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We present a renormalisation group study for the long time behaviour of a diffusive 
system with a single conserved density which is subjected to an external driving force. 
In the asymptotic long wavelength limit the system approaches an infrared stable fixed 
point where detailed balance is satisfied. We obtain the exact scaling form of the density 
correlation function. In one dimension, the corresponding universal amplitude agrees 
excellently with a recent Monte Carlo simulation. 

The long time (low frequency, long wavelength) 
behaviour of hydrodynamic systems has attracted 
considerable interest over the past two decades. The 
typical scenario which is also applicable to the work 
reported here is as follows: in high spatial dimen- 
sion, standard perturbational methods suffice to cap- 
ture the long time behaviour of hydrodynamic sys- 
tems, characterised by the usual long time tails. In 
low dimensions, however, anomalous properties 
arise which require more elaborate methods. 

Recently, van Beijeren et al. [1-] (henceforth ab- 
breviated BKS) studied a continuum model for the 
diffusion of particles subjected to a driving force. 
The equation of motion for the particle density in 
the BKS model is given by 

0~ c(r, t )+ Vj(r, t)=0, (la) 

j(r, t)= -DVc(r, t)+ c(r, t)u(c(r, t))+jL(r, t). (I b) 

The first term on the right hand side of (lb) is 
simply the unperturbed diffusion current. The sec- 
ond term models the current contribution that is 
generated by the driving force. The direction of the 
velocity field u is given by the direction of the driv- 
ing force and will be labelled "parallel" from now 
on. In addition, there is a Gaussian white noise 

contribution JL which is assumed to summarise the 
effects of the fast microscopic degrees of freedom. 

BKS use the mode coupling approximation [2- 
4-] to analyse their model. For spatial dimensions 
d>2,  they find that the current-current correlation 
function exhibits the standard hydrodynamic long 
time tail ~t  -d/2. For d<2,  however, the long time 
behaviour turns out to be anomalous, implying that 
density fluctuations spread faster than diffusively. 

In this paper, we analyse a generalisation of the 
BKS model by renormalisation group methods [5, 
6], below the critical dimension de=2. The reason 
for our work is twofold: 

(i) The mode coupling approximation, in its 
standard form, involves calculating the self energy 
on the basis of the full propagators but neglecting 
vertex corrections. It is therefore essentially an un- 
controlled expansion. Problems typically arise if the 
vertices require a non-trivial renormalisation and 
hence change the general scaling behaviour (see also 
Hohenberg and Halperin [7-] for a discussion). In 
general, it is not a priori obvious whether a certain 
vertex need not be renormalised. Thus, in the pres- 
ence of strong infrared singularities renormalisation 
group methods in conjunction with systematic loop- 
wise perturbation expansions are more appropriate. 

(ii) The equation of motion as written down by 
BKS implicitly assumes that detailed balance is val- 
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id. However, in general this need not be justified for 
strong non-equilibrium situations. One should there- 
fore start with a suitably modified equation of mo- 
tion. 

Following this programme, we shall show ex- 
plicitly that detailed balance is dynamically generat- 
ed in the asymptotic low frequency and long wave- 
length limit. It will then become clear that no vertex 
renormalisation is required, due to the additional 
symmetry and the structure of the nonlinearity. This 
is the reason why the mode coupling approximation 
predicts the correct scaling behaviour for this model. 
Further, we compute the (universal) amplitude of the 
density-density correlation function. In one dimen- 
sion, its value is compared with the corresponding 
Monte Carlo result given by BKS. The agreement is 
excellent. 

In one dimension, our model is equivalent to the 
Burgers' equation with external noise�9 This case was 
studied by Forster et al. [8] who performed a Wil- 
son-Fisher recursion relation analysis. Note, how- 
ever, that the continuation of Burgers' equation to 
dimensions greater than one which was suggested by 
these authors genuinely differs from our model: their 
model is isotropic and involves a vector order pa- 
rameter. 

Expanding Eqs. (la, b) in s(r, t):=c(r, t ) -~ ,  i.e. in 
the deviation of the density c(r, t) from its uniform 
average ~ and keeping remark (ii) in mind one ob- 
tains 

s'(r, t)=2(A• li)s(r, t)+�89 s2(r, t)+~(r, t), (2 a) 

(~(r, t) ~(r', t')) = -2(Al+aAbl)b(r-r')6(t-t') (2b) 

after a suitable Galilean transformation which takes 
care of linear terms in the expansion of 
c(r, t)u(c(r, t)), cf. also BKS. The equations of motion 
(2a, b) are the most general ones for a conserved 
density which is spatially isotropic with respect to 
the transverse directions. The parameters p and a 
take care of anisotropies which the driving force 
induces in the diffusion constant and the Gaussian 
noise term. Dimensional analysis near the critical 
dimension de=2 shows that terms which might be 
expected to modify (2) are irrelevant in the renor- 
malisation group sense. 

In contrast to BKS who assume p = a = l ,  we 
allow for any value of the parameters p and o- in 
order to obtain a renormalisable model. Detailed 
balance is satisfied if p = a. 

To set up a renormalised field theory it is con- 
venient to recast the model in terms of a dynamic 
functional [9-11] 

J[s, s'] =~dtddx{g[g-2(A• ii)s] + �89  ).g(Vl[ s)s  2 

+.~g(A ~ + aA LI) ~} (3) 

where g(r, t) is a Martin-Siggia-Rose [12] response 
field. Correlation and response functions can now 
be expressed as functional averages with weight 
exp ( - J ) .  The functional J is invariant under the 
scale transformation 

X[I ---~2 X]l, X•  

S._._~ O:- I S, g._. ~ -  l ff, 

p---~O~4 p, ~r-.-.O:4 a,  g~c~3g. (4) 

Thus the appropriate invariant parameters of the 
model are 

w:= a/p, f: = g2 /p3 /2 .  (5) 

Once J is given, the study of infrared properties 
follows standard renormalisation group methods 
[-11, 13, 14]. We use dimensional regularisation in d 
= 2 - e  followed by minimal subtraction. Denoting 
by F~, the one particle irreducible vertex functions 
with fi g-legs and n s-legs we find that only F~I, Fa0 
and Fa2 are primitively divergent. The divergences 
are absorbed multiplicatively in a redefinition of the 
parameters (from now on, bare quantities are given 
an extra index zero): 

po=Zpp, ~ro-=Z,~cr , gg=Z.u S (6) 

where /2-1 is an arbitrary external length scale. To 
the order of one loop we find 

z o = 1 - ! ( 3 + w ) s + o ( v 2 )  

1 q_ 3W_ 1) 1~6 q_ O(v2 ) Z~= 1 -~-(3w + 2 

Z.  = 1 + 0 (v 2) (7) 

where 

F 1+ 

v -  (4re)a/2 u p  - 3 / 2  

and F(z) is Euler's F-function. 
The fact that the unrenormalised theory is inde- 

pendent from # leads to the renormalisation group 
equation 

�9 F~,({q e)}, p, v, w,/2, k)=0. (8) 
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The parameter functions are given by 

/3~, = v ( - e + 3 (3 + w) v + 0 (vz)) 

/?~= - (w  2 - 4 w + 3 ) ~ 6 + O ( v 2  ) 

~= -(3+w)~+o(v~). 

We find an infrared stable fixed point 

v* = ~ + 0 ( ~ ) ,  w*= l  +0(~) 

with correction exponents 

g 2 
@~=Uw/~w l ,=~+O(  e ) 

(9) 

(lO) 

c~ = ~  ~1, = ~ + o(c 2) (11) 

and a region of attraction v>0, w<3+O(e) .  
If w> 3 + O(e), the infrared behaviour is dominat- 

ed by a degenerate fixed point v=0, w=oo. We 
believe that this state may be reached if the driving 
force is very large. In the following, however, we 
shall concentrate on the case w < 3 + O(g). 

If w = 1, the model satisfies detailed balance. This 
is easily seen by rewriting the dynamic functional J, 
Eq. (3) for p = o, in the form 

J=~dtdex{g(g+R~s)-SRg } 

-R=2[(Az+pA ii) +3(sgll + VII s) 

H=~dx�89 z. (12) 

Obviously, J now obeys the detailed balance sym- 
metry [11] 

s(t)~ -s ( - t ) ,  (13 a) 

g(t)---~s(-t)-62 - ,  = ~ ( - t )  - s ( - t )  (13 b) 

where e x p ( - H [ s ] )  is the (purely Gaussian) sta- 
tionary state distribution. Equation (13b) implies in 
particular that 

(s(t) ~(0)} = O(t) (s(t) s(0)}. (14) 

A few remarks are in order: 
(i) The mode coupling equation of BKS may be 

obtained by writing down a Dyson equation for the 
full propagator (s(t)3(0)}, using Eq. (14), but ne- 
glecting all vertex corrections. This confirms ex- 
plicitly that BKS have used detailed balance. 

(ii) Above, we have seen that the infrared be- 
haviour of the system is dominated by the detailed 
balance fixed point w*=l ,  up to first order in e. 
Since this fixed point is an exact fixed point, due to 
its additional symmetry, it dominates the infrared 
behaviour to all orders in e. Consequently, higher 
order calculations may now be simplified by work- 
ing directly at w = w*= 1. 

(iii) The perturbation vertices 2g(Vll g)s 2 are lin- 
early dependent on momentum. In conjunction with 
momentum conservation and Eq. (14) this leads to 
the result that the ultraviolet divergent graphs as- 
sociated with F~2 sum to zero order by order in 
perturbation theory. 

Thus the coupling g need not be renormalised: 

g~=gZ=ubt~ (15) 

whence, to all orders in e, 

3~= - ( e + ~ p )  v (16) 

implying that 

Co(v*) = - ~ e  (17) 

at the fixed point v*== 0, to all orders. 
A two loop calculation yields 

~p = -�89 +1(1 +3 ln�88 0(v2)] v (18) 

giving the fixed point to order e 2 

v* =4e [1 -~(1 + 3 In ~) e + O(e2)]. (19) 

The scale transformation Eq. (4), dimensional analy- 
sis, and the renormalisation group equation (8) may 
now be used to derive the exact scaling form of the 
density correlation function: 

S(q, co) = co- i f ( c o -  ~-(5 -a) q][, co- ~ q.) (20) 

which reads, in d = 1, 

S(q, co)= ce- lf(co-2/3 q), (21 a) 

S(q, t)= f (qt 2/3) (21 b) 

where ;~(q,t) denotes the Fourier transform of 
S(q, co). This result agrees with the (approximate) 
form given by BKS and also with the form derived 
by Forster et al. [8]. 

Explicitly, we find, for qZ/#2~ 1, neglecting terms 
of order e 2 

_ !  2 
S(q, ce)=-ico -1 1 2 [  ico #2 

5--d 

+ \(22#2tice/-5- pqZ]p2 j + O(q4/p4)} �9 (22) 
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Expressing S(q, t) in the dimensionless variables 

q2 =(g4/28)t/~ ~2 

)~t = ( 2 7 / g 4 ) 1 / ~ {  " (23) 

which correspond to the scales defined by BKS, and 
setting e = 1, we find 

S(q, t) = 1 - � 8 9  Cc~ 2. ~t/3 + O(~4) (24 a) 

where 

a systematic account  of corrections, due to the non- 
trivial renormalisat ion of the coupling v. They are 
specifically required for the computa t ion  of  universal 
ampli tude ratios like the constant  C. Thus the R G  
study of our  model  provides both  an improvement  
and a deeper unders tanding of the mode  coupling 
approximation.  The extension of our  calculations to 
higher orders is straightforward. 
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