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Summary. A recently developed, nonlinear method of systems analysis has been 
used to compare alternative patterns of control by feedback inhibition in 
otherwise equivalent unbranched biosynthetic pathways. The steady state per- 
formance of the simple case with end-product inhibition at the first phys- 
iologically important step is optimal with respect to the following criteria: 
the ability to (i) meet an increased demand for the end-product, (ii) meet 
this increased demand with limited accumulation of the intermediates, 
(iii) respond to an increased supply of the initial substrate r and (iv) limit 
the accumulation of the intermediates while responding to the increased 
availability of the initial substrate. The importance of these properties for 
the selection of feedback patterns in biosynthetic pathways is discussed. 
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Introduction 

The existence of control by feedback inhibition in the biosynthetic path- 

ways of microorganisms has been known for more than 15 years (Umbarger, 1956, 

Yates & Pardee, 1956). Since these initial discoveries, numerous examples of 

this type of control have been reported. On the basis of the empirical results 

Monod, Changeux and Jacob (1963) have postulated three rules that appear to 

govern the pattern of feedback interactions in unbranched biosynthetic path- 

ways: (i) the end-product in such a pathway acts as an allosteric inhibitor 

of the first reaction in the sequence, (ii) the intermediate metabolites do 

not modify the first reaction, and (iii) the end-product does not modify the 

activity of the intermediate enzymatic reactions. 

At present there is no satisfactory explanation for this pattern of control 

being the most prevalent among all the possible patterns. In fact, to date, 
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the natural selection of control patterns in unbranched biosynthetic path- 

ways has not been systematically examined experimentally or theoretically. 

Koch (1967) has used classical steady state enzyme kinetics to examine the 

possible advantages of direct inhibition of an enzyme by its product for the 

regulation of metabolic pathways. Although this classical description of 

single enzymes may be an accurate approximation in many cases, the mathematics 

are cumbersome, and the treatment of large numbers of such reactions or the 

comparison of alternative patterns quickly becomes unwieldy. 

While in principle the behavior of a complex biochemical system can be re- 

lated to the nature of its component enzymatic reactions, in practice the 

analysis of such systems is made extremely difficult because the rate laws 

that characterize the individual reactions are rational functions (Wong & 

Hanes, 1962). One approach to circumvent the mathematical difficulties in 

analyzing such systems is linearization. It is well known that a linear 

approximation to the nonlinear rate law is a valid and accurate representation 

of the original rate law as long as the concentration variables do not deviate 

appreciably from the operating values selected for the approximation. The 

disadvantage of this approach is that the linear approximation is only valid 

over a restricted range in the concentration variables, and this range is not 

sufficiently large to be useful for most biochemical systems that are highly 

nonlinear. 

The general philosophy of approximation described above can be extended to 

curvilinear approximations that remain valid over a much wider range in con- 

centration values. To be useful such nonlinear approximations must be based 

on the essential nonlinearity of the rate law and yet be sufficiently simple 

to treat mathematically. The first requirement is to ensure the validity 

over a wide range of concentration values; the second is necessary if we are 

to deal with large numbers of reactions interrelated in complex ways. 

I have described a power-law approximation that appears to meet these re- 

quirements (Savageau, 1969). By means of a logarithmic transformation and a 

Taylor series expansion one can prove that a power-law approximation to the 

nonlinear rate law is also a valid and accurate representation of the original 

rate law when the excursions of the concentration variables from the normal 

operating values are small. However, "small" in this instance is considerably 

greater than it is in the case with linearization; in fact, it appears large 

enough to be physiologically relevant (Savageau, 1969, 1971). A direct ex- 

perimental validation of the power-law approximation is provided by the work 
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of Kohen & Kohen (;972) in which they have examined the kinetics of individual 

reactions in vivo. They use a microelectrode to inject by electrophoresis sub- 

strate of known concentration into a localized region of an individual cell. 

The resulting rate is obtained by microfluorimetrically recording the changes 

in the oxidation-reduction state of the cofactor to which the substrate con- 

version is coupled. With these techniques they have demonstrated power-law 

kinetics for the enzymes of the glycolytic sequence. 

The specific concepts, terminology and symbols associated with this formalism 

are perhaps most easily understood in the context of specific examples. 

Several different types of examples,as well as a more detailed description of 

the power-law approach, its justification and merits, are given elsewhere 

(Savageau, 1972). The relevant concepts, terminology and symbols of this 

formalism also will be described during the course of the analysis that 

follows. 

In this paper I shall examine unbranched biosynthetic pathways subject to 

control by various patterns of feedback inhibition. These systems can be shown 

to have a unique steady-state solution in general (Savageau, 1969). The condi- 

tions for the local stability of this solution will be examined in a sub- 

sequent paper;for the present we shall simply assume these conditions are 

satisfied and emphasize the steady-state properties of these systems. The 

results of this analysis provide the first explanation for the experimentally 

observed predominance of the simple end-product inhibition pattern in nature. 

Pathways Controlled by End-Product Inhibition 

Since this pattern of control is of paramount importance in the natural state, 

we should thoroughly understand its behavior. This specific example will also 

best illustrate the essentials of the analysis which follows, and the general- 

ization to other patterns of control can then be treated with a minimum of 

detail. Consider the pathway represented in Fig. la. We will assume that the 

enzyme levels remain constant over the time scale of interest in this paper 

and thus deal only with metabolic regulation. 

According to the previously described analytical technique, each rate law is 

approximated by a product of power functions, one for each of the reactants 

and modifiers associated with the reaction. For the system represented in 

Fig. la the following equations apply. 
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dX1 g lO x gln h l  
dt = ~ l X o  n _ ~ l X l  1 

dX2 g21 h22 
( 1 )  d t  - ~2X1 - B2X2 

dX g n , n - 1  h 
n ~X - B X nn 

nn-I nn dt 

The exponent gi,i-I represents the apparent kinetic order with respect to 

X. for the synthesis of X. , and ~ is the apparent rate constant for 
1 - !  ' i 1 

this reaction. The description of the degradative terms is similar except 

the corresponding parameters are h.. and ;3. , respectively, and the sub- 
ii l 

strate for these reactions is X.l rather than X.l_l gin , the apparent 

kinetic order of the first reaction with respect to X , is negative since 
n 

X is an inhibitor; all other parameters of this system are positive. 
n 

Steady State Solutions 

The steady state solutions for Eqs. (I), when the time derivatives are equal 

to zero, are intrinsically important for describing the behavior of many 

biochemical systems that normally operate in the steady or quasisteady state. 

In the present case, the steady state equations can be simplified because 

the rate of utilization of X. is the same as the rate of production of 
i 

Xi+ 1 , and the resulting nonlinear algebraic equations can be transformed 

into a set of linear equations to give the following results: 

b 1 = g l o Y o  - h l l Y  1 + g l n Y n  

(2) ~2 = hllYl - h22Y2 

where 

b = h n n -  1 , n -  l Y n -  1 - h n n Y n  

b 1 = l o g  ( ~ 1 / ~ 1 )  

b.l = log (Bi/B i_I) for i > ! 

Yi = log (X i) 

These linear equations can be solved for the dependent variables in terms 

of the independent variable YO and the various parameter values, providing 
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the determinant is non-zero. The resulting solutions are 

(3) 
(gloYo - bl - b2 - "'" - bi) hnn - (bi+l + bi+2 + "'" + bn) gin 

Yi = hii (hnn - gln ) 

where b. ~ O for all j > n. 
J 

These results can be easily transformed back to give the steady state con- 

centrations of the intermediates as functions of the independent concentration 

X O and the system's parameter values. Eqs.(3) also form the basis upon which 

further analysis is developed. 

Responses to Change in the Initial Substrate or End-Product Concentration 

From Eqs.(3) we can obtain the percentage change in the dependent con- 

centrations in response to a percentage change in X 0 by simply taking the 

partial derivatives with respect to YO" These partial derivatives have been 

previously defined as logarithmic-gain factors (Savageau, 1971). Thus, 

8Yi hnn glO 

(4) Lio ~Yo (hnn-gln) hii 

i=l,2,...,n 

These partial derivatives are all positive since all the parameters are 

positive except gin which is negative. In other words, all the dependent 

concentration variables will increase in response to an increase in X O. 

The changes in the dependent concentrations in response to an alteration in 

the exogenous supply of the end product can be investigated in an analogous 

fashion. This exogenous pool of X n will be denoted by Xn,. To account for 

the contribution of Xn, to the rate of increase in the endogenous equivalent 
gnn' . 

Xn , we must include an additional power function of the form Xn, :n 

the synthetic term of the last of Eqs.(1). The steady state solutions 

analogous to Eqs.(2) can then be obtained in exactly the same manner, and 

from these solutions we calculate the following logarithmic-gains: 
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3Yi gnn'gln 
(5) nin , = - 

3Yn' hii(hnn-gln) 

i=l,2,...,n-I 

gnn' 
= 

(hnn-gln) 

i=n 

These expressions give the percentage change in the intermediate concentrations 

in response to a one percent change in the exogenous supply of the end-product. 

They are all negative quantities (except Lnn ,) indicating a decrease in 

response to an increase in X , . Thus, the larger the magnitude of the 
n 

th . 
logarithmic-gain L. , the greater the sparing effect on the i inter- 

in ! 
mediate, and for all i this is achieved by increasing the strength of in- 

hibition gln 

Responses to a Change in Demand for the End-Product or Parameter Variations 

The logarithmic-gain factors in Eqs.(4) and (5) are properties of the intact 

system. The sensitivity of these system properties to variations in para- 

meters characterizing the component parts of the system is defined as 

3L p (6) SLp ~p L 

where L can be any logarithmic-gain factor of the system and p any 

component parameter. For example, the sensitivity of the overall gain, L , 
no 

with respect to a change in h , the apparent kinetic order of the final 
nn 

reaction with respect to the concentration of the end-product, is given by 

~Lno hnn 

(7) ~hnn - hnn/ SLnohnn Lno (hnn-gln) 

This is the most important of the parameter sensitivities because h re- 
nn 

presents the "elasticity of demand" for the end-product X . Any of a wide 
n 

variety of modifications in cellular metabolism could change the demand 

function for Xn (i.e. the rate law for the utilization of Xn), and there- 

fore would be reflected in a change of h . Similarly, the sensitivities of 
nn 

the intermediate logarithmic-gains with respect to a change in h are 
nn 
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(8) SLiohnn = -gln/(hnn-gln) i=l,2,...,n-1 

The sensitivity in Eq.(7) is always negative while those in Eq.(8) are al- 

ways positive. This is in agreement with our intuition; an increase in the 

demand for the end-product would deplete the end-product concentration and, 

by the release of inhibition, increase the intermediates. 

Other sensitivities could also be examined in this way. However, the above 

are the most important for characterizing the performance of the control 

system in the cell, and it is these we shall make use of in the following 

sections. 

Optimal Pattern of Control with Respect to Variations in the End-Product 

Other patterns of feedback interaction could also be considered that in 

principle possess the ability to regulate the supply of the end-product. Four 

of the many possibilities are represented in Fig. I, cases (b) - (e). There 

have been few criteria for comparing and evaluating such regulatory alter- 

natives other than a description of the molecular mechanisms and the topology 

of the feedback interactions. Consequently, it has been difficult to 

distinguish these systems on the basis of function, and thus to explain the 

natural prevalence of the pattern in Fig.la. The quantitative techniques 

illustrated in the preceding section provide a novel approach to this 

question. 

( o )  X o i D . . . . .  I, X j  ' ~ ' - - w  X j + i  - - '~ "  . . . . .  ~ X n " ~ " ~  

( b )  X o ~' . . . . .  m' X j " ~ " ~  X j +1 " ~ "  . . . . .  I- X n  " ~ ' ~  

( c )  Xo Xl ~, . . . . .  i, X j  " i i, . . . .  i, X n . . ~ .  

( d )  X o X l ~ . . . . .  P X j  ~, X j +  L I, . . . .  • X n ' ~ ' ~ "  

(e) X o L X ,  1, P Xj I ~, I ] . . . . .  X j + l ' " - ~  - --"~'Xp ~ ' ' - - ' ~ X  n 

Fig. ] a - e. Alternative patterns of feedback control by inhibition in un- 
branched biosynthetic pathways 
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A general unbranched sequence with n+l metabolites and with an arbitrary 

pattern of feedback inhibitions is governed by the following steady state 

equation in logarithmic form: 

(9) 

(b 1 -g 1 oYo ) 

b 2 

b 3 

b 4 

b 
n 

7gll-g21 ) (g12-g22) (g13-g23) (g14-g24)..'(gln-g2n) 

g21 (g22-g32) (g23"g33) (g24-g34)'''(g2n-g3n ] 

0 g32 (g33-g43) (gB4-g44)'''(g3n-g4n ~ 

• ( 
0 O g43 (g44-g54)" " g4n-g5n ~ 

0 0 . . . g n , n - I  ( g n n - h n n )  

y7 

Y4[ 

Ynl 

This equation is analogous to Eq.(2), but it applies to reversible as well as 

irreversible reactions• The logarithmic-gain Lno for this system is given 

by 

~Yn ( - 1 ) n  g n , n - 1  . . .  g 4 3 g 3 2 g 2 1 g l O  
(I0) Lno = = 

3Y 0 A n 

where A is the determinant of the matrix in Eq.(9). The logarithmic-gain 
n 

for the system in Fig. la will be written as 

( 1 1 )  L a nO = g l o / ( h n n - g l n )  

where the superscript "a" refers to the specific system under consideration• 

To restrict the comparison of these two systems to the differences in their 

pattern of control we must require that the sequences be equivalent in all 

other respects. The only differences between the systems that will be 

allowed are those involving the parameter values directly related to the 

differences in their pattern of control• In particular, all common para- 

meters must have identical values and the logarithmic-gains of the overall 

systems must be identical, i.e., L anO = Lno" From Eqs.(;O) and (11) 

(12) I/(hnn-g~n) = (-l)n gn,n-! ... g43g32g2]/An 

where the superscript "a" identifies the distinctive parameter for the system 

in Fig. la. Under this constraint a given change in the logarithm of the input 
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concentration ofeach sequence results in the same logarithmic increment for 

the output concentrations of the two systems. 

Having established the necessary relationships between the systems to be 

compared, one can determine the sensitivities with respect to variations in 

their common parameters. The sensitivity of Lno with respect to changes 

in the parameter h is given by 
nn 

3Lno hnn 
(13) 3hnn h An_l /A n SLnohnn Lno nn  

where An_ ] is the determinant remaining when the last row and column of 

A have been eliminated. It is also the determinant of the matrix character- 
n 

i s t i c  of  t he  s y s t e m  w i t h  n m e t a b o l i t e s .  The s e n s i t i v i t y  of L a w i t h  
nO 

r e s p e c t  to  changes  i n  t he  p a r a m e t e r  h i s  
nn 

(14) SLa h = -h /(hnn-g~n) 
nO nn nn 

and by utilizing the identity in Eq.(12) this equation becomes 

(15) SLa h = -hnn(-l)ngn,n-I g43g32g21/A 
nO nn ... n 

To compare these sensitivities we take the ratio of the two expressions in 

Eqs.(]3) and (15). 

(16) SL h /SLa h = (-l)n An-I/(gn,n-I .g43g32g21 ) 
nO nn nO nn "" 

Finally, by expanding the determinant (-l)n-IAn_ 1 we find 

(17) SL h /SLa h = I + fl + f2 + "'" + f > 1 
nO nn nO nn m -- 

The ratio of sensitivities in Eq.(17) is always greater than or equal to one 

because (i) each of the terms in the expansion of the numerator in Eqo(16) 

is non-negative, (ii) one of these terms is equal to the denominator, and 

(iii) the denominator is positive (see "Appendix"). Thus, each of the fractions 

f. is non-negative. The ratio having a value greater than or equal to unity 
i 

indicates that no pattern of feedback inhibition can render the system less 

sensitive to this parameter variation than the simple pattern in Fig.la. 



Although minimization of a parameter sensitivity has been emphasized in this 

section, this is only one of the many advantages obtained with the simple 

pattern of control by end-product inhibition. For example, if the sensitivities 

of the different systems are made equal for purposes of comparison, then the 

overall gain Lno is maximized by the pattern of control in Fig. la. This 

can easily be seen from an examination of Eqs.(IO) and (13), and (II) and 

(14). Since the ratio of L a nO to SL~ohnn is a constant, raising the value 

of the previously minimal sensitivity, SL~ohnn , to equality with SLnohnn , 

simultaneously makes Lano greater than or equal to Lno . The optimization 

of SLnOhnn , which reflects the ability of the system to meet an increased 

demand for the end-product, and Lno , which measures the ability of the 

system to translate an increased availability of initial substrate into end- 

product, has important physiological implications that will be treated further 

in the "Discussion" section. 

?ptimal Pattern of Control with Respect to Variations in the Intermediates 

The levels of the intermediate metabolites in an unbranched pathway will 

generally increase in response to an increase in the supply of the initial 

substrate. For example, this is evident from Eqs.(4) for a system employing 

simple end-product inhibition. As Atkinson (1969) has pointed out, these 

increases in the levels of metabolic intermediates must be minimized because 

there is a limited solvent capacity in the cell. For responsive control in 

pathways producing substances needed in only small quantities it is also 

necessary to limit the accumulation of the intermediates (Koch, 1967). It is 

therefore of interest to compare the magnitudes of these increases in systems 

employing various patterns of control by inhibition. 

.th 
The logarithmic-gain Lio represents the change in the logarithm of the l 

intermediate in response to a unit change in the logarithm of the initial 

substrate X 0 . This gain can be calculated from Eq.(9) for a system with an 

arbitrary pattern of control. The result of this calculation is 

7 

(18) Lio = (-I)i g10 i--~ gj+l,jl An-iA i=1,2 .... n-I 

L J=I n 
I i J 

where An is the determinant of the entire matrix in Eq.(9), An_ i is the 
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subdeterminant remaining when the first 

deleted, and 

0 

II I 
j=l gj+l ,j 

Similarly, for the system in Fig.la 

i rows and columns of A are 
n 

glO gn+l~n a 
(19) Lio = 

g i+l , i  (gn+l,n-gln) 
i=l,2,...n-I 

where gn+l,n is by definition the same as hnn 

In comparing the case of Fig.la with an arbitrary pattern of control we shall 

require that the two systems be equivalent in all respects except for those 

directly related to the differences in the patterns of control. In particular, 

all common parameters must be equal and the overall gains must be the same, 

i.e., L a nO = Lno " These are the same conditions for equivalence that were 

used in the previous section. Accordingly, these conditions lead to the 

constraint expressed in Eq.(12). Using this constraint allows us to rewrite 

Eq.(19) as 
n 

(-1)n glO ~-~ gj+l,j 
(20) L a = j=l i=1,2, .n-I 

iO "" 
gi+l i A , n 

We can now compare the logarithmic-gains for these two systems by taking the 

ratio of the expressions in Eqs.(18) and (20). 

(21) a = _ 1 Lio/Lio (-l)n-1 An-i I gj+l,j > 

i=l,2,...n-I 

This ratio has exactly the same properties as the ratio in Eq.(16), as can be 

demonstrated by simply renumbering the indices. The results in Eq.(21) may be 

summarized as follows. For a given increase in the initial substrate con- 

centration X 0 the resulting increase in the level of the end-product X 
' n 

will be identical for the system in Fig. la and an otherwise equivalent 

system with an arbitrary pattern of control. However, the system in Fig.la 

can achieve this increase in X with a minimum elevation in the concentrat- 
n 

ions of its intermediate metabolites . 
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The sensitivities of these intermediate logarithmic-gains, with respect to a 

(or hnn) can also be calculated. The resulting expression change in gn+l,n 

provides a measure for the effect of end-product demand on the change in 

levels of the intermediates. For a system with an arbitrary pattern of control, 
.th 

the sensitivity of the i logarithmic-gain with respect to changes in 

is calculated from Eq.(18). 
gn+l,n 

k 
gn+l ,n  An-1 gn+l ,n  n - i - 1  

(22) S L = - i = l , 2 , . . , n - I  
iO gn+l ,n  k An_ i n 

where k is the subdeterminant remaining when the last row and column of 
n-I 

An are deleted, and An_i_ 1 is the subdeterminant remaining when the last 

row and column of An_ i are deleted. The first term on the right hand side 

of this equation is equal to S L , as can be seen from Eq.(13). 

Therefore nO gn+l,n 

gn+l,n kn-i-I 
(23) S L = S L - i=l,2,...n-I . 

iO gn+l,n nO gn+l,n An_ i 

Similarly, for the system in Fig. la, the corresponding sensitivities can be 

calculated from Eq.(19). Thus, 

- gn+l ,n  (24) S a = + 1 i=1,2 . . . .  n-1 
Lio gn+ | , n  gn+l ,n  - g~n 

or  

(25) SLa = SLa + 1 i = l , 2 , . . . n - 1  
iO gn+l ,n  nO gn+l ,n  

where we have made use of Eq.(14). 

Again we can compare these sensitivities by taking the ratio of the ex- 

pressions in Eqs.(23) and (25): 

gn+l ,n  An-i-1 
SL SL - k 

(26) iO gn+l~n _ nO gn+l,n n-i 

SLa SLa + 1 
iO gn+l ,n  nO gn+l ,n  

i = l , 2 , . . . n - I  

In this equation 

S L > SLa 
nO gn+l,n -- nO gn+l ~n 
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A < A 
but at the same time -gn+l,n n-i-I -- n-i , so no general conclusion 

regarding the magnitude of the ratio in Eq.(26) can be reached. The results 

will depend upon the particular parameter values for the systems involved 

in the comparison. In this sense, there is no optimal pattern of control that 

is independent of the specific parameter values. Nevertheless, there is a 

subclass of systems for which the case in Fig.la is least sensitive. When the 
.th 

end-product inhibits no reaction after the j , then 

- gn+l,n An-i-I = An-i 

and Eq.(26) becomes 

SLi 0 S L + 1 
(27) g n + l ~ n ,  = , nO gn+l~n  ~ 1 

S a SLa + 1 
L i o  g n + l , n  nO g n + l , n  

i=j ,j+l , . . . ,n-I 

Under these conditions the ratio in Eq.(27) is greater than or equal to one, 

since 

S L > SLa 
nO gn+l,n -- nO gn+l,n 

For the class of systems in which the end-product only inhibits the first 

reaction, the case represented in Fig. la is optimal because the sensitivities 

for all the intermediates in the pathway are minimally sensitive. 

The following considerations indicate that this criterion may be less im- 

portant than the others we have considered. From Eqs.(|9) and (24) we see 

a increases that LaiO is a decreasing function of gin , while SL~o gn+1,n 

and reaches a maximum value of I as g~n is increased. Thus, when 

SLa is large, implying a large percentage variation in L a L a 
iO gn+|,n iO ' iO 

is small; the net variation in L a iO is still small for the system in Fig.|a. 

In fact, one can show that the absolute variations in the Lio are minimal 

for the system in Fig.|a. This is done by multiplying the expressions in 

Eqs.(21) and (26) and showing that the result is always greater than or equal 

to one. Thus the product of L a and SLa is minimal. The small 
' iO iO gn+l,n 

value of L a and the iO compensates for the large magnitude of SLa 
iO gn+l,n 

system functions well, even under conditions where these sensitivities are 

not themselves minimal. 
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Discussion 

One of the primary functions of a control system for a biosynthetic pathway 

is to maintain a relatively constant supply of the end-product for macro- 

molecular synthesis. Such a system must continue functioning in spite of 

both internal and external changes if it is to remain viable. 

Internal variations are those affecting the kinetic parameters of the 

components within the system itself. These changes may be the direct result 

of mutation, errors in transcription or translation of the genetic in- 

formation, or environmental influences such as temperature shifts, etc. The 

ability of the system to perform under these conditions would indicate that 

it is relatively "insensitive" to these perturbations. Indeed, as we have 

already seen, "minimum sensitivity" appears to be an important criterion for 

the natural selection of feedback patterns in biosynthetic pathways. Although 

these sources of internal variation are important to consider, most of the 

variations would be expected to occur outside of the system proper, and these 

would have their effect upon the system indirectly. These indirect effects 

are of two types: those affecting the demand for the end-product and those 

affecting the supply of the initial substrate. 

A wide variety of external conditions will lead to a capacity for an in- 

creased rate of protein synthesis. Indirectly, these changes alter the demand 

function for the end-product, and this is reflected in a change of h , as 
nn 

mentioned in the preceding sections. Thus, minimizing the sensitivity of the 

end-product (or the overall gain Lno when the initial substrate is assumed 

to be constant) with respect to variations in the apparent kinetic order of 

the end-product, hnn , has special significance here. Those systems that 

are minimally sensitive can best maintain the level of the end-product in the 

face of this demand and will allow protein synthesis to occur at the 

greatest rate. The organisms utilizing these systems will be best able to 

take advantage of the prevailing conditions and grow at the fastest rate. 

On the other hand, there are several conditions external to the system that 

can be expected to increase the supply of the initial substrate X 0 . The 

systems most efficient in utilizing the additional substrate would produce 

more end-product and thereby exert a correspondingly greater influence to 

increase the rate of protein synthesis. In other words, organisms that have 

a system with a greater overall gain, Lno , would tend to have a selective 

advantage under this set of conditions. 
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It is clear that the low sensitivity desired for the first class of external 

perturbations and the high gain desired for the second class are actually 

in conflict. This can be seen from the last of Eqs.(4) and (7). If SL h 
nO nn 

is decreased, by increasing the strength of inhibition gln ' Lno must 

correspondingly decrease. Conversely, increasing Lno will simultaneously 

increase SL nO h Thus the ratio L/S is relatively constant, and it is 
nn 

this "figure of merit" for a biosynthetic system that is maximized by the 

end-product pattern of inhibition. This means that a compromise between 

logarithmic-gain and desensitization must be made; but whatever balance is 

established, the simple end-product inhibition pattern assures the maximum 

of both advantages. 

Although the simple pattern of end-product inhibition maximizes L/S , there 

are other patterns that also possess this property, e.g., cases (c) and (e) 

in Fig.l. However, these do not appear to be found among unbranched bio- 

synthetic pathways in nature. The joint probability of two or more regulatory 

enzymes evolving by random mechanisms is considerably less than for a single 

regulatory enzyme. Thus if they did exist, cases such as (c) and (e) initially 

might have constituted an infinitesimal percentage, in comparison to case (a), 

of the population in which they evolved. Other things being equal, cases 

such as these would remain a minute percentage of the population in comparison 

to case (a), or be easily lost by mutation to case (a), since they have no 

selective advantage based on the criterion of minimum sensitivity. Further- 

more, these other patterns in general are not optimal with respect to the 

other two criteria we have considered. 

Accumulation of the metabolic intermediates in a biosynthetic pathway can 

commonly result from external changes which increase the supply of the initial 

substrate or from those that increase the demand for the end-product. When 

equivalent systems utilizing alternative patterns of inhibition are 

compared on the basis of these two criteria, the Lio , and the SL iO h nn 
under certain conditions, are minimal for the system with end-product 

inhibition. In other words, of all possible patterns the simple case in 

Fig. la results in the least accumulation of the intermediates in the path- 

way. Thus, the same pattern that led to maximum overall gain minimizes the 

intermediate gains. As was noted earlier, this has important consequences 

in vivo where there is a limited solvent capacity to accommodate the in- 

creases in the concentrations of the metabolites (Atkinson, 1969). 
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The two different classes of external effects that we have been considering 

are probably the most important and common perturbations with which such 

control systems must normally deal in the cell. However, there is one 

additional effect that should be considered: namely, the effect of variations 

in the exogenous supply of the end-product itself. When the end-product is 

available in the environment the control system should function to limit the 

flow of substrate into the pathway and thus spare the synthesis of the 

unnecessary intermediates. It can be demonstrated that the simple pattern 

of control by end-product inhibition is optimal also with respect to this 

criterion (manuscript in preparation). In contrast to the overall gain Lno , 

to the intermediate gains Lio and the sensitivity SLno hnn , the gains 

Lin , are all relatively independent of gln as long as -gln~hnn 

In summary, to satisfy the various and sometimes conflicting objectives for 

the design of a control system that are discussed in the preceding para- 

graphs, a strength of inhibition -gln~hnn would appear to be required. 

With this choice of the parameter gln' maximum sparing of the inter- 

mediates will be assured, and an optimal balance between maximum overall 

gain Lno and minimum sensitivity SL h can be achieved which slight- 
nO nn 

ly favors desensitization. Minimal accumulation of the metabolic inter- 

mediates is also favored by this choice of the parameter gln " 
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Appendix 

In arriving at the conclusion in Eq.(17) I used the fact that every term 

in the expansion of the determinant (-I) n-1 An_ I is non-negative. In this 

appendix I shall prove this fact. By adding the bottom row of An_ I from 

Eq.(9) to the row above it, then adding the resulting second row from the 

bottom to the third from the bottom, etc., the determinant (_|)n-I A 
n-I 

can be written as 
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(A 1) ( - I )  n-1 

g l l  g12 g13 g14 " " ( g l , n - 1  - g n , n - 1  ) 

g21 g22 g23 g24 ( g 2 , n - I  - g n , n - 1  ) 

0 g32 g33 g34 ( g 3 , n - 1  - g n , n - I  ) 

0 0 g43 g44 " " ( g 4 , n - I  - g n , n - I  ) 

0 0 0 g54 ( g 5 , n - I  - g n , n - 1  ) 

0 0 0 . . . g n - l , n - 2  ( g n - l , n - I  - g n , n - 1 )  

By expanding the cofactor of the first row and last column in Eq.(Al) the term 

producing the fraction of unity value in Eq.(17) is obtained. The fact that 

all terms in the expansion of this determinant are non-negative is seen by 

examining the form of the signs for the elements in the determinant. 

All elements of the determinant on the main diagonal are negative, all those 

above are non-positive, the elements one space below the main diagonal are 

all positive, and all the remaining elements are zero. We must therefore 

prove that all the terms in the expansion of a determinant with the follow- 

ing signs are non-negative. 

(A 2) 

(_I) n-1 

- (-) (-) (-) . . (-) 

+ _ (-) (-) . . (-) 

0 + - (-) . . . (-) 

o 0 + - • . . (-) 

O O O. • + 

The proof is by induction. It is obviously true for the simple case with 

n= 2: 
2-; 

(-I) (-) ÷ (+) 

Assuming that it is true for the general case with n = m - I we must show 

that it is true for n = m. If we expand the determinant represented in 

Eq.(A2) about the two elements in the last row we find 

(A 3) (-l)m-I Am-I = - (gm-l,m-I - gm,m-I ) (-I) m-2 A' m-2 

+ (-I) m-2 A" 
gm-l ,m-2 m-2 
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where the determinants (_;)m-2 A' and (-I) m-2 A" m-2 m-2 are each of the form 

shown in Eq.(A2), except that the largest dimension is m-2. Each of these 

determinants has only non-negative terms in its expansion by assumption. The 

element gm-l,m-2 > 0 and the element (gm-l,m-I - gm,m-1 ) <-- O; there- 

fore the determinant ~-I) m-I A must be expandable with only non-negative 
m-1 

terms. This completes the proof by showing that it is true for n = m. 
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