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Summary. W. Fitch used a mathematical model to estimate the covarion size 
(the number of codons which are variable at a given time) and the turnover 
rate of  covarions in the evolution of  cytochrome c. We improve and correct 
the mathematical derivations and statistical estimation procedures in Fitch's 
model, altered to account more fully for the redundancy in the genetic code. 
We also consider a closely related model, which assumes the covarion fixing the 
last minimum mutation distance increasing (MDI) substitution has the same 
probability of  losing variability as the other covarions. The average number of  
covarions is estimated to be at most five. Roughly 35 to 65% of the covarions 
are predicted to lose variability after each MDI substitution; this is smaller than 
Fitch's estimate, but the estimate is quite sensitive to changes in the data, which 
are a phylogenetic tree derived by Fitch and Margoliash. Both covarion models 
predict that there are about 0.9 to 2.0 total substitutions per variable codon in 
cytochrome c during "short" periods of evolutionary time (at most 10 MDI 
substitutions). This is less than the prediction from Holmquist, Cantor, and 
Jukes' stochastic model, which emphasizes variability over the entire time of  
divergence, rather than variability at a given time as in the covarion model, 
but this difference is predicted by the differing model assumptions. 

Both the covarion and interactive models provide clear descriptions for hy- 
potheses of  a stochastic evolutionary process operating within deterministic 
selective constraints. Both depend on only two parameters, one measuring 
selective constraints, and the other, the rate of a stochastic process. Both fac- 
tors are important, so it is unlikely that one could describe the process with 
fewer parameters. Since both models provide similar estimates for the rate of  
substitution for closely related pairs of  species, it is plausible that both describe 
the same process, but from different viewpoints. Extensive tests on the protein 
data using an improved covarion model are necessary to determine whether 
these models are in fact compatible, 
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Introduction 

Two types of  stochastic models for the evolution of proteins have been proposed to 
estimate the intensity of the selective constraints on the genes coding for proteins. 
Holmquist and his colleagues have obtained estimates of the total number of codons 
ever open to a substitution and of the rate of  substitutions over the entire time of 
divergence between two species for a number of proteins. For a review of their inter- 
active model based on random evolutionary hits, see Holmquist (1976) and references 
therein; and for the data, Jukes and Holmquist (1972), Moore et al. (1976), and Holm- 
quist et al. (1976). This model provides information on the more significant effects 
of natural selection, the restrictions on how many and which particular residues in a 
protein can vary (Holmquist, 1976, p. 105). 

In trying to answer this question, Fitch (1971) took an alternative point of view, 
appropriate for the relatively short time corresponding to a few observable nucleotide 
substitutions. He used a mathematical model for the covarion hypothesis of Fitch and 
Markowitz (1970) to estimate the number of codons open to a substitution at a given 
time and the rate at which these codons lose variability. The covarion hypothesis 
states that, at a given time, a nucleotide substitution in a gene coding for a protein can 
occur only in a specific subset, called the covarions, of the codons for the protein; a 
mutation at any other site would be lethal or sufficiently deleterious to be discarded 
by selective forces. Fitch (1971) showed it to be a necessary consequence of this hy- 
pothesis that the variable codons change with time. This is supported by the inter- 
active model prediction that, in general, the number of potentially variable codons 
increases with (sidereal) time (Jukes and Holmquist, 1972). 

A third model for protein evolution is the maximum parsimony evolutionary tree, 
constructed from a (presumed known) evolutionary tree, contemporary protein se- 
quences, and an algorithm for reconstructing ancestral sequences so that the total 
number of substitutions in the tree is minimized (see Moore et al., 1976, and references 
therein). In contrast to the interactive and covarion models, this model is completely 
deterministic. The validity of both the maximum parsimony and Holmquist's random 
evolutionary hit stochastic model does not depend on the time span modeled, but the 
assumptions on which the covarion model is based are only likely to be reasonable 
approximations to reality for relatively short evolutionary times. The covarion model 
could be considered to be intermediate between the interactive and maximum parsi- 
mony models, as it has the stochastic character of the former but with stronger explicit 
selective constrainsts (e.g. the restrictions against back substitutions and codons' regain- 
ing variability; see the following section). Moore et al. (1976) have shown that the 
estimates from the interactive random evolutionary hit stochastic and maximum parsi- 
mony models are consistent, particularly for long evolutionary times. I will provide 
preliminary evidence that the interactive and covarion stochastic models are consistent 
for relatively short evolutionary time periods. 

Biological knowledge supporting the covarion hypothesis includes the constraints 
on the set of  potentially variable codons in cytochrome c based on functional require- 
ments. In addition, Fitch and Markowitz (1970) discussed the spatial correlation in 
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amino acid replacements, suggesting that a potent ial ly variable codon can lose its vari- 

ability as a result of a substi tution at another codon (or perhaps a change in another 
protein with which cytochrome c interacts). Further  evidence for loss in variability is 

provided by  the (perhaps nearly irreversible) substi tution of  alanine for cystine at 
residue 14 in the cytochrome c ofEuglenagracilis (Pettigrew 1973 and L i n e t  al. 1973). 

The discussion of  the covarion model shows that the simplest parameters required 
to describe it are the average number of  covarions and the rate at which codons lose 

variability. Fitch estimated these parameters for cytochrome c by computing the best 
fit of  the values predicted by  his mathematical  model  to the minimum mutat ion dis- 
tances in the phylogenetic tree of  Fitch and Margoliash (1968). I have corrected and 

improved Fitch 's  mathematical  and statistical methods;  see Appendix A and Methods 
for details. My estimates confirm his prediction that  the number of covarions is small 
(five or less)1, but  suggest that 35 to 65% of the covarions lose variability after each 
nucleotide substitution changing the minimum mutat ion distance, in contrast to his 
prediction of  at least 60%. 2 As pointed out  in Results, this difference is to be expected 
as a result of  greater use of  the redundancy in the genetic code in my models than in 

Fitch's.  
The estimates given here should be regarded as qualitative, rather than quantitative, 

especially that  for the turnover rate of  covarions, which is quite sensitive to small per- 
turbations in the data. (The estimate of the covarion size is affected very little by  these 
perturbations.)  More complete data and a slightly better  model, as outlined in the 
final section, are necessary before good quantitative estimates can be made. 

Unless specifically stated to the contrary, all references to Fitch's work are to Fitch 

(1971). 

Two Models for the Covarion Hypothesis 

I will analyze two models, each of which describes a series of  nucleotide substitution 

events. It will be necessary to differentiate between nucleotide substitutions which 
increase the minimum mutat ion distance (MMD) between the encoded amino acids, 

and those which do not;  the former will be called mutat ion distance increasing (MDI) 
substitutions. 

In addition to the description of the covarion hypothesis in the Introduction, the 
models are based on the assumptions listed below. These particular assumptions are 

made in order to obtain models which are as simple as possible while reproducing impor- 
tant  features of the evolutionary process. Examples contrary to assumptions 2-5, 
describing the nucleotide substitutions allowed by the model, are known, but  each is 
likely to be more reasonable as the period of  evolutionary time modeled is decreased. 

This estimate also agrees qualitatively with Fitch's latest estimate (Fitch 1976), based on a 
linear extrapolation, of a covarion size in plants and mammals of about 10 to 12 codons. The 
data plot suggests that a quadratic extrapolation might provide a somewhat better fit and a lower 
estimate of covarion size. 
This is one minus the expected proportion of covarions remaining variable after a substitution 
(defined in Results), computed from Fitch's estimate of about five covarions and a probability 
of retaining variability of at most 0.25. 
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Since the data fit will be restricted to 10-15 MDI nucleotide substitutions, it is only 
necessary that these assumptions be true over the time required for about 10 MDI sub- 
stitutions. Fitch made the same assumptions, except that he allowed only MDI substi- 
tutions in assumption 4 and considered only Model I in assumption 6. 

Assumption I. The covarion hypothesis is valid, and at any t ime there are exactly c 

covarions, where c is an integer. The probabil i ty v that  a covarion remains variable after 
a substitution (see Assumption 6 for a more precise definition) is also constant. 

I know of  no direct evidence on whether the parameters are roughly constant for rea- 

sonably closely related species, although Fitch (1976) has presented data suggesting 
that the number of  covarions is about the same in mammals and plants. Allowing the 
basic parameters c and v to vary, or c to be nonintegral, would make the mathematical 

analysis quite complex. However, the estimates can be extended to nonintegral values 
of c (see Results). Both parameters should be regarded as representing average values 

over a number of evolutionary paths. 

Assumption 2. No MDI substitutions occur in a codon which has lost its variability 
after fixing an MDI substitution. 

This assumption may be reasonable during a sufficiently short period of time, particu- 
larly if substitutions are selectively advantageous. It greatly simplifies the computa- 
tions, as a random process would have to be chosen (and perhaps another parameter 
introduced) to describe codons regaining variability after fixing an MDI substitution. 
This assumption is used in the computations summarized in Results. In the discussion 
of methods and the comparison with the REH interactive model, the stricter assumption 
(Assumption 2a) that no codon can regain variability will be made in order to simplify 

some computations.  

Assumption 3. Back substitutions (i.e. substitutions decreasing the MMD) do not occur. 

We must make this assumption to fit MMD data in a phylogenetic tree, since the data 
are computed under the hypothesis that back substitutions do not occur on an inter- 
nodal leg of  the tree. This does not appear to be a severe restriction for random muta- 
tions. For  codons with MMD=I, back substitutions occur with a frequency of only 
24/1500 through random mutations (see the derivation of the proport ion of second 
MDI hits on codons with MMD=I yielding MMD=2, which will be denoted by u, later 
in this section). Further data on random back substitutions are the below diagonal 
entries in Table A2 in Holmquist et al. (1972). In 230 substitutions in a phylogenetic 
tree for cytochrome c, Fitch and Margoliash (1968) found only three back mutations; 
in their reconstruction of  an ancestral myoglobin sequence using an MMD cladogram, 
Romero-Her re ra  et al. (1973) found only seven detectable back substitutions in the 

147 substitutions required. 

Assumption 4. All base substitutions which increase or do not  change the MMD are 
equally likely at each base posit ion in each covarion with an MMD of zero or one, and 
each such covarion is equally likely to fix the next such substitution. (In addition, 
see the next assumption for the treatment of codons with MMD=2). 
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This assumption was made t o  obtain a mathematically tractable model. Specific prob- 
abilities for different types of base changes could be incorporated in the model by 
altering the method used to compute the parameter u. 

Assumption 5. Covarions with MMD=2 are treated as if they had MMD=I in the sub- 
stitution process, except that the possibility of  a codon with MMD=3 is ignored in the 
calculations. 

Although pairs of  species with MMD=3 for cytochrome c are known, these are quite 
rare (Moore et al., 1976, p. 27), and there are none among those pairs with MMD at 
most 15 in the 57 sequences tabulated by Holmquist (personal communication; this 
tabulation is the one from which Tables 2-5 in Moore et al. (1976) were derived). The 
first part of  this assumption is not a serious restriction, as covarions with MMD=2 are 
unlikely to occur very often when the total number of  substitutions is small. This 
hypothesis is used in computing the probability Pk in Equation (1), below, which 
specifies the probability that the next MDI substitution will occur in a covarion with 
MMD=0. Thus, after two MDI substitutions Pk should be slightly larger than the value 
given, but the difference between the correct value and that in (1) is small. 

Assumption 6. After each MDI substitution, the covarions are subject to a loss of vari- 
ability according to a binomial random process: 

a.) For Model I, the covarion which fixed this mutation remains variable; each of 
the other covarions remains variable with probability v (hence loses variability with 
probability l-v). 

b.) For Model II, each covarion remains variable with probability v. Hence, the 
codon fixing the last MDI substitution may also lose variability. 

MDI substitutions initiate the replacement process since the data to be fit are MMD's 
from a phylogenetic tree. In the absence of  any information on how the set of co- 
varions changes with time, the assumption that loss of  variability occurs independently 
and with the same probability in each codon (Model II), or in a particular subset (Model 
I), seems to me to be the simplest. One of the motivations for Fitch and Markowitz's 
originally proposing the covarion hypothesis was the unexpectedly high proportion of 
codons with MMD=2 in the phylogenetic tree for cytochrome c. Fitch gives data 
supporting the inherent bias in Model I, which is his model, toward double substitutions 
(the bias results from the codon fixing the last substitution remaining variable). Since 
it is conceivable that this codon could lose variability, Model II will also be considered. 
In fact, it seems reasonable that the codon fixing the last substitution may lose varia- 
bility, but with a smaller probability than the other covarions, e.g. if an optimal substi- 
tution requires two substitutions instead of just one (see Fitch's discussion). Thus the 
predictions from these two models may be regarded as bounds for the true turnover 
rate, and comparing them would indicate whether the difference is important. 

The first two assumptions imply that the potentially variable codons (those not 
absolutely fixed in order that the protein function) can be divided into three classes: 
those which have never been variable, or which did not fix an MDI substitution while 
variable (group I); the covarions (group II), of  which there are always c, an integer; 
and the codons which were once variable but are no longer and have fixed an MDI 
substitution (group II1). Thus, if the gene has N potentially variable codons, initially 
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there are N-c codons in group 1, c in group II, and none in group III. After each MDI 
substitution, codons are removed from group II (and enter group I l l  or return to group 
I) according to the binomial random process specified above, with turnover rate 1-v. 
Codons from group I then become variable, to maintain c codons in group II. 

Explicitly, each MDI nucleotide substitution in the gene consists of the following se- 
quence of  events: 

1. Gene substitution. Let there be k covarions with an MMD of zero. The next 

MDI substitution is fixed in one of the previously unhit covarions with proba- 
bil i ty Pk (see Equation (1), below), and in one of the previously hit covarions 

(MMD=I) with probabil i ty 1-pk. If a previously unhit (hit) covarion fixes the 
substitution, all k (respectively c-k) such covarions are equally likely to fix it. 

2. Loss of  variability. For model I, the covarion which fixed this MDI substitution 
must remain variable; for Model II, it need not. Each covarion subject to loss 

of  variability (c-1 codons in Model I, c in Model II) remains variable with prob- 
ability v and is transferred to group II with probabil i ty  1-v. 

3. Replacement of  lost covarions. If a total  o f j  (0 ~<j ~< c) covarions reenter group 

I and are transferred to group III, j codons are transferred from group I to group 
II. 

To complete the specification of the model, we need only define the probabil i ty Pk, 

introduced above, that  the next MDI substitution occurs in one of the k covarions with 
MMD=0. This probabil i ty is determined by  the redundancy in the genetic code, for this 
redundancy implies that  a nonsynonymous substitution - a substitution changing the 
encoded amino acid - in a codon with MMD=I is less likely to increase the MMD than 
a substitution in an unhit codon. The same base could be hit twice (as AAA-~CAA ~ 
GAA), or hits on two bases could yield an MMD of 1 (as GAA~GAU-+GCU, Glu -+ 
Asp-+Ala) or 0 (as UCU-+ACU-+AGU, Ser-+Thr-+Ser). Suppose that  a codon fixes two 
non-synonymous mutations;  Fitch (1971, p. 94) showed that  the two hits are on dif- 
ferent positions with probabil i ty 0.604. By direct enumeration (using a computer) ,  
we find that  the number of such second substitutions yielding an MMD of 0, 1, 2 are, 
respectively, 24 ,476 ,  and 1000. Ignoring the first possibility, since it corresponds to 
a back substitution, the proport ion of second MD1 hits on codons with MMD = 1 

yielding MMD = 2 is 

u = 0.604 x (1000/1476) = 0.416. 

We can use this information to compute Pk" Let p be the probabil i ty  of a nonsyn- 
onymous substitution (note that p is independent of MMD); k (0 ~< k ~< c), the number 
of covarions with MMD=0; and 7ri, the probabil i ty that the next substitution is an MDI 

substitution in some covarion with MMD = i, i -- 0 or 1. Then lr 0 = p .k /c  and n 1 --- 
p 'u- (c-k) /c .  Now observe that  Pk is also the conditional probabil i ty that  a substitution 
occurred in some covarion with MMD=0, given that it was an MDI substitution. Since 
a conditional probabil i ty  is defined as a ratio of two probabilities, we have 

Pk = nO/(nO + rrl) = k/(k + u(c-k)) k - 0,1 ..... c (1) 

where u is the proport ion of hits on covarions with MMD=I resulting in MMD=2; its 
numerical value is given above. This is the probabil i ty used in step one of the model. 
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It is important to note that there are essential differences between protein evolution 
and these models. The models assume that evolution during an internodal interval on 
the phylogenetic tree is independent of  past history and that, at the start of each sub- 
stitution event, the future behavior of  the model is independent of  previous events, 
except for the number of covarions carrying one or two substitutions. Also, the models 
do not provide for parallelism, which Holmquist (1976) and Romero-Herrera  et al. 
(1976) have discussed as a limitation of  the maximum parsimony method. 

The only difference between Model I and Fitch's model is the value of the parameter 
u. Fitch considered only MDI substitutions and did not attempt to correct fully for the 
redundancy in the genetic code; he used the value u=0.604, rather than 0.416. As a 
result, one would intuitively expect these models to predict a slower turnover rate 
and/or a smaller number of  covarions than Fitch's model (I am indebted to Fitch for 
this observation) ; in fact, a slower turnover rate is predicted. 

Appendix A 

Computation of the Probability of no Double Substitution 

The basic idea for computing the probability of  no double substitution is the following. 
According to the model, no double substitution in m minimum mutation distance in- 
creasing (MDI) substitutions means that each MDI substitution must occur in a covarion 
with MMD=0. At each step, the probability of  this happening depends on the number 
of  covarions with MMD=0 (see the discussion of the probability Pk defined in Equation 
(1) in the definition of the model). Therefore, it is necessary to know the probability 
that there will be a given number of  covarions with MMD=O at the beginning of  each 
substitution and codon replacement (model step). It is then possible to use these prob- 
abilities to compute the corresponding probabilities at the end of  the next model step. 

It is easiest to carry out this intuitive idea by interpreting the model as an absorbing 
Markov chain. As indicated above, we divide the possible outcomes after each model 
step into c+2 possible outcomes ("states") based on the number of covarions with 
MMD=0 after the mth MDI substitution and replacements; this number will be denoted 
by n m. Suppose there have been j MDI substitution events. For i=0, 1,..., c, state i is: 
no covarion has attained MMD=2, and nj = i. The only alternative is state c+1: some 
covarion has attained MMD=2. 

Let 

7ri(m) = Pr(state i after m MDI substitutions), i=0,1 .... c+1 

rr (m) = row vector, of  length c+2, of  the 7ri(m) 

Pjk = Pr (state k after m model steps I state j after m-1 model steps) 

where Pr(E) is the probability of the event E, and Pr(...I...) is a conditional probability. 
The model implies that the "transition" probabilities Pjk are independent of  m: they 
depend only on j and k. (This will be clear from the discussion of  their computatior/.) 
Let P be the square matrix of  size c+2 containing the probabilities Pjk, with j the row 
index. It follows from the theory of Markov chains (see e.g. Parzen, 1962) that 

7r(m) = 7r(o) pm (2) 
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where pm is the matrix P raised to the mtb power. The desired probability of no 
double substitution is 

w m (c,v) = 1"~(S~ (3) 

Relation (2) can also be interpreted as n "(m+l) = rt (m) P, which means that one obtains 
the probabilities 1r (re+l) for the next step by multiplying the probabilities r~ (m) by the 
matrix P. 

To compute the transition probabilities Pjk, first note that it is impossible to leave 
the state with MMD=2 (it is "absorbing"), so 

110 k = c + l  
Pc+l,k = k=  0, 1 ..... c. (4) 

In addition, the c+2 states exhaust all possibilities, so from any state j one must reach 
some other state. Therefore, 

]~ Pjk = 1 for each j (5) 
k 

which is used to compute Pj,c+l from Pjk for k ~< c. The latter probabilities can be 
computed by noting that, if we define E m to be the event that the mtb MDI substitu- 
tion is at a covarion with MMD=0, then 

Pjk = Pr(Eminm-l=J ) °Pr(nm=k[Em and nm.l=j) j, k = 0, 1 ..... c (6) 

since the MMD of the covarion fixing the MDI substitution is independent of  the fol- 
lowing replacement process. The first factor in (6) is precisely the probability pj given 
in (1). 

The second factor in (6) is determined by the replacement process. Given that the 
event E m has occurred, the last MDI substitution was at a covarion with MMD=0, 
so there are j-1 covarions with MMD=0, all subject to the replacement process. If any 
of  these lose variability, their replacement codons also have MMD=0. Therefore we 
must have at least j-1 covarions with MMD=0 after the replacement process (Pjk=0 if 
k ~<j-2), and n m is j-1 plus the number of  covarions with MMD=I subject to the re- 
placement process which are actually replaced. For model I, the covarion fixing the 
last substitution is not subject to replacement, so the transition from nm_l=j to nm=k 
requires that k-(j-1) of the c-j covarions with MMD=I subject to replacement lose vari- 
ability. With the binomial replacement model, the probability of  this occurring is 

Pr(n m =k [E m and nm_ 1 =j) = + vc-k-1 (1-v)k-j+l k=c 

For Model II, the covarion fixing the MDI substitution need not remain variable, so 
k-(j-1) of the c-j+l covarions with MMD=I must lose variability, and this has probability 

/c - j+ l \  c k Pr(nm=klE m and nm.l=j) = ~k_j+l)V - (1-v)k'J +1 j-1 ~<k <~ c. (8) 

To summarize, the transition probabilities Pjk are computed using (4) - (8). Then 
7r (m) is computed from (2) and the fact that 
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lr!O ) ={1 i=c 
0 otherwise 

Finally, the probability of no double substitution in m steps is obtained from (3). 
This procedure can be used for integral values of  c, but these probabilities are also 

needed for nonintegral c to compute the means and standard errors in Tables 2 and 3. 
The latter probabilities were obtained using a quadratic interpolation process, as out- 
lined near the end of  the next section in the discussion of  the computation of the opti- 
mal value of  WS(c,v). 

Fitch erred in computing conditional probabilities by substituting an expected value 
in the conditioning event. He did this in his equation (1), where he computed the 
probability that the i+1 th MDI substitution occurs in a particular codon with MMD=O 
(call this event Ei) , given that there are c-e i codons with MMD=0 after i MDI substitu- 
tions. The correct procedure requires the computation of  Pr(E i [ k i) for k i = 1,2,...,c, 
where k i is the number of  codons with MMD=0 after i MDI substitutions. The prob- 
abilities Wm(C,V) can be obtained from these conditional probabilities, using condi- 
tional probability methods and recursion relations, but the Markov chain approach is 
easier to explain. 

Methods 

The parameters c and v were estimated by finding those values which minimize a 
weighted sum of  squares WS(c,v), similar to a Pearson chi-squared, of  the deviations 
of  the data from the model predictions; WS(c,v) is defined later in this section. Such a 
procedure is generally referred to as finding the "best fit" of  the model predictions to 
the data. The data used were the number of  times a double substitution was, and was 
not, found for given numbers of substitution events in a phylogenetic tree for the cyto- 
chrome c of  20 species (Fitch and Margoliash, 1968). For reasons given below, these 
data, summarized in Table 2, were restricted to m ~< 15 minimum mutation distance 
increasing (MDI) substitutions and were grouped in computing WS(c,v). A numerical 
procedure, described below, was used to minimize WS(c,v). 

The Definition of  WS 

Before defining WS(c,v), we recall the definition of  the Pearson chi-squared. Suppose 
that on each of N independent experiments there are k possible outcomes (these may 
be groups of  observed outcomes). Let d i be the observed number of  outcomes of  type 
i, i = 1,2,...,k, and let Pi be the model probability of  observing such an outcome, so 
that Npi is the number (?f outcomes of  type i predicted by the model. Then the chi- 
squared is 

k 
X 2 = E (Npi-di)2/Npi , 

i=1 

or the sum of  (expected - observed)2/expected. Note that X 2 gives a weighted least 
squares estimate of  the deviation of  the model predictions from the data with weights 
(Npi)-l, so choosing the parameters in a model to minimize X 2 results in a "best" fit 
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of the model to the data in this sense. In using the chi-squared, it may be necessary to 
group some of the outcomes so that most of the expectations Npi are not too small 
(Lancaster 1969, p. 77). Intuitively, if Npj is "small", the corresponding term in the 
sum is given too much weight. 

To fit our data, first group the data into k cells according to the guidelines for using 
the chi-squared, each cell containing the data for one or more numbers of MDI substitu- 
tions. Let Zj(c,v) and zj be, respectively, the total number of  legs in the phylogenetic 
tree in cell j on which no double substitutions are expected and observed. The Zj and zj 
are computed using the probabilities Wm(C,V) that no double substitutions occur in m 
substitution events given the parameter values c and v, derived in Appendix A, above, 
and the data in Table 2. For example, if the first cell contains the data for m=2 and 
m=3, there are six observations for m=2 and two for m=3, so Zl(c,v) = 6w2(c,v) + 
2w3(c,v), and z 1 = 7. If cell j contains Nj observations and Yj and yj are, respectively, 
the number with at least one double substitution expected and observed, clearly Yj(c,v) 
7 Nj-  Zj(c,v) and yj = Nj-  zj. The weighted sum of squares analogous to the chi-squared 
IS 

k 
WS(c,v) = ~ [(zi(c'v) -zi)2/Zi(c 'v)+ ( Y i ( c ' v )  yi)2/Yi(c'v)l 

for this is the sum of (expected - observed)2/expected over all possible outcomes. 
However, WS is not the Pearson chi-squared. When the data are grouped into ceils, 

each cell includes data for several values of the parameter m; for the chi-squared, a cell 
contains data for certain types of outcomes with all parameters fixed. In addition, 
the method for constructing the phylogenetic tree results in the data not being statisti- 
cally independent. For these reasons, no significance levels will be given for the results. 

Res t r ic t ions  on  t he  Data 

Two considerations lead to using only the data for at most 10 to 15 MDI substitutions 
in the phylogenetic tree to fit the models. The data in the tree, which are inferred from 
sequence data, are made more reliable by this restriction. Second, the model assump- 
tions, especially the restrictions against back substitutions and regaining variability, 
are likely to be reasonable only for a relatively short period of evolutionary time. It 
should be noted that we are discarding about one-third of  the data in Fitch and 
Margoliash's phylogenetic tree. 

In addition, let us temporarily make the stronger Assumption 2a, that no codon can 
regain variability. Then we can compute a lower bound for the number of MDI substi- 
tutions we could allow by requiring that the number of covarions which lose variability 
not exceed the number of  potentially variable codons in the gene (if the latter occurred, 
codons must regain variability). For example, consider Model I. At each repetition of 
step 2, the number of sites transferred from group II to group III is random but has a 
binomial distribution: there are c-1 "trials" with a transfer probability of  1-v on each. 
There are m(c-1) such binomial trials after m substitutions, so the mean number of 
codons transferred is CT = m(c-1)(1-v). (For model II, CT = mc (l-v).) Thus, after m 
MDI substitutions under the modified assumptions there are c covarions in group II, 
an average of  CT = re(c-l) (l-v) codons in group III, some potentially variable codons 
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in group I, as well as codons which have never been variable, e.g. fixed for structural or 

functional reasons. Let N be the number of  potent ial ly variable codons during the 
time period modeled. The above discussion shows that we must require c + CT ~< N. 
Since there were 25 sites which carry the same amino acid in all the cytochrome c se- 
quences known in 1976 (Fitch 1976), a reasonable upper bound for the number of 
potential ly variable codons may be N = 80. In searching for a best fit, values of c as 
large as 10 and of  v smaller than 0.1 were used. This gives values of  c + CT as large 

as 10 + 8.1m for Model I, which implies m ~< 9. Since the assumption against regaining 

variability used to obtain this bound is too strong, this computat ion suggests that allow- 
ing up to about 15 MDI substitutions in fitting the model is appropriate.  

Computation of Optimal Values of the Parameters 

After the data were grouped into cells, the values of c and v for which WS (c,v) is a 
minimum were computed using the empirical observation that, for fixed c, WS(c,v) 
is virtually always concave up as a function of  v. For  each integer value of  c between 
two and ten, the value of  v minimizing WS was computed;  denote this value by  v*. 
Since v* changed quite rapidly with successive values of  c, the opt imal  value of  v 
(for all c) was then computed by  finding the point  on the parabola passing through 

the three points (c,v*,WS(c,v*)) in three-dimensional space for which WS was smallest; 
the location of  this point  also determines the optimal value of  c. For example, consider 
Model I with the data from the phylogenetic tree grouped into three cells (see Table 2) 
and the parameter u = 0.416. For  integral c, it was found that the smallest values of 
WS are WS(3,.00) = .74, WS(4,.16) = .39, and WS(5,.37) = .48; these can be interpreted 
as heights above the c-v plane. The smallest distance to the c-v plane from the parabola 
passing through these three points in three-space (the minimum value of  WS on this 
parabola) is 0.37, and the corresponding opt imal  values of c and v are 4.30 and 0.22, 
respectively. Without using quadratic interpolation, one would expect the opt imal  
values of  c and v to be between four and five, and 0.16 and 0.37, respectively, but  
interpolation is required to obtain more precise estimates, especially for v. 

Improvements in Fitch's Methods 

This analysis contains several improvements over Fiteh 's  work. Fitch used all of the 

data in the phylogenetic tree in fitting his model. Since he did not group the data into 
cells, he gave substantial weight to outcomes with relatively small expectations in com- 
puting the best fit, including the data for large numbers of  MDI substitutions which do 
not  fit the model. In addition, his use of  a weighted sum of  squares to fit the average 

number of  codons with an MMD of two in the internodal intervals is less sensitive to 
perturbations in the data and the value of  the parameter  u, as well as less robust, than 
the quant i ty  WS(c,v) proposed here. For model I, the estimates using Fitch 's  sum of  
squares (with data grouped into cells) are less robust because they are much more 
sensitive to the grouping of  the data than are the estimates from WS. For  model II, 
the estimates using his method are nearly independent of  the changes in the parameter 
u and perturbations in the data considered in Tables 2 and 3, and are within the range 
of  the estimates using WS. 
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R e s u l t s  

Given t he  s impl i fying a s sumpt ions  made  in these  mode ls  and  t h e  small  a m o u n t  of  da t a  

used to  f i t  t h e m ,  we can hope  for  at  bes t  qual i ta t ive  results,  r a the r  t h a n  expec t ing  

p a r a m e t e r  es t imates  of  great  accuracy.  In add i t ion ,  t h e  values of  the  pa rame te r s  c and  

v could  be  b o t h  t ime  and  species d e p e n d e n t ,  so t he  pa rame te r  es t imates  should  be  re- 

garded  as es t imates  o f  average values, 

The  bes t  es t imates  of  t he  pa rame te r s  c and  v, given in Table  1, suggest t h a t ,  for  

Model  I, v m a y  be  b e t w e e n  .15 and  .50, and c, b e t w e e n  4.0 and  4 .5 ;  for  Model  II, v 

m a y  be  b e t w e e n  .35 and  .60, and  c, b e t w e e n  2.5 and  3.0. T h e  non in t eg ra l  values of  

c arise f r o m  the  c o m p u t a t i o n  of  t he  bes t  es t imates  of  v, ou t l i ned  in Methods .  Cases 2-5 

o f  Tab le  1 ind ica te  t he  s tab i l i ty  o f  these  results  u n d e r  mo d i f i c a t i o n  o f  the  mode l  as- 

s u m p t i o n s  and  p e r t u r b a t i o n s  in t he  data ,  as discussed be low.  T h e y  show t h a t  t h e  num-  

be r  o f  covar ions  is small, b u t  t he  e s t ima te  o f  t he  t u r n o v e r  ra te  is sensi t ive to  t h e  mode l  

a s sumpt ions  and  t he  data .  

Tables  2 and  3 con ta in  compar i sons  b e t w e e n  t he  mode l  p red ic t ions  and  t h e  original  

data ,  for  fits of  u n g r o u p e d  and  g rouped  data ,  respect ively.  T h e  o n l y  es t imates  of  the  

m e a n  n u m b e r  of  legs in t he  t ree  wi th  no  d o u b l e  subs t i tu t ions ,  E(Z) ,  g rea te r  t h a n  t w o  

s t andard  errors  f r o m  the  observed  n u m b e r  of  legs w i th  no  subs t i t u t ion ,  z, are t hose  for  

Table 1. Best estimates of c and v for cytochrome c from the covarion model 

Model I Model II 
Data z for 
case u m=10 c v EPRV c v 

1 0.416 2 4.30 0.22 0.40 2.90 0.47 
4.14 0.16 0.36 2.64 0.36 

2 0.300 2 3.48 0.18 0.42 2.49 0.25 
3.43 0.14 0.39 1.80 0.07 

3 0.500 2 4.62 0.18 0.36 3.17 0.49 
4.44 0.07 0.28 2.99 0.43 

4 0.416 1 4.70 0.55 0.65 3.02 0.62 
4.14 0.39 0.54 2.83 0.55 

5 0.416 0 6.00 1.00 1.00 5.09 0.81 
5.12 0.81 0.85 3.00 0.77 

The values of c and v are those minimizing the statistic WS(c,v), using the data from Table 2, modi- 
fied as indicated in column 3 for the last two cases. WS(c,v) is defined in Methods, and z is the ob- 
served number of internodal legs on which a double substitution did not occur. EPRV is the ex- 
pected proportion of covarions remaining variable after a substitution event. For each case, the es- 
timates in the first line are for the data grouped into three cells (m=2,3; m=4,5 ; m/> 6), and in the 
second line, two cells (m=2,3,4; m ~> 5), where m is the number of substitution events. The alter- 
native values 0.30 and 0.50 for u were chosen arbitrarily, to bracket the value 0.416 computed in 
the definition of the model 
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Table 2. Number  o f  legs on the phylogenetic tree with no double subst i tut ions:  Comparison be- 
tween data and model  predict ions (mean +- one s tandard error), using best est imates of  the  param- 

eters 

Number  o f  legs 6 2 4 2 1 

Data: subst . / leg (m) 2 3 4 5 6 

No double subst.  (z) 5 2 1 1 0 

Predictions: mean  number  with no double subst i tu t ions  -+ one s tandard error 

model,  (c,v) 
case 

II, 1 (2.90,0.47) 
I, 1 (4.30,0.22) 
II, 4 (3.02,0.62) 
I, 5 (5.12,0.81) 

Total  no.  legs 

Data: m 

z 

Predictions: 

model,  (c,v) 
c a s e  

II, 1 (2.90,0.47) 
I, 1 (4.30,0.22) 
II, 4 (3.02,0.62) 
I, 5 (5.12,0.81) 

5.49 + 0.68 1.59 ± 0.57 2.70 ± 0.94 
5.33 +0 .77  1 . 5 2 ± 0 . 6 0  2 . 5 8 ± 0 . 9 6  
5.37 -+ 0.75 1.45 ± 0.63 2.19 ± 1.00 
5.45 + 0.71 1.48 ± 0.62 2.11 -+ 1.00 

1 1 2 

7 9 10 

0 0 2 

1 .14-+0.70 0 . 4 8 ± 0 . 5 0  
1.09 +- 0.70 0.46 ± 0.50 
0.81 +- 0.69 0.30-+ 0.46 
0.66 ± 0.66 0.18 -+ 0.39 

1 

15 

0 

mean  number  with no double subst i tu t ions  + one standard error 

0.41 ± 0.49 0.29 ± 0.45 0.49 -+ 0.61 
0.36 ± 0.49 0.28 -+ 0.45 0.47 ± 0.60 
0.22 + 0.41 0.12 ± 0.32 0.17 ± 0.40 
0.10 ± 0.29 0.02 ± 0.15 0.02 -+ 0.16 

0.10 + 0.30 
0.10 ± 0.30 
0.02 ± 0.13 
0.00 -+ 0.00 

The data are f rom the phylogenet ic  tree o f  Fitch and Markowitz (1968). m is the  number  of  inter- 
nodal subst i tu t ion events; z, the  number  o f  legs in the  tree with no double subst i tut ion.  The mean  
is the  expected value o f  Z, a random variable equal to the  number  o f  legs on which no double sub- 
s t i tu t ion occurs in the  model.  The values of  the  parameters  c and v were chosen from those in 
Table 1, to which entries the  case numbers  refer. Corresponding comparisons for the  data grouped 
into cells are given in Table 3. For each value of  m,  Z is a binomial random variable. Therefore,  
if the  probabil i ty of  no  double subst i tu t ion in m model  steps is p, we have E(Z) = n p  with a s tandard 
error o f  (np(1-p)) 1/2 for n legs 

m = 10 s u b s t i t u t i o n s ,  a n d  t h e  d a t a  in T a b l e  2 s u g g e s t  t h a t  t h i s  p a r t i c u l a r  d a t u m  m a y  be  

a s t a t i s t i c a l  o u t l i e r ,  i .e. an  a b n o r m a l l y  la rge  d e v i a t i o n  f r o m  i ts  m e a n  va lue .  

T o  c o m p a r e  t h e  r e s u l t s  f o r  t h e s e  m o d e l s ,  w e  m u s t  t a k e  i n t o  a c c o u n t  t h e  f a c t  t h a t  

o n e  m o r e  c o v a r i o n  is s u b j e c t  to  loss  o f  v a r i a b i l i t y  in  M o d e l  II t h a n  in M o d e l  I. T h e  

e s t i m a t e s  o f  c ag ree  w i t h  t h i s  d i f f e r e n c e :  t h e  e s t i m a t e  o f  c f o r  M o d e l  II is 1 .0  t o  1.5 

s m a l l e r  t h a n  t h a t  f o r  m o d e l  I. T o  c o m p a r e  t h e  t u r n o v e r  r a t e s ,  w e  c o m p u t e  t h e  e x p e c t e d  

p r o p o r t i o n  o f  c o d o n s  r e m a i n i n g  va r i ab l e  ( E P R V )  a f t e r  e a c h  m i n i m u m  d i s t a n c e  inc reas -  

ing  ( M D I )  s u b s t i t u t i o n ;  t h i s  is a lso  a m o r e  r e a d i l y  i n t e r p r e t a b l e  m e a s u r e  o f  t u r n o v e r  r a t e  

t h a n  v f o r  M o d e l  1. C l e a r l y  t h i s  is v f o r  M o d e l  II. F o r  M o d e l  I, c-1 c o d o n s  r e m a i n  

va r i ab le ,  e a c h  w i t h  p r o b a b i l i t y  v, as wel l  as t h e  c o d o n  f i x i n g  t h e  las t  M D I  s u b s t i t u t i o n .  

T h u s  t h e  m e a n  n u m b e r  r e m a i n i n g  va r i ab l e  is l + v ( c - 1 )  o f  t h e  c c o d o n s ,  so f o r  M o d e l  I 



210 J.M. Karon 

Table 3. Number of legs in the phylogenetic tree with no double substitution: Comparison be- 
tween grouped data and model predictions 

Data: 

Predictions: 

Model 

II 
1 

Data: 

Group number 1 2 3 

Total no. legs 8 6 6 

No double subst. (z) 7 2 2 

mean number with no double substitution -+ one standard error 

(e~v) 

(2.90,0.47) 
(4.30,0.22) 

Group number 

total no. legs 

7.08 +- 0.89 3.84 -+ 1.17 1.77 -+ 1.08 
6.85 +- 0.98 3.67 -+ 1.19 1.70 -+ 1.07 

1 2 

12 8 

3 

mean number with no double substitution +- one standard error 

No. double subst. (z) "8 

Predictions: 

Model (c,v) 

II (2.64,0.36) 10.15 _+ 1.22 3.74-+ 1.35 
I (4.14,0.16) 9.40 +- 1.38 2.87 -+ 1.29 

The data is the same as in Table 1. The number of legs in the tree on which no double substitu- 
tion occurs is z. The values of the parameters c and v are those from data case 1 of Table 1. 
For the grouped data, with three groups the groups are m = 2, 3 ; 4, 5 ; and 6 or more. With 
two groups, the groups are m = 2, 3,4; and 5 or more 

EPRV is ( l+v(c-1) /c  -- v+(1-v)/c.  The  values o f  E P R V  given in Table 1 suggest that  it 

may  be about  50% (roughly,  be tween  35% and 65%). On the  basis o f  direct  compari-  

sons o f  sequences,  Jukes  and Holmquis t  (1972) suggest that  there  is a high rate of  

change in the variable codons in cy toch rome  c, which would  agree quali tat ively wi th  the  

conclusion that  c is small bu t  E P R V  is not :  such a combina t ion  would  make it l ikely 

that  a codon  would  accumulate  a number  of  subst i tut ions while it was variable. 

The  sensitivity o f  such estimates to per turbat ions  in the data  is always an impor tan t  

quest ion,  especially in a case such as this where the  data  are inferred f rom measured 

data. The data  for  m= 10 may  represent  a statistical outlier,  and the  discussion of  the  

previous section suggests that  we would  prefer  that  our  est imates not  be inf luenced too  

strongly by  the  data for  such a large number  of  MDI substi tut ions.  Therefore ,  the  best 

es t imates  of  c and v were also computed  for per turbat ions  in the  data  for  m=10 (cases 

4 and 5, Table 1). Since the  estimates o f  EPRV are quite  sensitive to these perturba- 

t ions,  the  actual value of  EPRV is rather uncertain.  

One would  also like to evaluate the sensitivity of  these est imates to the assumptions 

o n w h i c h  the  models  are based, part icularly the  restrictions against back subst i tut ions 

and condons '  regaining variability. Ignoring back subst i tut ions is no t  l ikely to be as 

severe for codons with MMD=I as for  codons  with MMD=2 (see the discussion of  the 

mode l  assumptions).  If the  number  of  potent ia l ly  variable codons is large, the  restric- 

t ion  against regaining variabil i ty is not  l ikely to be serious for 5-10 mode l  steps; 
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however, it seems difficult to determine the severity of  this restriction. It would be 

necessary to compare the numbers of  potential ly variable codons (i.e. the number which 

could become variable during the next replacement process) which have and have not  
previously been variable. As Table 5 shows, the interactive model predicts that the 
number of potential ly variable codons is fairly small for at most 10 MDI substitutions; 
this is evidence that  the restriction against regaining variability may be important.  

The parameter estimates corresponding to the perturbed values of  the parameter u 
(cases 2 and 3, Table 1) suggest the dependence of  our results on the assumptions listed 
above. Its specification in the definition of  the models shows that  an increase in u in- 
creases the probabil i ty  that  a hit on a codon with MMD=I will increase the MMD to 
two. Since allowing codons to regain variability would also increase this probabil i ty,  
the results for u=0.50 suggest the influence of  this assumption. Similarly, decreasing 

u decreases this probabil i ty  and corresponds to allowing back substitutions and hits 
on codons with MMD=2. While it is difficult to estimate the combined effect of  all 
three assumptions, it is clear that  the stabili ty results are the same as those for perturba- 

tions in the data. 

It can be seen from Table 1 that the predicted value of  v for Model I decreases as 
the parameter u increases, while the estimated value of  c increases slightly. This suggests 
that  Fitch may have been substantially correct in his estimate of v as .25 or less for 

his model (Model I, with u = 0.604), despite the error in his probabilistic derivations 
(see Appendix A); however, the sensitivity of the estimates to perturbations in the 
data also makes this estimate uncertain. As Fitch (personal communication) has com- 
mented,  "If  one takes into account fixations that  are not  observable but  whose exis- 
tence is certainly present in general, one would have to preserve the variability of  co- 
varions over a larger set of  substitutions. Hence a larger v is a necessity for what would 

appear to be a more biologically realistic model"  (Model I or II, with u = 0.416, com- 
pared to his model). 

Comparison with Holmquist, Cantor, and Jukes' REH Interactive Model 

The random evolutionary hit (REH) interactive stochastic model also treats evolution 
as a stochastic process operating within evolutionary constraints. In this section I will 
compare the predictions from the interactive and covarion models, suggest explanations 
for the differences, and outline a program to compare these predictions more precisely. 

The interactive model  uses minimal base substitution data from pairs of  present 
protein sequences to estimate two parameters for the evolutionary path linking two 
organisms. The first parameter,  T2, is the number of potent ial ly variable sites; each 
is open to a possible substitution throughout  the evolutionary path, so there is no loss 
of  variability as in the covarion model. The second, ~2, is the mean of  a Poisson process 
determining the number of  substitutions at each of  the T 2 potential ly variable sites. 
Thus,/~2 is also the average number of  nucleotide substitutions per variable codon. 
The model  uses the genetic code to account fully for synonymous and back substitu- 
tions. It assumes that  mutat ions occur, and substitutions are fixed, at random, an ap - 
proximat ion of  which the authors are cognizant. 

The interactive model  predicts that each variable codon in cytochrome c has fixed 
an average of  three to four mutat ions (mean value of/a 2 is 3.41 + 1.39; Moore et al., 
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1976). However, this average is substantially smaller for closely related organisms. 

Table 4 summarizes the values predicted for the 153 pairs of the 57 species used by 

Moore et al. (1976) for which a direct comparison of protein sequences gives at most 

13 minimal base substitutions (this number  was chosen arbitrarily, and all such pairs 

were included, not  just those which would provide nearly independent estimates). The 

results suggest that the average number of substitutions per variable codon may be 1.5 

to 2.0 for such closely related species. This estimate is also supported by the near 

diagonal entries in Table 5 of Moore et al. (1976). 

Table 5 shows that the parameter estimates from this model are quite sensitive to 

small changes in the data for pairs of closely related organisms. Since the estimates 

from the covarion model should also be regarded as qualitative, we certainly can expect 

to make only qualitative comparisons between the model predictions. We will carry 

out this comparison using the average number of substitutions per variable codon, 

estimated as the parameter ~u 2 in the interactive model. 

A probability computation can be done to obtain the value predicted by the co- 

varion model, provided that we make the stronger Assumption 2a that no codon can 

regain variability. Let S m be the total number of substitutions which leave fixed or 
increase the MMD, given an observed MMD=m. Using the methods outlined in Appen- 

dix B, which depend on the assumptions used for the covarion model plus the stronger 
Assumption 2a, the average values of Sm/m were computed for m=l  to m=5 for both 

Table 4. Estimates from the interactive model of the expected number of substitutions per variable 
codon in cytochrome c for closely related species 

Number of p airs: Number of pairs: 
~2 animals plants 

0.57-0.88 17 15 
1.02-1.51 18 23 
1.71-1.98 16 15 
2.37-2.54 14 13 
2.98 8 7 
3.65 4 1 
4.144.85 3 5 
5.12-5.37 3 1 

total pairs 73 80 

This table records the number of pairs of species within given ranges of values of the parameter/~2, 
the expected number of substitutions per variable codon, estimated from the interactive model, as 
computed by Holmquist (personal communication). Of the 57 species used, only pairs for which 
a direct comparison of protein sequences gives at most 13 minimal base substitutions were tabulated. 
All such pairs were included for which the ratio of codon pairs with MMD=2 to MMD=I is greater 
than zero and less than one (otherwise, a different and somewhat arbitrary method is used to com- 
pute/~2), not just those which would provide nearly independent estimates. The "animal" species 
are mostly mammals, but include a few fish, birds, reptiles, and flies. (The values of ~2 given are in 
fact too large, as they were based on the methods given in Jukes and Holmquist (1972); see the 
explanation in Table 5. For example, the class 1.71 to 1.98 should be 1.50 to 1.70; 2.98 should 
be 1.98 - 2.37; 3.65 should be 2.98) 
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Table 5. Parameter estimates from the interactive model for given minimum mutation distance 

data. (Holmquist, personal communication) 

Total Number of  pairs of  tt 2 T 2 
MMD codons with given MMD 

0 1 2 

4 101 2 1 1.98 4.2 
5 100 3 1 1.50 6.4 
6 99 4 1 1.21 9.0 

8 97 6 1 0,88 15.3 
98 4 2 2,37 7.9 

10 95 8 1 0.69 23.4 
96 6 2 1.70 12.0 

11 94 9 1 0.63 27.8 
95 7 2 1,50 14.4 
96 5 3 2.98 9.8 

The definitions of bt 2 and T 2 are given in the text. Only data for which the ratio of  the number 
of  codon pairs with MMD=2 to the number  with MMD=I is between zero and one are given, since 
only for such data can accurate parameter estimates be made. These values of/z 2 and T 2 were 
calculated from equations (13), (15), and (3) and Table 1 in Holmquist (1978) to avoid the 
statistical bias in the original paper of  Jukes and Holmquist (1972), which described the calcula- 
tion of  these quantities 

Table 6a. Mean values of  the total number of  substitutions per MDI substitution for selected param- 
eter values 

Model I, u = 0.416 

c = 3  c = 4  

m v = 0.40 v = 0.70 v = 0.40 v = 0.70 

Model I, u = 0.300 

c = 3  

v = 0.40 v = 0.70 

2 1.67 1.73 1.60 1.65 1.80 1.90 
3 1.69 1.79 1.61 1.68 1.84 2.03 

4 1.69 1.78 1.61 1.71 1.84 2.02 
5 1.68 1.75 1.61 1.72 1.84 1.97 

The entries in the table are the mean values of  Sm/m,  where S m is the total number of  nucleotide 
substitutions which do not decrease the MMD during m MDI substitutions, subject to the assump- 
tions given in the text. For both  Models I and II and all values of  c, v, and u, the mean value of S 1 
is 1.51. E(Sm) , the mean value of  Sm, was computed using the methods given in Appendix B. 
E(S m) increases as v and u increase, and decreases as c increases, and it eventually decreases as m 
increases. For example, for Model I with u = 0.416, c = 3, and v = 0.70, E(S10)/10 = 1.55, and 
E($15)/15 = 1.41. The results for Model II are similar, except that  the values of  E(Sm)/m are 
smaller (by at most  0.16 and 0.30 for u = 0.416 and u = 0.300, respectively) 

m o d e l s  I and  II, us ing  c=3 and  c=4,  and  values o f v  b e t w e e n  0 . 4 0  and  0 .70 ,  A s a m p l e  o f  

t h e  resu l t s  is g iven  in Tab le  6a. F o r  u = . 4 1 6 ,  t he  m e a n s  were  b e t w e e n  1.5 and  1.7; fo r  

u = 0 . 3 0 ,  w h i c h  sugges t s  w h a t  t h e  m o d e l  w o u l d  p r ed i c t  if b a c k  s u b s t i t u t i o n s  were  a l lowed  
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Table 6b. Mean number of total nucleotide substitutions per variable codon predicted by the co- 
varion model 

c v mean SE S/VC mean SE S/VC 

Model I, u = 0.416 Model I, u = 0.300 

3 0.40 1.65 0.074 1.37 1.77 0.139 1.47 
0.70 1.71 0.011 2.86 1.89 0.211 3.15 

4 0.40 1.59 0.004 0.88 1.67 0.009 0.93 
0.70 1.65 0.008 1.84 1.78 0.158 1.98 

Model II, u = 0.416 Model II, u = 0.300 

3 0.40 1.50 0.001 0.83 1.54 .013 0.85 
0.70 1.62 0.006 1.81 1.73 .129 1.93 

4 0.40 1.48 0.002 0.62 1.51 .009 0.63 
0.70 1.57 0.004 1.31 1.65 .080 1.37 

The mean given is the mean of the values of E(Sm)/m for 1 < m < 5 ; SE is the sample standard 
error of this mean. S/VC is an approximation to the total number of substitutions per variable 
codon, computed as the mean divided by c(1-v) and (c-1)(1-v) for Models II and I, respectively 

(see the  preceding section),  the  means were be tween  1.5 and 1.9. A rough est imate of  

the  average number  o f  nucleot ide  subst i tut ions per variable codon  is the  mean of  S m / m  

divided by  (c-1)(1-v) or c(1-v), the  average number  o f  new variable codons after  each 

subst i tut ion for  Model  I or  II, respect ively;  this is denoted  by S/VC in Table 6b. 

The  data in Table 6b show that ,  wi th  this stronger assumption against regaining 

variabili ty,  the  covarion mode l  predicts about  0.9 to 2.0 to ta l  subst i tut ions (including 

those leaving the  MMD unchanged)  per variable codon.  This predic t ion  of/~2 is less 

than that  f rom the  interactive stochastic model ,  bu t  by  no more  than  a factor  of  two.  

However ,  under  Assumpt ion  2, the  weaker  restr ict ion on regaining variability, the  esti- 

mate  o f / l  2 would  increase, since there  would  be fewer  n e w  covarions which had never 

been variable. If the  number  of  MDI subst i tut ions allowed is not  very large, say at 

most  10 to 15, and a substantial  p ropor t ion  of  all codons  are potent ia l ly  variable, a 

covarion set o f  about  four  codons  and turnover  rate of  about  50% imply that  few 

codons would  regain variabili ty by chance alone, so the es t imate  of  #2 f rom the co- 

varion mode l  would  not  increase very much.  

To show that  this comparison is exact ly  what  we should expec t  if bo th  models  are 

valid (this would  mean that ,  a l though the  underlying assumptions are different ,  these 

differences are not  too  significant), first note  that  one  would  expec t  the interact ive 

stochastic mode l  to predict  a larger set o f  potent ia l ly  variable codons at a given t ime 

than the  covarion model.  In the  stochastic model ,  the  variable codons are those able 
to f ix  a subst i tut ion in ei tber leg o f  the  phylogenet ic  tree. Thus, if cy toch rome  c 

evolved independent ly  in two paths f rom a c o m m o n  ancestor,  during a short  t ime  
interval we would  expec t  the  interact ive model  to predict  T 2 to  be about  twice the  

predic ted  covarion size. 
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However, during the evolution of two fairly closely related species (MMD at most a- 
bout 15) we would expect substantial parallelism 3, and, as a result, it is easy to see that 
the covarion model predicts a (possibly substantially) larger set of potentially variable 
codons, and hence a smaller number of  substitutions per variable codon. For example, 
suppose the phylogenetic tree indicates that two species with MMD=10 have diverged 
from a common ancestor, with MMD's on the two legs of  m=4 and m=6. Suppose that 
there have been T total substitutions on the two legs (corresponding to the product 
/22T2 in the interactive model), distributed on the legs proportionally to the MMD of 
each leg. For Model I, under the stronger assumption on regaining variability the av- 
erage number of  potentially variable codons during m MD I substitutions is m(c-1)(1-v), 
hence on the leg with MMD=4 the number of substitutions per variable codon (S/VC) 
is T.(4/10) + (m(c-1)(1-v)) -~ T/(10(c-1)(1-v). On the leg with m=6, S/VC is the same. 
Averaging these equal predictions for m=4 and m=6 shows that the covarion model 
estimate of/22 will be T, the total number of  substitutions, divided by the average 
number of  potentially variable codons during a number of  MDI substitutions equal to 
the total MMD of the two species. Since the covarion model does not account for 
parallelism, we should expect the estimated number of potentially variable codons in 
the covarion model to be at least that (T2) from the interactive model, but less than 
twice as great. 

The interactive model will predict a larger number of  total substitutions, since it 
takes back substitutions into account. However, back substitutions (those decreasing 
the MMD) would occur relatively rarely by chance alone, as discussed in the derivation 
of  the models, and seem unlikely to occur often through selection in closely related 
species. Similarly, although codons might regain variability relatively infrequently 
during relatively short evolutionary time periods, this possibility may increase the 
estimated value of/22' 

Therefore, the estimate of/22 from the covarion model should be less than that from 
the interactive model, but by  no more than a factor of two. This is exactly what was 
found. Thus, both models may be valid. 

There are two additional points worth noting concerning comparing these models. 
First, it seems likely that the comparisons should be made in terms of the estimates 
of/22. The estimate of  T 2 depends strongly on the MMD in both models, and it would 
probably be very difficult to estimate the covarion parameters from/22 and T 2. Sec- 
ond, one would certainly like to have more a precise estimate of  the parameter v in the 
covarion model than it has been possible to give here, and perhaps a better model, to 
obtain a more valid comparison. 

There are several obvious ways to improve the covarion model. One could use as 
data to be fit the number of  residues with minimal one- and two-base changes in the 
maximum parsimony tree computed using Moore's augmented distance method. The 
model itself could be improved by treating codons with MMD=2 accurately, thus elim- 
inating Assumption 5. A more extensive sensitivity analysis should be done, including 

In their phylogenetic tree for cytochrome c, Fitch and Margollash (1968) found 41 parallel sub- 
stitutions in a total of 230. In their reconstruction of the ancestral myoglobin sequence using 
a minimum mutation distance cladogram, Romero--Herrera (1973) found 74 parallel substitu- 
tions at 24 positions in a total of 147 substitutions. 
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the effect of increased augmented distances on the estimates, for the distances may in- 
crease as more proteins are sequenced. The minimum mutation distance of  pairs of spe- 
cies in the maximum parsimony tree should be restricted instead of generalizing the 
covarion model to allow codons to regain variability. The latter alternative would make 
the model more complicated and could involve the introduction of an additional param- 
eter, making the data easier to fit but increasing the difficulty in minimizing the quantity 
analogous to WS (c,v). 

The test of the consistency of  these two models should be conducted by comparing 
estimates of  the parameter #2 for similar classes of  pairs of  protein sequences (e.g. 
mammals, mammals-birds, plants), since the evolution of cytochrome c is not uniform 
in different groups of  organisms (Moore et al., 1976), and other proteins. If both models 
are accepted as valid, it might be possible to use the respective model estimates of  #2 
to estimate how often codons regain variability for "small" minimum mutation distances. 
Finally, it would be highly desirable to be able to estimate the covarion parameters from 
those in the interactive model, since the latter are easier to obtain. 

At present, the interactive model is probably to be preferred to the covarion model. 
It uses known (not reconstructed) data, accounts fully for back substitutions, allows 
the user to obtain parameter estimates easily and cheaply, provides a direct estimate 
of  the rate of  evolution, and can fit the observed data for distantly related proteins well 
(Jukes and Holmquist, 1972;Moore et al., 1976; Holmquist et al., 1976). 

Appendix B 

Computation of  S m 

Let S m be the total number of nucleotide substitutions on a leg of  the phylogenetic tree 
containing m MDI substitutions, excluding only back substitutions; covarions with 
MMD=2 will be treated as if their MMD were one, as in Appendix A. We wish to com- 
pute E(Sm), the mean value of Sm. Let T i be the time at which the ith MDI substitution 
occurs, with the start of the leg at T0=0;T m + tin, the time corresponding to the end of 
the leg; Ni, the number of  nucleotide substitutions in the time interval (Ti,Ti+ 1 ]; and 
em, the number of substitutions in the time interval (Tm, T m + tm]. Thus 

S m - - N  0 + N  l + . . . + N m .  1 +Era, so 

m-1 

E(Sm) = ~ E(Ni) + E(em). (9) 
i=O 

First we deal with the final term in (9). It is standard to model the random quanti- 
ties e m and N i by Poisson processes (Parzen, 1962, p. 29). Clearly 0 < t  m ~ Tm+I-T m. 
Assume that t m is uniformly distributed on the interval [0,Tm+l-Tm). Then E(tm) is 
(Tm+l-Tm)/2 (see e.g. Parzen, 1962, p. 14). Since the m+l tb MDI substitution cannot 
occur during the time interval [Tm,Tm+l) , in which t m lies, the expected number of 
substitutions during this interval is E(Nm.1)-I. Furthermore, since we have Poisson 
processes, E(em) and E(Nm.1) are proportional to E(tm) and Tm+l-Tm, respectively, 
with the same proportionality constant, so 



The Covarion Model for the Evolution of  Proteins 217 

E(e m) = (E(Nm.1) - 1)/2. (10) 

Now we compute E(Ni). First, recall that, if rik is the probability that N i equals k, 
then 

E(N i) = ]~ k rik. 
k=0 

Now let a i be the probability that a nucleotide substitution occurring during time 
(Ti, Ti+l] does not increase the MMD; then 

a i = Pr (synonymous substitution in codon with MMD=0) (11) 

+ Pr (hit on codon with MMD=I doesn't increase the MMD). 

Since rik is the probability that it takes exactly, k experiments to obtain the first "suc- 
s" • • ~-1 1 ces in a sequence of  Bernoulh trials, rik = a i ( -a i) and it follows that 

E(N i) = (1 - ai )-1. (12) 

We can use a Markov chain (see Appendix A) to compute the probabilities a i using 
Equation (11). From Table 8 of Holmquist et al. (1972), the probability of  a synon- 
ymous substitution is 0.255 (excluding chain-terminating codons). Therefore, given 
that ni=k (there are exactly k covarions with MMD=O after the itb model step), Equa- 
tion (11) implies that a i = .255 (k/e) + (1-u)(1-k/c), where u is defined in the specifica- 
tion of  the model. Since we do not know k, we use conditional probability: Let 

gik = Pr(ni=k) 

Then 

ai=  .255k/c+ "ik 
k O  

(13) 

The 7tik can be computed as a Markov chain; we use the notation of  Appendix A, but 
n o w  

Pjk = Pr(ni+l = k[ni = J)" (14) 

Let E i be the event that the ith MDI substitution is at a covarion with MMD=0, and Fi, 
that it is at a covarion with MMD=I or 2. Note that 

Pjk = Pr(ni+l = k and Eilni=j)-pj + Pr(ni+ 1 = k and Fi[ni=j)'(1-p j) (15) 

where pj is the probability defined in Equation (1). The first conditional probability 
in (15) is exactly (7) or (8) in Appendix A, for Model I or lI, respectively. Using 
exactly the same reasoning used to derive Equations (7) and (8), the second conditional 
probability in (15) is easily shown to be, for k ~>j-1 

kJi ) v c-k' l  (1-v)k-J for Model I 
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(k~i)vc'k(1-v)k'J for Model II 

and zero for k ~< j - 2, or if k=c in Model I. 
Finally, to compute the ~ik in (13), let ~r (i) be the row vector of length c+ 1 of the 

~'ik' Note that ~(0) = (0 ..... 0,1) and that, for Model 1, Zric -- 0 if i ~> 1. Let P be the 
matrix of  transition probabilities Pjk in (14), computed using (15). Then, just as in 
Appendix A, 7r(i) -- 1r(0)P i. 

Thus, once the ~ik have been computed, the a i can be computed from (13); the 
E(Ni), from (12), and E(em), from (10); and finally, E(Sm) , from (9). 
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