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CONDORCET'S PARADOX 
AND ANONYMOUS 
PREFERENCE PROFILES 

William V. Gehrlein and Peter C. Fishburn  

Condorcet 's paradox [6] of simple majority voting occurs in a voting 
situation with n voters and m candidates or alternatives if for every alternative there 
is a second alternative which more voters prefer to the first alternative than 
conversely. The paradox can arise only if the strict simple majority relation on the 
alternatives is cyclic, provided that m is finite. 

Studies of  the paradox are usually based either on profiles or A-profiles 
(anonymous preference profiles). A profile is a function that assigns a preference 
order on the alternatives to each voter. An A-profile, which has also been called a 
return [28] ,  profile [311 and pattern [20],  is a function that assigns a nonnegative 
number of voters to each potential preference order on the alternatives such that 
the sum of the assigned integers equals n. In general, many different 
profiles - which retain voter identities - map into the same A-profile, and any two 
profiles that map into the same A-profile bear the same simple majority relation on 
the alternatives. Hence, it may appear that it is purely a matter of  personal taste or 
analytical convenience whether one works with profiles or with A-profiles in 
studying Condorcet 's paradox. Although this is true in one sense, there are 
important differences between the two bases that will be explored in the present 
paper. Of special concern will be the fact that some A-profiles correspond to very 
few profiles (consider an A-profile that assigns all n voters to the same preference 
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order) whereas other A-profiles correspond to a multitude of profiles. 
An examination of the spaces of profiles and of A-profiles as they relate to 

Condorcet's paradox can provide new insights into the paradox. Working with three 
alternatives and assuming that n is odd with each voter having a linear preference 
order, e x a c t  expressions are given for the proportion of A-profiles that avoid the 
paradox and for the expected proportions of voters who have the simple majority 
alternative ranked first, second and third in their preference orders, given that there 
is a simple majority alternative. The numbers derived from these formulas will be 
compared to their counterparts obtained from the space of profiles. In addition, we 
shall show how the likelihood of the paradox can be computed on the basis of a 
probability distribution over A-profiles and note that this approach to likelihood 
computation cannot in general be duplicated by the more traditional method in 
which each voter independently selects a preference order according to some 
probability distribution over orders. 

Although many studies of social choice [e.g. 2, 10, 27] are based on profiles 
since this beginning allows greater flexibility in discussing various aspects of the 
theory, the A-profile base has proved most useful in examinations of anonymous 
social choice rules. Moreover, the A-profile viewpoint is most natural when one 
considers voting blocs or coalitions whose members share common interests. In 
many real situations with small numbers of candidates or alternatives the parties at 
interest can be identified with specific preference orders, thus providing an 
appealing interpretive base for further analysis. If one party or bloc dominates the 
situation then the outcome may be obvious, but if power is dispersed among a 
number of blocs (whose actual sizes may be subject to considerable uncertainty) 
then the picture can be very complex. The latter type of situation seems intuitively 
more likely to give rise to Condorcet's paradox, and this will be borne out by our 
comparison of the profile and A-profile spaces. Further evidence on this point will 
be provided by relating the occurrence of the paradox to the sum of squares of the 
numbers of voters who have the same preference orders. This sum is maximized 
when the electorate is unanimous and is minimized when voters are evenly 
distributed over the potential preference orders. 

Within the sphere of anonymous social choice rules, A-profiles have been used 
extensively in variable-electorate social choice theory for axiomatizations of 
Borda's rule [4, 30] and other positional voting rules [8, 9, 26, 29]. Within the 
simple majority domain, the A-profile viewpoint is used to identify restrictions on 
sets of individuals' preferences which prohibit the occurrence of Condorcet's 
paradox [2, 3, 10, 16, 24, 27, 29]. With n i the number of voters who have the i th 
preference order in an A-profile, these restrictions (the best known of which is 
single-peaked preferences) can be characterized by subsets of orders whose n i values 
are required to equal zero. In terms of the A-prof'de space as defined in the next 
section, the restrictions identify forbidden regions of the space. 

Several studies [12, 17, 20, 22] have examined relationships between the 
likelihood of Condorcet's paradox and various measures of 'social homogeneity' 
that reflect'the degree to which voters have 'similar' preference orders. Niemi [22], 
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who assesses social homogeneity by the maximum number of voters whose 
preference orders are single peaked for some linear order on the alternatives, and 
Fishburn [12], who measures homogeneity by the Kendall-Smith coefficient of  
concordance [19],  consider the aforementioned relationship under the assumption 
that each profile is equally likely to obtain. On the other hand, Kuga and Nagatani 
[20],  whose social homogeneity measure is inversely related to their 'antagonism 
intensity' within an A-profile, work with the assumption that each A-profile is 
equally likely to obtain. Despite the differences in these studies they share the 
common conclusion that an increase in social homogeneity tends to decrease the 
likelihood of  the paradox. 

Later in the paper we use the sum of squares measure ~n 2 as an approximate 
measure of  the imbalance of power among blocs or coalitions. Unlike the social 
homogeneity measures mentioned in the preceding paragraph, ~n 2 is concerned 
only with the relative magnitudes of the n i and pays no attention to similarities 
among the orders attached to the n i. Our point in using Zn2is to show that, even 
when similarities among nonidentical orders are ignored, the incidence of 
Condorcet 's paradox tends to decrease as ~n2increases. This conclusion reflects our 
finding that A-profiles near the center of  the A-profile space have a greater 
propensity for the paradox than do A-profiles that are near the boundary of the 
space. 

A final feature of  prior studies that relates to the present work is the efforts to 
compute the likelihood of  the paradox when each voter is assumed to 
independently select a preference order according to a probability distribution over 
orders [5, 7, 14, 15, 21, 23, 25]. Here we shall examine the alternative of  basing 
likelihood computations on probability distributions over A-profiles. This is 
tantamount to using probability distributions over profiles since the corresponding 
A-profile distribution is simply obtained from the profile distribution by summing 
probabilities over the profiles that map into the same A-profile. However, we prefer 
to work with A-profiles since, as argued above, they form a natural unit for analysis 
in many real situations and, in addition, allow one to avoid the sometimes elusive 
details o f  voter identities in profiles. It is also important to note that some 
probability distributions over A-profiles that may capture aspects of  voter 
interdependence correspond to no distribution on A-profiles that is derived under 
the assumption of  independent voter selection in the more traditional method, even 
when each voter can make his selection from a different distribution over the 
preference orders. A simple example of  this is provided by a two-voter case in 
which each voter is confined with probability 1 to select a preference order from a 
three-order set. In this case there are five degrees of  freedom in specifying a 
probability distribution on A-profiles (since there are six possible A-profiles) but 
only four degrees of  freedom (two for each voter) in specifying the probability 
distributions used by the voters for selecting their orders from the three-order set. 
Hence, as noted above, likelihood computations based on probability distributions 

over A-pro*gales (or over profiles) cannot in general be duplicated by the more 
traditional independent-selection approach. 
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The derivations of  many of  the results given later are presented in the 
appendix. 

I. Anonymous Preference Profiles 

This section shows how to compute the likelihood of  Condorcet's paradox 
for any given probability distribution on the set of  A-profiles when m = 3 and the 
number n of  voters is odd with each voter having a linear preference order on the 
three alternatives. A simple, exact expression is then given for the proportion of  
A-profiles that have a simple majority winner. A similar formula is presented for the 
proportion of  A-profiles that have a simple majority winner when m = 4. Finally, 
we note the average proportions of  voters who have the simple majority winner in 
first, second and third places in their preference orders when m = 3, where the 
average is taken over the A-profiles that have a simple majority winner. 

With m = 3, the numbers of  individuals who have the six linear orders on the 
set { 1,2,3 } o f  alternatives are as follows: 

n I prefer 2 to 3 to 1 
n 2 prefer 3 to 2 to 1 
n 3 prefer 2 to 1 to 3 
n 4 prefer 3 to 1 to 2 
n 5 prefer 1 to 2 to 3 
n 6 prefer 1 to 3 to 2. 

The space of  all A-profiles for three alternatives and n voters with linear orders is 

An= {(n I . . . . .  n 6 ) : n i E { 0 , 1 , . . . , n } f o r e a c h i ,  a n d ~ n i = n } :  

A-profile (n 1 . . . . .  n6) corresponds to (n!) / (n 1 !n 2 ! . . . n 6 !) distinct profiles. 
Let P be a probability distribution on A n with P(n 1 . . . . .  n6) ~ 0  and P(An) = 

1. To compute the likelihood that alternative 1 is the simple majority winner, given 
P, the P(n I . . . . .  n6) values are summed over the subspace S 1 of  A n in which 1 
beats each of  2 and 3 by simple majority. With n odd, 

n - 1 
S = {(n ,...,n ) E A : n + n + n < 

i I 6 n l z 3 -- 2 

and n + n + n < n - i} 
i 2 4 -- 2 " 

The probability that 1 is the simple majority winner is then P(S1), where, with n12 

= n 1 + n 2, 

n-I n-I n-i n-I 
2 2 n I ---f--- n - n n-n -n -n 

12 2 12 12 3 4 

P(S ) = l Y E ~ E P(n ..... n ). 

I n =0 n =0 n =0 n =0 n =0 I 6 
1 2 3 ~ 5 
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In a manner that  is entirely analogous to the development of  P(S1), we can 
specify summation formutas for P(S2) or P(S3), for the probability that 2 or 3 is 
the simple majority winner, given P. The total probability that P will give rise to a 
simple majority winner is therefore P(S1) + P(S2) + P(S3), and hence the likelihood 
of Condorcet 's paradox is 1-P(S1)-P(S2)-P(S3). 

When P is taken to be the distribution that assigns an equal probability to all 
points in An, the preceding sum gives rise to a simple algebraic expression. Since 
this case is tantamount  to an examination of  the proportion of  points in A n for 
which 1 is the simple majority winner, we shall consider it from the latter 
viewpoint. 

Consider first the number of  points in A n for which 1 is the simple majority 
winner. Letting # B  denote the number of  points in set B, this number is # S  1 and 

n-I n-I n-I 
2 2 -n -n n-n -n -n 

12 2 12 12 3 4 

#S = ~ (n + i) ~ l ~ f(n ..... n ) 
I n =o 12 n =o n =o n =o 1 6 (I) 

12 3 4 5 

where f(n 1 . .  • n ,6) = 1 for all points in S 1 and (n12+l)  is the number of  ways 
and n 2 can sum to n12 in collapsing the double sum over n I and n 2 to the single 
sum of n12. This equation can be computed by sequential summation using the 
formulas for sums of  powers of  integers [26].  As shqwn by (8) in the appendix, the 
result is 

#S = (n + l)(n + 3)3(n + 5) 

I 384 

Since the number of  points in A n for which one of  the three alternatives is the 
simple majority winner is 3(#S1) ,  A n contains (n + 1) (n + 3) 3 (n + 5) / 128 points 
that do not exhibit Condorcet 's  paradox. In addition, [see (7) in the appendix],  the 
number of  points in A n is 

n-n n-n -n -n -n 
n 1 1 2 3 4 
Z Z . . .  Z 

n =o n =o n =o 
I 2 5 

i = (n + l)(n + 2)(n + 3)(n + 4)(n + 5) 
120 

so that the proportion p(n,3) of  points in A n that have a simple majority winner is 
3(#S) / #A n, or 

15 (n + 3) 2 (2) 
p(n,3) = (-i~) (n + 2)(n + 4)' n E {1,3,5,...). 

The space of  A-profiles with m = 4 and n voters with linear preference orders 
consists of  24-dimensional vectors with nonnegative integer components that sum 
to n. Ahhough this space is much more complex than A n for m = 3, it is a simple 
matter  to compute the proportion p(n,4) o f  points in the m = 4 space that have a 
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simple majority winner. In particular, the proof given in [11] for May's formula 
[19], which says that the likelihood of Condorcet's paradox for m = 4 is twice its 
probability for m = 3 when all voters are assumed to have linear preference orders 
on the alternatives (n odd) and all possible profiles are equally likely, applies also in 
the A-profile setting, and therefore 1 - p(n,4) = 211 - p(n,3) ], or 

p(n,4) = 
7n 2 + 42n + 71 (3) 

n E {1,3,5,...}. 
8(n + 2)(n + 4)' 

We consider next the proportions of  voters who have the simple majority 
winner in the kth position of  their preference orders for k = 1 . . . . .  m, given that 
there is a simple majority winner. Although this has not received much attention, it 
is an interesting dimension of voting models. For example, a recent study [13] 
shows that these proportions are an important factor in determining which 
single-stage voting rule is most likely to elect the simple majority alternative when it 
exists. The generic single-stage rule examined in [13] requests each voter to vote 
for K of the m alternatives (without ranking) for a given K E { 1 . . . . .  m -  1}. The 
winner under rule K is the alternative with the most votes. As the expected 
proportions for k = 1 . . . .  m become more &_'fferent, the value of  K that 
maximizes agreement between rule K and the simple majority rule (when a simple 
majority alternative exists) decreases from about  K = m/2 to K = 1. The K = 1 rule 
is of  course the common simple plurality rule under which each voter votes for 
exactly one candidate. 

Within the context of  A n with n odd, let Pkn be the average proportion of  
voters that have the simple majority winner in kth place in their preference orders, 
where the average is taken over all A-profiles that have a simple majority winner. 
Since this average will not change if we consider only the profiles in which 

3 is the average value of  (n 1 + n2 ) /n  alternative 1 is the simple majority winner, Pn 
over the A-profiles in S 1. This average is obtained from (1) with f(n 1 . . . . .  n6) = (n 1 
+ n2) / (n#  S1). The result is equation (9) of the appendix divided by n times (8): 

p a = 3n  z + 3n  - 6 
n 15n(n + 3) ' n E {1,3,5,...}. (4) 

Similarly, P2n is obtained from (t)  with f(n 1 . . . . .  n6) = (n 3 + n4) ] (n~PSl) , which 
is (10) of  the appendix divided by n times (8): 

p2 = (n- i)(4 n + 13) 
n 15n(n + 3) ' 

n E { 1 , 3 , 5 , . . . } .  (5) 

Finally, Pn 1= 1 Pn3 Pn2, so that (4) and (5) yield 

p1 8n z + 33n + 19 
n = 15n(n + 3) ' n E {1,3,5, .... }. 
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These proportions will be used further in the next section. 

II. Comparisons with Profile Results 

The proportions in equations (2) through (5) can be viewed as probabilities 
for the indicated events when each A-profile is assumed to be equally likely. We 
shall refer to the equally likely A-profile assumption as ELAP. The purpose of this 
section is to compare the results obtained under ELAP with similar results derived 
under the assumption that each profile is equally likely. The latter assumption, 
which is often termed "impartial culture", will be referred to here as ELP. We shall 
consider first the paradox probabilities and then look at voter proportions. In both 
instances the differences between ELAP and ELP will be related to the fact that 
ELP places considerably more weight on A-profiles that are near to the center of  
the A-profile space (with approximately equal ni) than on A-profiles that are near 
the edges of  the A-profile space (with one or two n i much larger than the others). 
Recall that, with the linear orders on m alternatives indexed as 1,2 . . . . .  m!, ELP 
assigns probability (m!) -n n ! / [ n l ! n 2 ! . . . ( n m ! ) !  ] to the A-profile (n 1 . . . . .  nm!), 
whereas ELAP assigns equal probability to each A-profile. 

Beginning with ELAP, (2) and (3) specify the ELAP probabilities for m = 3 
and m = 4 of  avoiding Condorcet 's paradox. Since the derivatives of  p(n,3) and 
p(n,4) with respect to n are negative, p(n,3) decreases in n to the limit 15/16, and 
p(n,4) decreases in n to the limit 7/8. Moreover, p(n,3) > p(n,4) for each n. 
Therefore, withi¢l the confines of  m E { 3,4} and odd n, the likelihood of 
Condorcet 's paradox under ELAP increases in both n and m. 

The situation is similar with ELP. Studies on the probability of  the paradox 
[7, 14, 21, 23] under ELP reveal that it tends to increase in both n and m. A more 

of these trends is made by Kelly [18].  Given m E t 3 , 4 / a n d  odd precise study n~ 

the paradox's probability increases in n and m under ELP. Kelly" notes, however, 
| | 

that the status of  these trends remains conjectural for larger values of  m. Likewise, 
the behavior of  the paradox probability under ELAP is an open question for larger 
values of  m. 

Table 1 offers a detailed comparison between ELAP and ELP. The ELAP 
values come from (2) and (3). The ELP values are computed from a 
recently-derived formula [ 15 ] 

n-1 n-i n-i 
n -n 

z 2 12 z 12 n! 2-(ns+n ) 
p*(n,3) = 3 -n+l Z Z Z (n !n !n !n !) 

n =o n =o n =o 12 3 4 ss 
12 3 4 (6) 
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TABLE 1 

Probabilities of a Simple Majority Winner 
Under ELAP and ELP 

m=3 

n ELAP ELP 

3 .96429 .94444 

5 .95238 .93056 

7 .94697 .92498 

9 .94406 .92202 

ii .94231 .92019 

13 .94118 .91893 

15 .94040 .91802 

17 .93985 .91733 

m=4 

ELAP ELP 

92857 .88889 

90476 .86111 

89394 .84997 

88811 .84405 

88462 .84037 

88235 .83786 

.88081 .83604 

.87970 .83466 

• 93750 .91226 .87500 .82452 

with n12 = n 1 + n 2 and n 5 6 = n5 + n6' and from May's formula 1 - p*(n,4) = 211 - 
p*(n,3) ], where p*(n,m) is the probability of  a simple majority winner under ELP. 
The p* values in the table are also directly obtainable from Table I in Garman and 
Kamien [ t 4 ] .  

Table 1 shows that the likelihood of getting a simple majority winner is 
greater under ELAP than under ELP. In fact, except for n = 3, p(~,m) ~:> p*(n,m) 
for ali n. Because ELP places more weight on A-profiles that are near the center of  
the A-profile space, this indicates that centrally located A-profiles are, on average, 
more susceptible to Condorcet 's paradox than are A-profiles near the edges of  the 
space. In other words, A-profiles whose n i values are similar are, on balance, more 
likety to exhibit the paradox than are A-profiles whose n i values are quite 
dissimilar. The distributions of  n i values under the two assumptions are examined 
further in the next section. 

Another comparison between ELAP and ELP is provided for m = 3 by the 
expected proportions of  voters who have the simple majority winner in first, second 
and third places in their preference orders, given that there is a simple majority 
winner. These proportions are shown in Table 2 for n @ t3, 5, 7, 9, 11 t and for the 
limit as n -+ ~. The values for ELAP come from (4) and (5). The values for ELP 
were obtained by computer  enumeration over the A-profiles. The limiting values of  
1/3 for ELP are obtained by the following argument. Since the probability of  
A-profiles under ELP is given by a muhin0mial distribution with probability 1/6 for 
each of  the six linear orders, the proportion of  profiles that have 1/6 - 6 ~ n i / n  
1/6 + ~i for i = 1 . . . . .  6 approaches 1 as n -~ ~ for each positive ~. 
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TABLE 2 

Expected Proportions of Voters who have the Simple Majority 
Winner in First Place, Second Place, and Third Place 

Under ELAP and ELP with m = 3, Given that 
there is a Simple Majority Winner 

First Place Second Place Third Place 

n ELAP ELP ELAP ELP ELAP ELP 

3 .70370 .64706 .18519 .23529 .Iiiii .11765 

5 .64000 .56219 .22000 .27861 .14000 .15920 

7 .61143 .52118 .23429 .29549 .15428 .18333 

9 .59506 .49609 .24198 .30439 .16296 .19952 

Ii .58442 .47877 .24675 .30990 .16883 .21133 

.53333 .33333 .26667 .33333 .20000 .33333 

By Table 1, more than 90 percent of  the profiles have a simple majority winner for 
each n, with m = 3. Therefore, under ELP, the probability that a profile has 1/6 - 
~< ni/n ~< 1/6 + ~ for all i, given that it has a simple majority winner, approaches 1 
as n -+ ~. Then, letting ~ approach zero, the expected proportion of  voters who have 
the simple majority winner in a given place under ELP, given that there is a simple 
majority winner, must approach 1/6 + 1/6 = 1/3 as n ~ ~. 

Table 2 shows the expected result that, under either ELAP or ELP, the 
expected number of  voters who have the simple majority winner in j th l~lace 
exceeds the expected number of  voters who have the simple majority winner in kth 
place whenever j ~ k. In addition, the first-place proportions decrease in n, and the 
second-place and third-place proportions increase in n, but while the limit values 
under ELP are all 1/3, the limit values under ELAP are quite different for the three 
places. Under ELAP, at least half the voters are expected to have the simple 
majority winner as their first choice, regardless of  the size of  n, given that  there is a 
simple majority winner. This implies, for example, that if there is a simple majority 
alternative and if n is very large (to make the variance about the expected 
proportion near to zero) and ELAP holds, then the simple majority winner will 
almost surely be elected by the common simple plurality rule (i.e., K = 1, as 
discussed after (3)) .  The differences between ELAP and ELP in Table 2 show that 
the average proportion of voters who have the simple majority winner in first place, 
given that there is a simple majority winner, is considerably higher for A-profiles 
near the edges of  the space than for profiles near the center. Since 2]n2increases as 
one moves away from the center of  the A-profile space, larger values of  ~ni  2 for 
fixed n tend to be associated with higher proportions of  voters who have the simple 
majority winner in first place. 
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III. An Approximate Measure of  Power Imbalance 

Tables 1 and 2 show that the likelihood of  Condorcet 's paradox and the 
expected proportions of  voters who have the simple majority winner in various 
positions in their preference orders are quite sensitive to the dispersion of the n i 
values, or to the d i s tance 'o f  A-profiles from the center of  the A-profile space. 

. . . m I 

Perhaps the simplest measure of  dispersion or difference with m alternatlves is Xi=] 
n 2 which is monotonically related to the sum of squared mean differences~[n i - 
n/m! ] 2. The measure ~n 2 on A-profiles can of course be viewed as an approximate 
measure of  the imbalance of  power among coalitions or voting blocs whose 
members have common preferences. For a given n, this measure is smallest when 
voters are evenly distributed over the m! linear orders. This reflects a balance of 
power situation since no one coalition can enforce its viewpoint without 
'cooperation'  from other coalitions. At the other extreme, ~n 2is largest when 
almost all voters have the same preference order, or when one coalition is very large 
compare~ to the others. 

X~n2 i An indication of  the differences between ELAP and ELP for z¢ i s shown in 
Table 3 for (re,n) = (3,7). Similar computations were made for other values of  n 
combined with m=3. They show that the seven-voter results of  Table 3 are t~pical 
of  the general situation. The entries in the table give the probability of  ~n i ~< D 
under ELAP and ELP, and they clearly show the tendency of ELP to generate 
smaller Zni2values than does ELAP. This of  course reflects the greater emphasis that 
ELP places on A-profiles near the center of  the space, and, in conjunction with 
Tables i and 2, it supports the findings of  the preceding section that smaller values 
of  ~r  2 tend to be associated with a higher incidence of  Condorcet 's paradox and 

1 
with more even distributions of  voters over the three places in the preference orders 
for the simple majority winner when it exists. 

The differences illustrated by the tables can also be thought of  in terms of 
social homogeneity even though there is no general agreement on the most 
appropriate measure of  this concept [1,I2,  t7,  20, 22].  Nevertheless, it is generally 
agreed that social homogeneity is maximized when all voters have the same 
preference order, in which case Xn2i is maximized and Condorcet 's paradox cannot 
arise. And, at least by several measures [12, 20, 22], homogeneity is minimized 
when voters are evenly dispersed over the preference orders, or when 22n 2 is 
minimized. Therefore it seems reasonable to view 2]ni2as at least a crude measure of 
social homogeneity. We say "crude" because, unlike several other measures [12, 20, 
22], ~n2takes  no account of  similarities among the different orders chosen by the 
vo te r s .  

As mentioned earlier, other studies of  social homogeneity and Condorcet 's  
paradox show that an increase in social homogeneity tends to decrease, either as a 
general trend or in a precise setise[20], the likelihood of  the paradox. The present 
study shows that this is true also for 2n  2 : as Gn 2 increases, the likelihood of  the 

1 whe}l similarities among different paradox tends to decrease. Hence, even 
preference orders are ignored, there is a measure of  homogeneity that relates to the 
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likelihood of  Condorcet 's  paradox in the same way as do more refined measures. 

TABLE 3 

Probabilities that ELAP and ELP will Generate Zn~ Values 

Which are Less Than or Equal to D, for Three 

Alternatives and Seven Voters 

D ELAP ELP 

9 .00758 .05401 

ii .08333 .32407 

13 .19697 .54913 

15 .42424 .81919 

17 .50000 .86420 

19 .65152 .93921 

21 .80303 .98422 

25 .84091 .98798 

27 .91667 .99698 

29 .95455 .99923 

37 .99243 .99998 

49 1.00000 1.00000 
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Appendix 

This appendix outlines four derivations whose results are used in the paper. 
The four relations that are required are: 

n-n n-n -n n-n -n -n 
n 12 12 8 12 3 4 

Z (n + I) Z Z Z 
12  

n =o n =o n =o n =o 
12 3 4 5 (7) 

(n + l)(n + 2)(n + 3)(n + 4)(n + 5) 

120 

n-I n-i n-i 
- n - n n-n -n -n 

2 2 12 2 12 12 8 4 

Z (n + i) Z Z g 
12 

n =o n =o n =o n =o 
12 3 4 5 

(n + l)(n + 3)3(n + 5) 

384 

(8) 

n-i n-i n-i 
---n -n, n-n -n -n 

2 2 12 2 12 12 3 4 

E n (n + i) Z E E 
12 12 

n =o n =o n =o n =o 
12 3 4 5 

(n - l)(n + l)(n + 2)(n + 3) 2(n + 5) 

1920 

(9) 

n-I n-I n-i n-i 
' -n ~-n ---n 

2 2 12 2 12 2 12 

Z (n + i) Z Z (n + n ) Z 
12 3 4 

n =o n =o n =o n =o 
12 3 4 5 (lO) 

(n - l)(n + l)(n + 3) 2(n + 5)(4n +, 13) 

5760 
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The derivations employ sequential application of the relations for sums of 

powers of integers. The relations for sums of  powers of  integers that are used are 
taken from Selby [26], with 

m 
Z = m (li) 

i: 1 

m 

Z 

l=l 

i = m(m + i) 
2 (12) 

m 
Z i 2 = m(m + l)(2m + i) 

6 (13) 
i = l  

m = m 2 2 
Z i 3 (m + i) 

4 
i=l 

(14) 

m 

Z 

1 = 1 

i 4 = ~o(m + l)(2m + l)(3m 2 + 3m - i) (15) 

m m2 
7. i s = ~(m 

1 = I 

+ i)2(2m 2 + 2m - i). 

Applying (11) to the left hand side of (7), we obtain 

n-n -n 
12 3 

Z (n + i )  Z Y. 
12 n n n =o 

12 3 4 

(n + I - n - n - n ). 
12 8 4 

(16) 
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Using (11) and (12) , this reduces to 

n-n 
1 12 
- r, (n + i) Z 
2 12 

n n =o 
12 3 

I_ (n + i - n )(n + 2 - n )I 

"I 

12 12 j • 

(2n + 3 - 2n )n + n z 
12 3 3 

Using (11), (12) and (13) this reduces to 

(n + l)(n + 2)(n + 3) 

+ 

n 
i 

6 
n =o 
12 + 

Formulas (11), (12), (13), (14) and (15) then give 

(n 3 + 3n z - n - 5)n 
12 

(3n 2 + 9n + 5)n 2 
12 

(3n + 5)n 3 
12 

n 4  
12 

(n + l)(n + 2)(n + 3 ) ( n  + 4)(n + 5) 

120 

which verifies (7). 
Applying (11) to the left hand side of (8) we obtain 

12-1 
, , 1 1 2  

2 12 

Y. (n + i) F, Y, (n + i - n 
12 12 

12 12 n =0 
12 3 4 

- -  rt  
3 

- n ) .  
4 

Using (11) and (12) this reduces to 

n - 1  

2 
n+3. 
- - - - 2 - -  ) r. 

12 =0  
12 

n+l. __f__~ 2 

+ (n z - 2n- 3) 

4 
2 

-- n n 
12 

+ n 3 
12 

n 
12 
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Then (11), (12), (13) and (14) give the desired result 

(n + l)(n + 3)3(,n + 5) 

384 

The reduction for (9) follows the same format  as the reduction of  the left 
hand side of  (8) to (17). For the left hand side of  (9) we have 

n+ i. 
:___~__) 2 n 

12 

n - 1  ( n  2 - 2 n -  3 )  n 2 2 + .......... 
n+ 3.  4 12 

z 
n =o - n n 3 

12 12 

+ n 4 
12 

Using (12), (13), (14) and (15) we obtain the desired result 

(n - i)(n + l)(n + 2)(n + 3)Z(n + 5) 

1920 

E 

n 
12 

Finally, using (11) on the left hand side of  (10), we get 

u 

n-1 n (n + i - n - n ) 
-n 3 12 3 

2 12 
(n + i) 7. 7~ + (n + 1 - n - 2n )n 

12 12 3 4 
n n =o 

3 4 _ n 2 
4 

Then (11), (12) and (13) reduce this to 

n-i 

2 -n12 
7. (n + l)(n + 1 

12 ~ - n  ) 12 n n =o 
12 3 

(n,,- 1 
2 -n )( 

12 

rn + 3, + ~ ) n  3 

-- n 2 
3 

2n+3-n 
12) 

6 
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Further use of (11), (12) and (13) gives 

5(,n + i) 2(n - l)(n + 3) 
s 

.n + l.(5n 3 - 13n 2 - 85n + 13. n') 
+ ~ )  4 

n-1 (14n 3 + 30n 2 - 70n - 46~n2) 
i 2 - 4 12 

- -  Z 

12 
n =( (12n 2 + .44n- 12.)n3 

1 2  + ' 2 1 2  

- 2(n + 8)n 4 
12 

_ 2n s 
12 

12 

and (11), (12), (13), (14), (15) and (16) reduce this to 

(n  - 1 ) ( n  + 1 ) ( n  + 3 ) 2 ( n  + 5 ) ( 4 n  + 13),, 
5760 
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