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Composition dependence of tensile yield stress in filled polymers 
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Filled polymers are the simplest type of composite 
polymeric materials, which consist of a matrix poly- 
mer as a continuous phase and a generally inorganic 
filler dispersed in the matrix. These materials are prac- 
tically isotropic, if the geometry of the filler particles 
is isotropic too, or if no orientation of anisotropic 
fillers occurs during processing. 

Fillers are applied to modify various properties 
(mechanical, electrical, etc.) of polymers or, simply as 
extenders for lowering the price/volume ratio of the 
material. In any case, it is essential to know the depen- 
dence of the properties on the composition (i.e. on the 
filler content expressed as volume fraction, ~o) in order 
to achieve an optimum with respect to the desired 
objective. 

Among the mechanical properties yield stress of 
the composite (aye) has primary importance, giving 
information on the maximum allowable load without 
considerable plastic deformation. The yield stress of a 
composite depends, however, in a very complex way 
on the microstructure (including the interfacial struc- 
ture), since the load transfer between the phases and 
also the stress concentration is determined by struc- 
tural factors (form and size distribution of the filler, its 
spatial distribution in the matrix, thickness of the 
interface etc.). It is not surprising that theoretical 
analysis of simple models gives no satisfactory descrip- 
tion of the yield stress as a function of  the composition. 

In the case of zero adhesion between the filler par- 
ticles and the continuous polymer phase there is no 
load transfer to the filler and the total load is carried 
by the matrix. The composite yield stress depends on 
the effective load bearing cross-section 1 - 0, which 
is the minimum value of matrix area in the cross- 
section perpendicular to the load direction: 

O'y c = (1 - -  0 )  0"yp (1) 

The yield stress of the matrix - as there is no inter- 
action between the two phases - is the same as that 
of the unfilled polymer, O'yp. 

Clearly, the integral mean value of the filler area 
fraction in the cross-sections, ~, is equal to the filler 
volume fraction ~0. The maximum value, ~b, can be 
given only in probability terms which, however, can- 
not be expressed easily in an explicit form. To avoid 
this, simple models were developd. Nicolais and Nar- 
kis [1] assumed that in a probe of unit length and 
cross-section, containing n 3 evenly distributed spheri- 
cal particles of the same size, the maximum area of filler 
in the sections containing the centres of n 2 particles, 

(1 - 0) = 1 - (3)2/3 ~t/3 q~2/3 = 1 -- 1.21 q)2/3 

(2) 
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This model, however, includes the assumption that the 
matrix cross-section is zero at a filler volume fraction 
less than 1, justified by the fact that at a certain filler 
content, where the matrix loses its continuity (at the 
maximum packing fraction, ~0max) the strength of the 
composite becomes very low. Still in reality, the cross- 
section of the matrix can be zero only at ~o = 1. 

To avoid such contradictions, we have chosen a 
simple hyperbolic function, going through the points 
~o = ~O = 0 and q~ = ~0 = 1 to describe the change 
of the effective cross:section as a function of filler 
content: 

1 - q ~  
(1  - O )  - ( 3 )  

l + A q ~  

Equation 3 contains the adjustable parameter A. 
The value of A may be determined for systems with 
known ~0" and 0"  values, according to the following 
expression: 

0"  - ~0" 
A -- (4) 

(1 - 0 * )  ~o* 

Values of q~* and ~,* are available for various close 
packings of spherical particles. In the case of hex- 
agonal close packing the volume fraction (p* is equal 
to 0.740 and the maximum filled area in a plane sec- 
tion ~O* is 0.907, corresponding to the hexagonal close 
packing of circles in a plane. The values of A is then 
2.427. For a face centred cubic packing the corres- 
ponding values are ~0"= 0.524, 0 * =  0.785 and 
A = 2.318. 

Since the packing of the fillers depends on both 
particle shape and particle size distribution and can 
vary from sample to sample, we have chosen A = 2.5 
as an approximate upper limit. Thus, the composite 
yield stress can be given in the form: 

1 - ( p  
- -  O'y m (q)) (5) aye 1 + 2.5 ~0 

where 0ym(q~), which formally corresponds to the 
matrix yield stress, is a function of the filler volume 
fraction. 

The dependence of O-y m on q~ is often neglected, but 
in most cases deviations occur from the simple equation 
of Nicolais and Narkis [1], which takes into considera- 
tion only the decrease of the effective load bearing 
cross-section. These deviations were explained by 
stress concentration effects [2], by the reinforcing 
effect of anisotropic filler particles [3], or by other 
factors [4]. To study the dependence of O'y m (q~) o n  the 
filler content the quantity ao (1 + 2.5q~)/(1 - q~) was 
plotted as a function of q~ for 25 different polymer/ 
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Figure 1 The change of relative composite yield stress as a function 
of filler volume fraction calculated for various values of the para- 
meter B. 

filler systems. Both literature data and results of  our 
own measurements were included. It was found, that 
in many cases an approximate linearity exists, but 
generally a linear dependence of  am on ¢p can be 
observed. Somewhat unexpectedly this dependence 
was best described by the exponential function, result- 
ing in the following general expression: 

I - ~o a0 exp {B~o} (6) 
°'c - 1 + 2 . 5 ~ o  

Fig. 1 shows the calculated relative composite yield 
stress ayc/ayo as a function of the filler volume fraction 
for various values of the constant B. 
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Figure 2 Normalized yield stress values, 0"yc/O'y o a s  a function of the 
filler volume fraction ~o for different polymer/filler systems. (1) 
ABS/glass beads [51, (2) ABS/glass beads, surface treated [5], (3) 
polypropylene/wollastonite [3], (4) polypropylene/talc [3], (5) LDPE/ 
CaCO 3. Full lines were calculated with the following values of the 
parameter B = 0.246, 1.059, 2.537, 3.010 and 4.512. 

Equation 6 was fitted to the experimental data by 
minimizing the sum of squared relative differences in 
0"ye, giving an estimation for the parameters O'yo and B. 
The fit was generally very good, the mean value of  
relative differences between measured and computed 
values of composite yield stress being typically 1 to 2%. 
In most cases, the parameter ay o was equal to the yield 
stress of the pure polymers O'yp within the experimental 
error. 

The universality of  Equation 6 is remarkable if one 

T A B L E I Matrix type, filler characteristics and parameters (%, B) of composite yield stress calculated from Equation 6 

Polymer Filler % B 7~* Referencet 
type (N mm -2) (%) 

Type Shape Size (#m) Specific 
surface 
(m 2 g-l)  

ABS Glass beads Sphere 12.7 38.1 29.76 0.246 1.17 5 
PP CaCO 3 Sphere 58.4 0.5 33.26 0.791 0.70 
ABS Glass, treated Sphere 12.7 38.1 29.20 1.059 1.28 5 
PP CaCO 3 Sphere 3.6 2.2 33.12 1.189 0.17 
PP Glass Sphere 105 39.42 1.351 1.16 6 
PP CaCO 3 Sphere 8.6 2.4 30.79 1.610 2.93 
PP Glass Sphere < 15 29.46 1.708 0.53 3 
PP CaCO 3 Sphere 1.1 8.1 32.97 1.859 0.33 
PP CaCO3 Sphere 0.08 16.5 33.44 1.859 0.81 
PP CaCO3 Sphere 1.6 5.0 33.02 1.932 0.56 
PP Silica Sphere 0.6 18.4 32.84 2.073 0.43 
PP Wollastonite Fibre length < 10 30.32 2.537 0.28 3 
PP Talc Plate 13.6 3.0 33.62 2.566 0.91 
PP Talc Plate 5.7 5.9 34.06 2.692 1.08 
PP Talc Plate 2.8 8.4 33.66 2.753 0.69 
PP Talc Plate 12/1-4~ 32.14 3.010 0.77 3 
HDPE CaCO3 Sphere 3.5 1.2 26.18 3.348 0.25 
HDPE Talc Plate 13.6 3.0 25.88 3.926 0.44 
LDPE CaCO3, treated Sphere 1.1 8.14 4.249 2.10 
LDPE CaCO 3 Sphere 3.6 3.3 8.17 4.345 1.28 
LDPE CaCO 3 Sphere 3.5 1.2 7.83 4.477 0.62 
LDPE CaCO 3 Sphere 3.5 1.2 8.21 4.512 0.72 
LDPE CaCO 3 Sphere 3.6 2.2 7.91 4.525 1.23 
PP SiO2 Sphere 0.04 42.62 5.702 1.07 6 
PP SiO z Sphere 0.007 44.6 6.474 2.37 6 

*Mean value of relative differences between measured and computed values. 
? Our own results, where no reference is given. 
~c Length 12/ira, thickness 2-4/~m. 
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takes into account the diversity of the composites 
investigated. The polymers were various types of poly- 
ethylene, polypropylene and ABS thermoplastics, the 
yield stress, Gy~ ranging from 8 to 40. Even more 
diverse were the fillers: many types of CaCO3 differing 
mainly in the particle size, particle size distribution 
and specific surface; silicas (some of them having very 
small particle sizes), but also spherical glass beads, 
acircular wollastonite fibre and lamellar talc. Some of 
the curves calculated with fitted parameters are shown 
in Fig. 2 together with the measured values. All the 
determined Go and B values of the investigated systems 
as well as the most important characteristics of the 
fillers are compiled in Table I. 

In the validity domain of Equation 6 the polymer/ 
filler pairs are characterized essentially by the value of 
the parameter B. Although B has no direct physical 
meaning it is obviously connected with the interfacial 
properties of the given system and also depends on the 
yield stress of the matrix. This becomes evident if we 
study the data of Table I. For the ABS polymer filled 
with glass beads B = 0.246 was determined, approxi- 
mating the "no adhesion" case. Surface treatment, 
which increased the adhesion between the phases, 
resulted in a higher B = 1.059 value. In a series of 

polypropylene composites filled with various types of 
CaCO3, B varied between 0.791 and 1.932, showing a 
loose correlation with the specific surface and in 
another series, where extremely small SiO2 particles 
were incorporated into a PP matrix, the B values were 
higher than 6. It is also very interesting to note that 
Equation 6 equally applies to composites containing 
anisotropic particles (see Fig. 2 and Table I). These 
examples give a hint to the applicability of this 
parameter in studying interactions at polymer/filler 
interfaces. 
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