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Summary. Specific counter-examples are derived theoretically to the hypoth- 

esis that a random amino acid composition signifies a random evolutionary 

process. 
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INTRODUCTION 

In 1969, King & Jukes chose a sample of 53 vertebrate proteins 

which they regarded as representative and estimated the base 

composition of the DNA coding for this protein under the as- 

sumptions that degenerate codons are used equally and that the 

base composition at the third position of the codon was the 

same as the first two. Codon frequencies, p(ijk) , were calcu- 

lated from the relation 

(1) p(ijk) : Pi Pj Pk 

where the Pi are the estimated DNA base composition values. 

The codon frequencies were then summed under the code to give 

the expected amino acid frequencies in protein. These expected 

frequencies were plotted versus those observed as shown in 

Fig.1 of King & Jukes (1969) who described the agreement as 

"fairly good" except for arginine. 

Kimura & Ohta (1971) presented a variation of this calcu- 

lation in which the expected frequencies were replaced by the 

eigenvalues of the transition probability matrix of Dayhoff 

(1973) which were called "equilibrium" frequencies. Even 

arginine was found on the line. These authors then concluded: 
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Through these analyses we have been led to the view that the amino acid 

composition of proteins is determined largely by the existing genetic code 

and the random nature of base changes in evolution. 

A specific counter-example to this argument is given in this 

study. 

Although it is obvious that if the amino acid distribution, 

or any part thereof, differs significantly from code expec- 

tations, this implies a definite selective process; the logi- 

cal point of this paper is that even if the amino acid distribu- 

tion of a given protein or group of proteins turns out to be 

perfectly random, it still could have been produced from a 

highly non-random DNA sequence by a highly non-random selective 

process because of the highly biased nature of the genetic code. 

Specifically this work demonstrates by means of information 

theoretic arguments the mathematical existence of DNA sequences 

with highly non-random pair correlations which nevertheless 

could produce not only a distribution with the same randomness 

as the King-Jukes sample but even perfectly random amino acid 

distributions. 

THEORY 

Perspective 

For a more rigorous and complete presentation of the theory 

the reader is referred to Gatlin (1972, 1974). Only the con- 

cepts relevant to this work will be summarized below. 

In studying the randomicity of biological sequences the 

problem of how to deal with relatively short sequences arises. 

Classical statistics have not solved this problem in any com- 

plete sense, and it is quite possible that it can only be 

approached with Monte Carlo methods. If we take an idealized 

parameter P measuring in some way departure from randomicity 

in the sequence, generate a large number of random sequences 

on a computer and plot the average value of P as a function 

of the length of the sequence generated, functions of the type 

shown in Fig.1 are often obtained. 

As the sequence becomes longer, the ideal randomness upon 

which classical statistical concepts rest is approached asymp- 

totically, and any parameter measuring departure from ran- 

domicity approaches zero. However, for very short sequences, 

P is finite, not because the generator or source is biased, 

but simply because the length of the sequence is so short that 

in this region classical statistical concepts of randomicity 

fail. 
Not only can this generalized failure of classical statisti- 

cal concepts be demonstrated for very short sequences, there 

is also empirical evidence that for very long DNA sequences, 
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statistical parameters are not as sensitive and meaningful in 

demonstrating evolutionary relationships among living organisms 

(see p. 85 of Gatlin, 1972). For these reasons this work builds 

on Monte Carlo methods and information theoretic parameters as 

the basic tools in studying the randomicity of biological se- 

quences. This is not to say that statistical tools are not 

useful, but rather that a blend of both statistics and in- 

formation theory is a more powerful tool than either of them 
separately. 

Information Parameters 

A source is any apparatus or process that emits a sequence of 

symbols from a specified alphabet according to specified prob- 

abilities of emission of the single letters, doublets, trip- 

lets, etc. A stationary source is characterized by the time 

invariance of its n-tuple emission probability distribution; 

and for an ergodic source, which is a special kind of station- 

ary source, this distribution is unique. 

Since a random source is totally unconstrained, the emission 

probabilities of all n-tuples are equal for a given n. For 

example, all single letters are emitted with equal a priori 

probability as are all doublets, triplets, etc. We may describe 

the departure from this completely random state in the follow- 
ing hierarchical manner. 

The divergence from equiprobability of the single letters 
in the sequence is given by 

(2) D I = log a - H I 



where a is the number of letters in the alphabet and HI, the 

zero memory entropy of the source, is given by 

a 

(3) HI : - [ Pi log Pi 
i=I 

where Pi is the probability of occurrence of letter i in the 

sequence. 

The divergence from equiprobability of the doublet sequences 

beyond that fixed by D I is given by 

(4) D 2 = H I - H M 

where H M is the entropy of a Markov source of memory one. In 

general, the divergence from perfect randomicity is hierarchi- 

cally structured and the general increment of divergence is 

given by 

(m-l) (m) 
(5) D = H - H 

m+1 M M 

where m is the memory of the Markov source and Dm+ ] is the 

departure from randomicity at the level of an n-tuple of length 

m+1. 

The total departure from ideal randomicity is related to 

Shannon's (1949) redundancy, R, by 

(6) R log a : D I + D 2 + D 3 + ... Dm+ I 

A random sequence of a given length will be defined as one 

where any D n value lies outside ± 2 o of the average value Dn 

for that length from a random source. This mean value and its 

standard deviation can be determined by the Monte Carlo methods 

described previously (Gatlin, 1974, 1975). 

THE UNCONSTRAINED DNA-TO-PROTEIN CHANNEL 

The process of protein synthesis may be regarded as an in- 

formation processing channel with the base sequence of DNA at 

the input, the amino acid sequence of protein at the output, 

and, connecting the two, the transfer function of the genetic 

code. If a completely unconstrained or random model of this 

process can be constructed, then various evolutionary con- 

straints upon the channel can be studied separately and quan- 

titatively. 



Table i. Means and o for D D and - R for a random a DNA source 
1 2 

I 2 

(bits) (bits) 

R 

L = 30 0.06846 0.25035 0.15940 

0.05307 0.10217 0.05783 

L = 60 0.03586 0.11771 0.07678 

o 0.03041 0.05222 0.03101 

L = 90 0.02849 0.07268 0.05059 

o 0.02509 0.03478 0.02122 

L : 120 0.01921 0.05751 0.03836 

0.01469 0.02336 0.01379 

L = 150 0.01564 0.04493 0.03029 

0.01234 0.02447 0.01366 

L = 180 0.01122 0.03547 0.02334 

o 0.00830 0.01519 0.00856 

L : 210 0.01120 0.03509 0.02314 

o 0.00992 0.01636 0.00933 

L : 240 0.01079 0.02876 0.01977 

o 0.OO883 0.01377 0.00801 

L = 270 0.00755 0.02557 0.01656 

o 0.00627 0.01065 0.00615 

L = 300 0.00868 0.02345 0.01606 

o 0.00587 0.01081 0.00596 

a 

The STOP codons have been excluded. 

Fig.1 is a plot of D I and D 2 as a function of length for a 

random DNA source from which the STOP codons have been excluded. 

Such DNA sequences could code for real proteins. Table I lists 

the average values of the parameters and their standard devi- 

ations as a function of length. These sequences can then be 

mapped to protein via the code and the same parameters Calcu- 

lated for the protein sequences. The protein functions are 

reported elsewhere (Gatlin, 1974). This procedure constitutes 

a mathematical model of a completely unconstrained DNA-to-Pro- 

tein channel under no other regulation except the genetic code. 

If real DNA or protein sequences in the given length ranges 

have observed parameter values outside ± 2 o of the random 

channel, these sequences are non-random with respect to the 

information parameters, which constitutes quantitative evidence 

of evolutionary constraints on the protein synthesis process. 



In real systems these constraints must be extremely com- 

plex. Our objective here is to find a reasonably realistic 

set of constraints which will allow the location of a unique 

DNA informational state at the channel input which is signifi- 

cantly non-random but which, under our biased genetic code, 

can give rise to a random amino acid distribution at the out- 

put. 

In particular the second level of departure from random- 

icity as measured by D2(DNA) is of special interest since it 

is obvious that there is a spectrum of departure from random- 

icity at the DI(DNA) level in naturally occurring DNA, par- 

ticularly in lower organisms where the base composition may 

range anywhere from approximately 0.20 - 0.80% (C+G). DI(DNA) 

measures only this compositional non-randomness but D2(DNA) 

is the first measure of sequential non-randomness. 

At the output of the channel the randomicity of the amino 

acid distribution can be monitored directly by HI(P) , the 

zero memory entropy of protein. Therefore we seek a channel 

state where D2(DNA) is outside the limits of a random channel 

but HI(P) is not. 

CONSTRAINED CHANNELS 

Smith's Channel 

Temple F. Smith (1969) was the first to suggest an algorithm 

which performs this feat of monitoring informational states 

simultaneously at both the input and output of the DNA-to- 

Protein channel. 

Smith assumed a Watson-Crick constraint, i.e., C=G, A=T, 

leaving only one free DNA variable, which is customarily ex- 

pressed as % (C+G) and is varied systematically over its natu- 

ral range of approximately 0.20 - 0.80% (C+G) . Smith next as- 

sumed Dn(DNA) = O for n ~ 2 and calculated the codon fre- 

quencies from Eq.1. The codon frequencies for a given amino 

acid were then summed under the code to give the corresponding 

amino acid frequencies in protein from which HI(P) was calcu- 

lated. 

A plot of HI(P) versus % (C+G) displays an absolute maximum 

at approximately 42% (C+G) which coincides with the natural 

base composition range of all vertebrates (Sueoka, 1965). 

Since HI(P) is a direct measure of amino acid variety, ap- 

proximately 42% (C+G) is an informationally optimal base com- 

position under the code because it permits maximal freedom of 

choice, in an evolutionary sense, of a wide variety of amino 

acids in protein. 
The general significance of Smith's calculation for our 

purposes is that the device of monitoring HI(P) as a function 



of % (C+G) can be freed of many of the restrictive constraints 

Smith used and developed as a more general informational tool. 

A Doublet-Variable Constrained Channel 

Let us place at the input of the DNA-to-Protein channel 16 free 

variables representing the 16 DNA doublet frequencies. The 

normalization condition leaves 15 analytically independent 

variables without further constraint. Beginning with any ar- 

bitrary initial distribution the codon frequencies are calcu- 

lated from the relation 

(7) p(ijk) : 

p(ij) p(jk) 

Pj 

where p(ij) is the doublet probability and pj is the singlet 

probability. This relation essentially assumes Dn(DNA) = 0 for 

n ~ 3 but leaves D I and D 2 free to vary. The codon frequencies 

are summed as in Smith's algorithm and HI(P) calculated. A 

Watson-Crick constraint is imposed and this procedure is iter- 

ated while constraining the p. to a given base composition 

value until the maximum value3of HI(P) is reached. The global 

optimization program of Bremerman (1970) was adapted for this 

algorithm. 

In channel calculations of this type the STOP codons can be 

included or omitted. In this study they have been omitted and 

all other codon frequencies renormalized since we wish to 

model real genes coding for protein. 

The pj must be calculated from the p(ij) according to the 

standard summation 

(8) pj = [ p(ij) 

i 

However, in any arbitrary matrix of doublet frequencies the 

row-column sums for a given base do not always agree, i.e., 

the matrix is non-ergodic and 

(9) [ p(ij) ~ [ p(ji) 

i i 

In such a case the doublet frequencies can be adjusted until 

these contradictory sums agree. Let us call this adjustment 

the E-constraint which is then applied at each iteration of 

the algorithm. 

Fig.2 is a plot of HI(P) Max versus % (C+G) for the above 

algorithm. The constraints are: (I) Watson-Crick symmetry 

(2) E-adjustment (3) Dn(DNA) = O for n > 3 and (4) STOP codons 

omitted. 
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The result of particular interest is that regardless of 

initial conditions or random perturbation of the final solutio 

the program always returns rapidly to an apparently unique sol 

ution set of DNA doublet frequencies from which DI(DNA) and 

D2(DNA) can be calculated. Fig.3 is a plot of DI(DNA) and 



Table 2. Information parameters at both the input and output of the con- 

strained doublet-variable DNA-to-Protein channel 

% (C+G) DI(DNA) D2(DNA) R(DNA) HI(P) 
(bits) (bits) (bits) 

iO O.531 0.099 O.315 3.480 

20 0.278 O.167 0.223 3.923 

30 O.119 O.143 O.131 4.159 

40 0.029 O.120 0.075 4.251 

42.5 O.O16 O.115 0.066 4.254 a 

50 O.OOO O.iOO 0.050 4.223 

60 0.029 0.079 0.054 4.088 

70 O.119 0.057 0.088 3.844 

80 0.278 0.034 O.156 3.478 

90 O.531 O.O15 0.273 2.943 

a 

Absolute maximum in H (P) . 
1 

D2(DNA) versus % (C+G) corresponding to the maximum in HI(P) 

at the given base composition. Table 2 lists the information 

parameters at both the input and output. This calculation 

achieves our objective of locating a spectrum of unique in- 

formational states of DNA where D2(DNA) # O and their corre- 

sponding amino acid distributions. Let us now examine the 

randomicity of these informational states. 

THE COUNTER-EXAMPLES 

The value of HI(P) for the King-Jukes (1969) sample is 4.200 

bits. By interpolation from Table 2 this corresponds to a 

value of D2(DNA) = O.133 bit at the channel input. The depar- 

ture from randomicity of this value may be evaluated with the 

question: "At what length of DNA sequence does this value of 

D2(DNA) become statistically significant?" Since the critical 

values of D 2 decrease with increasing length, at any sequence 

length greater than this minimum significant length the speci- 

fied D 2 value would only become more and more non-random. 

From Table I we find that the value of D2(DNA) corresponding 

to the King-Jukes sample becomes significant at lengths of only 

about 1OO DNA bases. This means that for sequences as long as 

the genomes of the shortest viruses these values represent 

highly non-random DNA sequences. Let us check this result more 

carefully. 

Let us take an ideally random amino acid distribution where 

the frequency of each amino acid is given by ni/61 where n i is 

the number of codons coding for that particular amino acid. 



Table 3. The counter-examples 

H (P) D (DNA) 
1 2 

(bits) (bits) 

Minimum 

significant 

length 

King-Jukes 
4.200 O.133 :iOO 

sample 

Ideal 
4.139 O.147 z 90 

randomness 

Unconstrained 
~ J'p~Max 4.300 O.201 Z 80 

H 
1 

The second line in Table 3 lists the values for this distribu- 

tion. They become significant at lengths of only about 90. 

This result shows vividly how, under the code, the same random 

amino acid distribution can be obtained from either a perfectl] 

random channel or from a constrained or non-random channel. 

This result is not highly dependent on the nature of the 

constraints chosen. For example, let us relax the Watson-Crick 

constraint and the E-constraint. The Pi may be calculated as 

the average of the row-column sums when they disagree. We may 

still calculate a free maximum in HI(P) which occurs at HI(P) = 

4.300 bits, % (C+G) = 43.27. The corresponding value of D2(DNA) 

0.201 bit for which the minimum significant length is approxi- 

mately 80. 

The order of magnitude of the minimum significant lengths 

in Table 3 is surprisingly low. They show how drastically non- 

random DNA sequences at the input can become and yet, under 

our biased code, still give rise to completely random or 

nearly random amino acid distributions at the output. The 

values in Table 3 constitute quantitative counter-examples 

to the original concept of King & Jukes (1969) and Kimura & 

Ohta (1971) that a random amino acid distribution constitutes 

evidence for the random nature of base changes in DNA. 
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