the maximal elongation rates of HeLa 45S pre-rRNA, polio, Cbironomus tetans, 
and E. coli RNA polymerases, the elongation length E during the 30 s label is likely to 
be greater than 0.3 kb and possibly as much as 3 kb (Greenberg and Penman, 1966; 
Darnell et al., 1967; Egyhasi, 1975; Bremer and Yuan, 1968). Therefore, the true fre- 
quency of  a molecular species of  length L which is shorter than E is E/L because, in 
30 s, E/L completed copies of  the molecule are transcribed. 
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Fig. 5. The size distribution of HeLa hnRNA labeled for (a) 30 s and (b) 60 min with 3H-uridine 
plotted on semi-logarithmic coordinates 

The observed distribution reflects the actual size of transcription units (distance from 
the initiation to the termination of RNA polymerase) if there is not physiological cleav- 
age of nascent chains, no perturbation introduced by shutting off rRNA synthesis with 
actinomycin D, and no degradation during the isolation of nuclear RNA. However, 
there may well be such cleavage, perturbation,  and degradation. Nascent chains are 
cleaved during the transcription of E. coli rRNA and adenovirus late nuclear RNA 
(Nikolaev et al., 1973; Nevins and Darnell, 1978). Act inomycin D, at 100 times the 
concentration, perturbs hnRNA processing in human and Drosopbila cells (Herman and 
Penman, 1977; Levis and Penman, 1975). Finally, degradation during isolation is al- 
ways a potential  problem because of  the high concentrations of  RNAses. However, the 
likelihood of degradation is difficult to evaluate because it is not known whether any 
isolation procedure for mammalian nuclear RNA quantitatively preserves molecules in 
the range of 1 5 - 1 0 0  kb. 

The precise effects of processing and actinomycin D depend on their mechanisms 
of action. However, thermal and nucleolytic degradation, which cut randomly in 
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Fig. 6a, b. Frequency distribution of fragment length of chains randomly broken at a random 
number of points. With the scaling of the coordinates used here, a straight line indicates that the 
frequency distribution resembles an exponential distribution. 

a. Initially all chains are of equal length. When an average of h = 1 break point occurs per initial 
chain, the distribution of lengths is exponential with a marked discontinuity at 1 unit. As h pro- 
gresses through 3 and 10 break points per initial chain, the discontinuity decreases until it is negli- 
gible. 
b. A nearly exponential distribution of chain length resulting from a lognormally distributed popula- 
tion subjected to random breaks. Initially, chains are approximately lognormally distributed with 
median 32 kb and deviation of 4. When a break point occurs, on average only once every 128 kb, 
breakage is so rare that the resulting distribution of fragments resembles the initial lognormal dis- 
tribution. When a break point occurs on average every 32 kb, the frequency distribution is intermedi- 
ate between lognormal and exponential. When a break point occurs on average every 8 kb (as shown 
in figure), hardly any trace of the initial lognormal distribution survives and the distribution of frag- 
ment length is very close to exponential 

p ropo r t i on  to  size, could conver t  unique  and lognormal  d is t r ibut ions  in to  approx ima te ly  

exponen t i a l  d is t r ibut ions  (Fig. 6). Therefore ,  if degradat ion  occurred,  a variety of  dis- 

t r ibu t ions  o f  t ranscr ip t ion  unit  size would  appear  to be exponent ia l .  
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4) Size Distribution of  Accumulated Nuclear RNA. The profile of nuclear RNA labeled 
for 60 min is similar to the completed chain profile. The half-length of the exponential  
component is 13 kb, indicating that  a completed hnRNA chain is quickly transported 
or degraded after being cleaved. This agrees with previous conclusions from UV inac- 
tivation experiments in human and mouse cells, and pulse chase experiments in Dro- 
sophila cells (Goldberg et al., 1977; Giorno and Sauerbier, 1976; Levis and Penman, 
1977). 

The observed distribution only reflects the real distribution if actinomycin D does 
not appreciably perturb transcription and processing, and if the RNA is not  degraded 
during isolation. 

Discussion 

a) Proteins. Our analysis of  protein sizes and subunit numbers indicates five conclu- 
sions. The size of polypeptides is fit  well by a lognormal distribution with a median 
value of 40,000 daltons and a deviation of 1.8. About  60% of all proteins exist in mul- 
timeric aggregates. 75% of the multimers have either 2 or 4 subunits while less than 1% 
have an odd number of subunits that is greater than 3. Over 90% of the time, a given 
multimer is composed of subunits of nearly equal size so that  the size of an N-mer is 
lognormally distributed with a median value of N x 40,000 daltons and a deviation of 
1.8. The distribution of polypeptide size and subunit number is similar for mammalian 
and bacterial proteins as well as for intracellular and extracellular proteins. 

These conclusions require caution because the proteins that  have been isolated are, 
in general, the more abundant  proteins. If the size of proteins depends on their abun- 
dance, the sample available will not  be representative of protein sizes as a whole. Since 
the mRNA and nuclear RNA sampled are predominantly the abundant molecules, the 
same caveat applies to generalizations about their sizes. 

Our results may be compared with those of previous studies on the sizes of proteins. 
The 360 intracellular mammalian and bacterial protein subunits included in Figs. 

la  and l c  have a mean molecular weight of 50,419 daltons and a standard deviation of 
32,793 daltons. Hopkinson et al. (1976) find the molecular weights of 99 enzyme sub- 
units studied electrophoretically in man to have a mean and standard deviation of 
45,798 + 20,699 daltons. Edwards et al. (1977) find the molecular weights of soluble 
"non-enzyme" protein subunits from human autopsy tissues to have a mean and stan- 
dard deviation of 54,600 +- 42,900 daltons. They also find 134 vertebrate enzymes 
from an earlier list by Darnall and Klotz to have a mean subunit molecular weight of 
53,400 daltons, and 35 vertebrate "non-enzymes" to have a mean molecular weight of 
51,700 daltons. Nei et al. (1976) find the molecular weights of 119 mammalian pro- 
tein subunits taken from an earlier list by  Darnall and Klotz to have a mean and stan- 
dard deviation of 45,102 + 24,531 daltons. Thus all these studies indicate a mean pro- 
tein subunit molecular weight near 50,000 daltons and a standard deviation near 
30,000 daltons. 

We find that  the frequency distribution of subunit molecular weight is well described 
by a lognormal distribution. Hopkinson et al. (1976) and Edwards et al. (1977) give 
frequency histograms of  subunit molecular weight but  do not  fit any frequency law to 
these histograms. Qualitatively their histograms have the skewness characterisitic of 
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the lognormal distribution. Nei et al. (1976) successfully fit a gamma distribution to 
their frequency histogram of 119 mammalian protein subunit sizes but  offer no ratio- 
nale for the choice of  the gamma distribution.  Although we have shown that  several dis- 
tr ibutions other  than the gamma cannot describe our data on subunit sizes, neither we 
nor Nei et al. (1976) have performed a comparative test to see whether the lognormal 
distr ibution or the gamma distribution describes the size data better.  This question re- 
mains open. 

We estimate that  40% of  all proteins are monomers. Hopkinson et al. (1976) find 
28 monomers in their sample of 100 enzymes. Among proteins with more than one 
subunit, we find that  approximately 40% are dimers and approximately 68% have two 
or four subunits. The corresponding figures derived from the smaller sample of  Hopkin- 
son et al. (1976) for multimeric human enzymes are 60% and 93%. 

We find that  the mean protein subunit size is very similar in eukaryotes and prokary- 
ores, in intracellular and in extracellular proteins. Hopkinson et al. (1976) and Edwards 
et al. (1977) find a mean protein subunit size in humans comparable to that  in verte- 
brates. Hence it seems likely that the overall means for mammalian and for bacterial 
protein subunits do not  disguise a large variation from species to species, but  that  the 
mean molecular weight of  protein subunits in individual species varies only slightly from 
the overall mean. This likelihood requires confirmation by the study of  the protein sub- 
unit size distr ibution in other individual species. 

One should gain insight into the forces governing protein size by finding systems 
where protein size differs. If temperature affects size then thermophilic organisms 
should have a different distribution. If protein size can be reduced, the size of  proteins 
from small virions might be smaller because these organisms are under strong selective 
pressure to minimize the size of their genetic information, as judged by the out  of  phase 
genes in ~bX174 and SV40 (Sanger et al., 1976; Reddy et al., 1978). 

The implications of the variation in protein subunit molecular weight for hetero- 
zygosity in natural populations of organisms are explored by Nei et al. (1976, 1978) 
and Koehn and Eanes (1978). 

b) mRNA. The sedimentation profiles of mRNA from HeLa and CHO cells indicate 
that  the  lengths of  mammalian mRNA are fit well by a lognormal distribution with a 
median value of  1.4 kb and a deviation of  2.0. This implies that  the majori ty of mRNA 
is monocistronic because, on the average, a mRNA species in only about 25% larger 
than the mature polypept ide it codes for. Therefore, at most a minori ty of  mammalian 
mRNA could code for large precursor polypeptides which are then cleaved into a num- 
ber of  mature polypeptides (like polio mRNA; Villa-Komaroff et al., 1975) or for 3' 
coterminal mRNAs where the larger species contain the information for up to 4 pro- 
teins (like adenovirus mRNA; Nevins and Darnell, 1978). 

The deviation of mRNA size is somewhat greater than the deviation of  polypept ide 
size (2.0 versus 1.8). This suggests that  the length of  the noncoding region is not  close- 
ly correlated with the length of  the coding region. In other words, while the average 
noncoding region is roughly 25% of the coding region, some noncoding regions are 
smaller and some are larger. 

The size of  mRNA from a wide variety of  eukaryotic  cells is quite similar. For  ex- 
ample, sedimentation of  3H-labeled mosquito mRNA with co-extracted 14C-labeled 
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human mRNA suggests that  the mRNA size distribution in both species is virtually iden- 
tical (Spradling et al., 1974). Although other published sedimentation profiles do not  
have internal controls and vary in their accuracy, it is safe to say that  mRNA from para- 
mecium, sea urchin, and fruitfly are close (at most within a factor of 2) in size to mam- 
malian mRNA (Hruby et al., 1977; Nemer et al., 1975; Levis and Penman, 1977). 

The data from the three cellular mRNA molecules that  have been sequenced are com- 
patible with the conclusions drawn by analyzing sucrose gradients. In rabbit  a and/3 
globin and chicken ovalbumin mRNA, the percentages of  sequences in the nontrans- 
lated region are 20%, 22%, and 39%, respectively, with an average value of  27% (Proud- 
foot  et al., 1977; Proudfoot,  1977; Baralle, 1977; Efstratiadis et al., 1977; MacReynolds 
et al., 1978). 

It will be of interest to determine if the size distribution of mRNA differs in some or- 
ganisms. Since bacteria contain polycistronic mRNAs derived from operons, the size dis- 
tr ibution of  their mRNA may be different. Since Acetabularium can live for months and 
even regenerate its cap without  a nucleus (Brachet, 1967), its preponderance of  post- 
transcriptional controls may be reflected in mRNA with a different size distribution. 

c) NuclearRNA. The sedimentation profile of nuclear RNA labeled for 30 s and 60 
min suggests that  the length distribution of both  transcription units and accumulated 
nuclear RNA has an exponential  component  with a half-length of  about 1 0 - 1 5  kb, and 
a high frequency of very short molecules. 

Derman et al. (1976) reported that, neglecting the very small nuclear RNA, half the 
nuclear RNA in HeLa cells is synthesized from transcription units of less than 5 kb. 
When their data are plot ted on semi-logarithmic paper, the curve is similar to the curve 
in Fig. 5a, but  the half-length is only 6 kb. It is very unlikely that  the discrepancy is 
due to aggregation of  the RNA in our experiments because the RNA did not  decrease 
in size when sedimented on a parallel 99% DMSO denaturing gradient. Since speed is 
crucial for the isolation of the larger molecules, perhaps Derman et al. got smaller RNA 
because they extracted 4 samples concurrently, while we extracted only 2 samples con- 
currently. In one experiment where 4 samples were extracted together we also observed 
smaller RNA. 

If the distribution of hnRNA transcription unit  length is exponential,  then proces- 
sing converts an exponential  distribution of primary transcripts to a lognormal distribu- 
t ion of mRNA. However, since more than 90% of the primary hnRNA transcripts are 
larger than the median size of mRNA, it is still possible that  a segment of  each primary 
transcript gives rise to a single mRNA molecule. 

So far as we know, detailed models have not yet  been proposed which predict quan- 
titatively the size distributions of  hnRNA, mRNA, and proteins established in this pa- 
per. These facts constrain future models for the evolution of these classes of molecules 
and serve as a challenge to construct testable models which will explain them. 

Appendix 

Random Breakage at a Random Number  o f  Points 

Consider a populat ion of  molecules which are initially all exactly H units long. Suppose 
each molecule is broken at random at N ponits, where the number N of break points 
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varies randomly  according to a Poisson dis t r ibut ion with mean XH. We write  the mean 

number  of  break points  as XH so that  X describes the average number  of  breaks per unit  

of  length. Thus if the initial popula t ion  o f  molecules  were twice as long as the popula- 

t ion we are considering, we would  expec t  on average twice as many  breaks per mole- 

cule in this model .  Let  L be the length o f  a random fragment  of  a molecule  produced 

by this process. This Append ix  calculates the cumulat ive dis t r ibut ion func t ion  (cdf) 

of  L. The  cdf  of  L is deno ted  F(x)  = P(L ~< x) and is defined as the probabi l i ty  that  

the length o f  a random f ragment  is less than or  equal  to x. 

We use no ta t ion  that  is standard in the theory  of  stochastic processes (Karlin and 

Taylor ,  1975). 
By assumption,  the  probabi l i ty  that  there are n = 0, 1, 2 . . . .  break points  on an ini- 

tial molecule  is e -xH (XH)n/n!.  If  N = n, there are n + 1 fragments with probabil i ty  1. 
c o  

So the expec ted  number  o f  fragments if ~ n = 0  (n + 1)e -xH (XH)n/nt = XH + 1, and the 

probabi l i ty  that  a random fragment  arises f rom a molecule  broken at ne -XH points  is 

P(N = n) = (n + 1) e-XH(XH)n/[n! (XH + 1)]. This differs f rom a Poisson dis t r ibut ion 

because the more points  at which an initial molecule  is broken,  the more  random frag- 

ments  it creates. 

If  N = 0, then L = H; that  is, by  chance, the  original molecule  remains unbroken.  We 

define C(s) = 1 if s < 1, C(s) = 0 if s ~> 1. Then the probabi l i ty  that  L exceeds x, given 

N = 0 i s P ( L > x  I N = 0 )  = C ( x / H ) =  l i f x < H , = 0 i f x T > H .  

I f N = n > 0 ,  t h e n f o r a n y x s u c h t h a t 0 ~ < x ~ < H , P ( L > x  [ N = n )  = ( 1 - x / H )  n, 

(Feller, 1966). 
The cdf  is now obta ined by combining these results: 1 - F(x)  = P(L > x) = 

Nn°°- 0 P(L > x IN = n)P (N = n). Thus P(L > x) (XH + 1) = C(x/H)e  -XH + e -xH Nn=l  
(n + 1) [XH (1- -x /H)]n /n!  = e -^x [XH ( 1 - x / H )  + 1 + e - x H ( 1 - x / H )  (C(x /H) - - l ) ] .  It is 

readily checked that  P(L > 0) = 1 and P(L > H) = 0 as desired so that  the  probabi l i ty  

mass is concentra ted  on (0, H). For  x < H, the formula  simplifies: P(L > x Ix < H) = 

e -xx -- (Xxe "xx) / (XH + 1). For  any a, b such that  0 ~< a < b < H, we use this formu- 

la to find P(a < L ~< b) = P(L > a la < H ) -  P(L > brb < H), while if b = H, 

P ( a < L ~ < b =  H) = ( P ( L > a  [ a < H ) - 0 .  

This procedure  was used to find the probabi l i ty  mass of  L in the 20 intervals 

( 0 . 0 5 ( j - 1 ) ,  0.05j], j = 1 . . . . .  20, for H = 1, X = 1, 3 and 10 (Fig. 6a). 
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