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Abstract. This paper argues that the use of the odds 
ratio parameter in epidemiology needs to be consid- 
ered with a view to the specific study design and the 
types of exposure and disease data at hand. 
Frequently, the odds ratio measure is being used 
instead of the risk ratio or the incidence-proportion 
ratio in cohort studies or as an estimate for the 
incidence-density ratio in case-referent studies. 
Therefore, the analyses of epidemiologic data have 
produced biased estimates and the presentation of 
results has been misleading. However, the odds ratio 
can be relinquished as an effect measure for these 
study designs; and, the application of the case-base 

sampling approach permits the incidence ratio and 
difference measures to be estimated without any 
untenable assumptions. For the Poisson regression, 
the odds ratio is not a parameter of interest; only the 
risk or rate ratio and difference are relevant. For the 
conditional logistic regression in matched case- 
referent studies, the odds ratio remains useful, but 
only when it is interpreted as an estimate of the 
incidence-density ratio. Thus the odds ratio should, 
in general, give way to the incidence ratio and 
difference as the measures of choice for exposure 
effect in epidemiology. 
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Introduction 

The odds ratio remains perhaps the most popular 
relative measure of the exposure-disease relation in 
epidemiology today. Yet, despite its widespread use 
the estimation and interpretation of this parameter for 
epidemiologic data analysis and inference raises 
questions [1, 2]. The main reason for its usefulness 
is not its intelligibility as an effect measure for 
epidemiologic research results, but rather its conve- 
nient mathematical properties when employed, for 
example, in the Cornfield chi-square statistic in 
unstratified analysis and in the Mantel-Haenszel odds 
ratio in stratified analysis [3, Section 14] and in the 
logistic model of multivariate analyses [4, 5]. Odds 
ratios also provide a connection between analyses of 
data from cohort and case-referent studies. However, 
because of recent developments in statistical methods 
in epidemiology [6], the need to present results 
referring to average risks for a disease outcome in 
populations in terms of odds ratios can be questioned 
if the objective is to determine the individual 
responses to exposure. 

My purpose in this communication is to review 
briefly the justifications for using the odds ratio 
parameter in current epidemiologic research and to 
argue that many of these uses can either be bypassed 
or made implicit in the data analysis. Incidence 
difference and ratio then remain as the preferred 

measures of the exposure effect in most situations. 
Yet, thorough reflection on the statistical modelling 
of data should always precede the data analysis and 
the computation of a measure of exposure effect. In 
this paper, I discuss the statistical (nontechnical) 
issues of the modelling, estimability and presentation 
of results to provide an updated view of epidemio- 
logic analyses. 

Interpretation of effect measures in the modelling 
of  epidemiologic data 

The risk of disease is a probability measure per- 
taining to an individual. In epidemiology, average 
risks can be estimated in a population as an inci- 
dence-proportion. For a comparison of risk among 
exposed (R0 and unexposed (Ro) populations, the 
simplest measures of excess risk are the risk differ- 
ence, RD = R~ - Ro, and the risk ratio, RR -- R]Ro. 
The choice between the difference and ratio is made 
depending on the constancy of their values over 
potential modifiers of the effect parameter. In causal 
research, with high proportion-type rates in the 
reference population (R0) this principle ofinvariance 
may theoretically call for the use of the risk-odds 
ratio, OR = [R~(1 - Rl)]/[Ro(1 - Ro)], and the logit 
difference, log(OR) (O. Miettinen, personal commu- 
nication). However, empirical evidence does not 



366 

seem to support the assumption that causal effect is 
more constant across populations when expressed 
using odds ratios rather than risk ratios [7]. These 
more complicated measures of exposure effect enjoy 
some good statistical properties. The OR has gener- 
ally been used as an auxiliary parameter in unstrati- 
fied, stratified, and in logistic regression analyses of 
case-referent data, including mortality-odds ratio 
analyses in occupational mortality studies [3, Section 
17.2, 18.4, A.2.6]. The OR may also be the most 
natural (i.e. time-invariant) measure in stochastic 
modelling of disease processes. However, it is only 
interpretable biologically if it estimates the inci- 
dence-proportion or the incidence-density ratio [8]. 

Statistical modelling depends on the characteris- 
tics of the data available. For dichotomous data with 
binomial distributions, the log(OR) is still the most 
convenient means for modelling the probability of 
outcome event. The RR and RD models have the 
unpleasant potential of producing estimated proba- 
bilities outside the zero-to-one range. Further, the 
log(OR) is directly related to the Bayes theorem, 
which acts as an explanation of the log(OR) as a 
natural parameter in the modelling of dichotomous 
data. In incidence data, Poisson-process modelling is 
appropriate and leads to a Poisson distribution in 
stable cohorts and to proportional hazards modelling 
in the follow-up of dynamic populations. In these 
models the RR is in some (intuitive) sense natural. 

Greenland [8] has presented a strong theoretical 
argument against the utility of the OR as an effect 
measure in epidemiologic analyses: ' . . .  only inci- 
dence differences and ratios possess direct interpre- 
tations as measures of impact on average risk or 
hazard. Consequently, odds ratios are useful only 
when they serve as incidence-ratio estimates, and 
logistic and log-linear models are useful only insofar 
as they provide improved (smoothed) estimates of 
incidence differences or ratios.' 

The choice of the comparative parameter also 
affects the assessment of confounding, both in strat- 
ified analyses and in logistic regression modelling. 
In deciding whether a covariate that is a risk factor 
of the disease under study is also associated with the 
exposure (i.e. a confounder), two criteria have been 
employed. First, a definition of a confounder has 
been based on the statistical notion of collapsibility. 
According to this definition, if the crude effect 
measure calculated from unstratified data equals the 
stratified parameter estimate (upon stratification 
according to a potential confounder), the parameter 
is collapsible and the crude measure is uncon- 
founded. Accepting this definition, Miettinen & Cook 
[9] rejected the OR as a measure of intrinsic interest 
and instead selected the RR and RD, because, unlike 
the OR, both the RR and RD are collapsible when- 
ever confounding is absent. 

Second, the criterion of comparability between the 
exposed and unexposed subjects has been favored by 

many epidemiologists [10]. According to this crite- 
rion the control of a covariate that is only a risk factor 
of the disease outcome but has no association with 
the exposure is irrelevant for validity. Nevertheless, 
in his review of statistical modelling in epidemiology, 
Gail [6] points out: 'First, inclusion of such a 
"balanced" covariate can improve the precision of 
estimates of exposure effect. Second, except for 
linear and multiplicative regressions, failure to 
include a "balanced" covariate will lead to a biased 
estimate of exposure effect with bias toward the null 
in logistic models.' 

Gails's [6] point applies in situations when the 
probability of the outcome event is high. (For details, 
see Gail [11].) This oddity of the OR has, for 
example, prompted prominent epidemiologists to 
caution others to avoid the OR as a measure of 
exposure effect in favor of the RD and the RR, which 
correspond to linear and multiplicative regressions 
[see, eg, 3, Section A.2.4]. 

Recently Savitz [12] commented that, although 
odds ratios are useful exclusively as a reflection of 
other parameters, the term odds ratio is so familiar 
to epidemiologists that it is the preferred term in 
reporting study results. However, the epidemiologist 
should clearly present the basis for the (statistical and 
biological) inference of the OR contained in the 
paper. Of course, this basis should not only be pre- 
sented when the OR is the estimated parameter, it 
should always be included. 

Analysis of population-based studies 

Cohort population data or population cross- 
sectional data 

Data derived from a cohort (closed) population for 
the assessment of excess risks are not substantively 
meaningful with respect to the incidence-odds ratio. 
Instead epidemiologic analyses of cohort data focus 
on the incidence-proportion (or cumulative inci- 
dence) difference and ratio. Reporting from their 
experience in clinical trials, Sinclair & Bracken [7] 
concluded: 'Because the control group's risk affects 
the numerical value of the odds ratio, the odds ratio 
cannot substitute for the risk ratio in conveying 
clinically important information to physicians. This 
is especially important when large treatment effects 
are shown in trials carried out in populations at high 
baseline risk.' 

In the same vein, in occupational-epidemiology 
studies of the incidence of illness the concern is not 
with the OR in itself, even though it has been viewed 
by some researchers as the object of inference in 
prevalence data from population cross-sections. 
Other authors prefer prevalence ratios when the 
prevalence of the disease rate is rather high [ 13, 14], 
as in a study of a common pregnancy outcome or a 
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degenerative change. As commented by Axelson et 
al. [13]: 'However, the cross-sectional approach is 
usually the only possibility to study, for example, 
musculo-skeletal disorders in relation to various 
types of work-load. Rather high risk estimates are 
often presented from such studies in terms of odds 
ratios, whereas the prevalence ratios would be lower.' 

Example 1. Leino et al. [15] presented results 
showing that hairdressing is a risk factor for rhinitis 
symptoms. In the populations of 355 hairdressers and 
583 saleswomen the frequencies of the self-reported 
symptoms obtained in a telephone interview were 
highly prevalent: 62.3 and 50.3%, respectively. In a 
preliminary analysis of these cross-sectional data, the 
authors computed the point estimate (and the 95% 
confidence interval estimate) of the prevalence-odds 
ratio (OR) to be 1.6 (1.2-2.1). The directly estimable 
prevalence rate ratio (RR) is 1.2 (1.1-1.4). Although 
the qualitative conclusion regarding the equality of 
the compared prevalences was not affected by the 
choice of the comparative parameter (i.e. the lower 
confidence limit exceeds 1 both for the OR and the 
RR), the quantitative estimate of the excess risk 
measured in terms of the OR-1 = 60% was three 
times in error compared to the more correct value, 
RR-1 = 20%. Moreover, the confidence interval for 
the OR was unduly wide (i.e. imprecise). 

Example 2. Viikari-Juntura et al. [ 16] examined the 
effects of occupational factors on the risk of neck 
disorders in three vocational categories: machine 
operators (static work involving whole body vibra- 
tion), carpenters (dynamic physical work), and office 
workers (sedentary work). By design, the study was 
based on the retrospective experience of a cohort 
population. The outcome considered was a possible 
change in the distribution of symptom statuses. The 
1-year-period prevalences of recurrent severe neck 
trouble obtained in a questionnaire survey were as 
high as 77% among the 185 machine operators, 71% 
among the 127 carpenters, and 49% among the 51 
office workers. Yet, the authors chose the prevalence- 
odds ratio as the effect measure and in a logistic 
regression analysis estimated its value (here unad- 
justed) for the following occupational comparisons: 
machine operators vs office workers, OR = 3.5 (95% 
confidence interval 1.8-7.1); carpenters vs office 
workers OR = 2.5 (1.3-4.9). However, when these 
cohort data with count denominators are analysed in 
terms of the prevalence rate ratios we obtain the 
corresponding estimates: RR = 1.6 (1.2-2.2) and RR 
= 1.4 (1.1-2.0). Thus, it is evident that the OR-based 
analysis estimated the exposure effects on the risk 
many times over because the considered outcome, 
as defined, was not uncommon. Besides the point 
estimates for the OR being location-biased (i.e. 
inaccurate), the associated confidence intervals were 
length-biased (i.e. imprecise). 

In certain epidemiologic studies subjects come 
from an underlying cohort of matched pairs, but only 
those pairs in which an outcome event occurs are 
ascertained. Although the OR is used in this type of 
incomplete sampling design, its implications are not 
fully appreciated. As remarked by Greenland [17]: 
'Such data can be analysed by using odds ratio 
modelling methods, but these methods present inter- 
pretational problems and do not use information from 
matched pairs in which both subjects experience the 
outcome. ' 

To remedy the situation Greenland [17] presented 
a method that makes use of double-outcome pairs and 
is a risk-ratio analogue of the odds-ratio method in 
conditional logistic regression analyses. 

Dynamic population data 

When the rate denominators represent the population 
time of observation for the incidence of disease 
events in the follow-up of a dynamic (open) popula- 
tion, the comparative parameters at issue are 
primarily the incidence-density difference and ratio 
and their derivatives, not including the OR [3, 
Section A.2]. There are two reasons for this choice. 
First, the notion of odds is the risk divided by its 
complement. Second, if the disease incidence is low 
and the exposure proportion remains stable, the 
incidence-proportion ratio (estimate of risk ratio) is 
approximated more accurately by the incidence- 
density ratio than by the incidence-odds ratio [18]. 

Approaches to regression analysis 

Regression analyses of cohort or dynamic popula- 
tion-time data are typically done by means of logistic 
or Poisson modelling. From the estimates of regres- 
sion coefficients given by logistic analysis programs 
[e.g., in the SPSS (Statistical Package for the Social 
Sciences) and the BMDP (Biomedical Computer 
Programs) packages] only the OR can be calculated. 
However, the binomial regression approach can be 
modeled to produce estimates of the RD and RR, and 
the analyses can be carried out [in the GLIM 
(General Linear Interactive Modelling) system] with 
the help of special macros [19]. 

The main rationale for the use of the logistic 
multiple-regression model in epidemiologic follow- 
up studies of disease risks is that it constrains the 
predicted probability of the disease occurrence to the 
(0, t) range. This restriction does not hold if one 
were to induce a linear model for the disease risk as 
a function of the covariates. On the other hand, the 
logistic (or log-linear) model form implies a multi- 
plicative statistical relation between the effects of the 
study exposures. As shown by Greenland [20], if an 
additive biological model holds, the logistic analysis 
requires three parameters to adequately summarise 
the joint effects of only two variables, and gives the 
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impression that these factors may somehow biolog- 
ically interact in the base population. 

The main problem in applying logistic modelling 
to follow-up studies is that the risk period is only 
implicitly taken into account in the estimated para- 
meters. Logistic function can quantify the effect of 
a risk factor on the probability of a disease, but it 
does not naturally translate into the effect on the 
change with time of that risk. To cope with the 
problem, one may explicitly include a time variate 
(such as calendar time, age, or duration of exposure) 
in the model. The second problem with the logistic 
model is that it cannot deal with the effects of com- 
peting risks. This is because it represents a model 
relating the covariate to a probability and not to a 
hazard rate. In other words, it does not use person- 
time denominator data and thus the model cannot 
estimate the time to realisation of risk. Besides being 
unable to manage satisfactorily the problem of lost 
cases (they are simply excluded form the analysis), 
the logistic model cannot handle events that are not 
rare. For a technical discussion on these issues, see 
Manton & Stallard [21]. 

The Poisson regression approach can also be 
modeled to produce estimates of the RD and RR. 
Then the RR estimates the incidence-density ratio. 
But it is not clear how results of a Poisson model 
with a logit link should be interpreted. Unlike the 
logistic regression model considered above, the Cox 
regression is an appropriate method for modelling 
hazard (or instantaneous incidence-density) ratio in 
the analysis of failure (or survival) data. In tightly 
stratified data, the Poisson analysis using a piecewise 
exponential failure time model and the Cox hazard- 
rate regression model are expected to yield very 
similar results since incidence-density ratios can be 
interpreted as ratios of average hazards [8]. 

Another possibility in the context of muttidirec- 
tional contingency tables is to apply the method 
proposed by Berry et al. [22] to the values of 
incidence-proportions, estimates of risks R~ (i = 
0, 1 . . . .  ), fitted by the logistic model, and then to 
present the results as standardised risks or risk ratios. 
This procedure can be done by a simple (e.g. 
GENSTAT) program with the facility to access fitted 
values and the table operations. Berry et al. [22] state 
their position germane to logistic regression analysis 
as follows: 

'Whatever method is used, presentation of results 
after allowance for covariables should be in a form 
similar to that which would be given if no covari- 
ables were under consideration. Quoting parameter 
estimates in the logistic model does not achieve this 
and is artificial since the logit transformation would 
not be necessary if there had been only the one factor 
of interest, and no covariables.' 

Thus, although results are often expressed as 
regression coefficients or odds ratios, these measures 
can appear unnatural to the investigator. On the other 

hand, proportions or risks are easily interpretable and 
have direct meaning. This principle of  intelligible 
reporting of research results carries over to epi- 
demiologic studies with case-referent sampling of the 
population experience. 

Analysis of case-referent sampling studies 

Samples from a cohort base or a cross-sectional 
base 

The classic raison d'etre given for the use of the OR 
in analyses of case-referent series is that, when the 
sample of the base population consists of the disease- 
free subjects (noncases) of a cohort or a population 
cross-section, the exposure-odds ratio approximates 
the incidence-proportion ratio. This condition is 
obtained provided that the outcome event is rare in 
the population-time frame - the so-called rare disease 
assumption (18, 23, 24) - as is often the case in 
cancer studies. However, if a representative sample 
of the entire base is drawn, the case-base data allow 
for the incidence-proportion ratio to be estimated 
whether or not the disease is rare [25, 26]. Miettinen 
[3, Section A.6] has given cogent reasons (concep- 
tual clarity, informativeness, practicality) for sampling 
the base itself at the start of a follow-up instead of 
sampling the noncases at the end of a study. Various 
methods for the RR analyses are available for binary 
data [25-31]. Of course, for a rare disease, there will 
be very few events in the base, and thus the case-base 
and traditional case-referent studies will yield nearly 
identical results. 

Example 3. Table 1 provides a numerical illustration 
of the analysis of unstratified case-referent data. 
Because the case occurrence is not uncommon, the 
case-control (case-noncase) odds ratio (OR -- 2.25) 
gives a poor approximation to the incidence-propor- 
tion ratio (1.37). Note that the incidence-proportion 
ratio (estimate of risk ratio) is approximated more 
accurately by the incidence-density ratio (1.50) than 
by the case-control odds ratio. Remarkably, the 
case-base analysis also yields estimates of the risk 
difference. Of course, a 100% sampling of the base 
population will produce identical risk estimates with 
those obtained from the analysis of full cohort data. 

In stratified analysis of case-referent data, the 
Mantel-Haenszel common odds ratio estimator 
(ORMr0 is applicable in the noncase sampling of a 
cohort base population. The ORMn does not assume 
homogeneity (constancy) of stratum-specific para- 
meters. Under heterogeneity, however, the ORMH has 
the disconcerting property that it varies according to 
irrelevant features of the sampling design and does 
not consistently estimate any meaningful population 
parameter [32]. But, with two additional assumptions 
the population OR (estimated by ORMH) indirectly 
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Table 1. Estimates of effect measures for binary data in 
a case-referent study* 

Data Exposed Unexposed Total 
series subcohort subcohort 

Cases 600 400 1000 
Noncases 400 600 1000 
Base sample 100 100 200 

Size of base population = 2000 
Sampling fraction of base population = 200/2000 = 0.1 
Duration of follow-up time -- 1 year 
Total population time = 2000 years 

* Analysis: 
Case-control odds ratio = 

(600/400)/(400/600) = 2.25 
Case-base analysis (for methods, see reference 33): 
- incidence-density ratio = 

(600/t00)/(400/100) = 1.50 
- incidence-density difference = 

(600/100 - 400/100) (200/2000 years) = 0.2/(year) 
- incidence-proportion ratio = 

{1 - exp [-(600/100) (200/2000 years) (1 year)] }/ 
{1 - exp [-(400/100) (200/2000 years) (1 year)] } = 
0.45/0.33 = 1.37 

- incidence-proportion difference = 
{1 - exp [-(600/100) (200/2000 years) (1 year)] } - 
{ 1 - exp [-(400/100) (200/2000 years) (1 year)] } = 
0.45 - 0.33 = 0.12 

short latency studies, such as investigations of acute 
food poisoning. 

However, the stability assumption may be unten- 
able also for a dynamic population. If one stratifies 
tightly enough for age or some other time variable, 
the overall OR estimates the incidence-density ratio 
(assumed constant); therefore some epidemiologists 
tend to interpret the odds ratio for case-referent 
exposure as an estimate of the incidence-density 
ratio. A time-matched design that is used for esti- 
mating the incidence-density ratio via the OR [24] 
can, however, be replaced by stratification of the time 
period in case-base data for RR analyses [33]. 

Increasingly, epidemiologists are using the time- 
stratified sample of the study base population from 
which the cases were identified instead of analysing 
matched samples. Such a case-base design with a 
stratified or modelling approach to analysis offers a 
viable alternative that is preferable in many situations 
[4, p. 276]. The practical advantages of this alterna- 
tive approach have been stressed by Wacholder 
(34, 35). In both stratified analysis or modelling, a 
problem persists if the matching variable has been 
nominally scaled with many categories (such as 
locality) and relatively few cases. Then it is neces- 
sary to use the methods of an individually matched 
OR analysis [see 36, pp. 250-251,297-298].  

Approaches to regression analysis 

approximates the population RR: (a) disease outcome 
is rare; (b) sampling of the study base population is 
representative (absence of selection bias). Instead, 
in the case-base sampling design the RR parameter 
can be estimated directly. 

Samples from a dynamic population base 

Characteristically, cohorts are unstable with respect 
to the distribution of covariables of the exposure- 
disease relation over time, while dynamic populations 
can and tend to remain stable with unchanging pro- 
portions exposed. When the study base is a stable 
population experience, the random base sample is 
drawn to obtain an estimate of the ratio of the denom- 
inator (population-times) of the compared rates and, 
thereby, of the incidence-density ratio [3, 26, 33] and 
difference [30, 33] without any assumption about the 
rarity of the disease. Then one can estimate the ratio 
but not the difference without knowledge of the base 
sampling fraction. If, however, the study is designed 
to estimate the RR and RD for incidence-proportion 
type rates from case-base data, and the risks are not 
low, the estimators for incidence-density ratio and 
incidence-density difference need a slight modifica- 
tion [30, 33]. Still the incidence-density ratio is 
very frequently the parameter of concern in modern 
epidemiology, much more so than the incidence- 
proportion ratio, which is generally relevant only for 

In case-referent data (unmatched or matched), regres- 
sion analyses can be carried out with logistic 
modelling or Poisson modelling. The conditional 
logistic model for case-noncase data yields estimates 
of the exposure-odds ratio [4], whereas for case-base 
data it provides estimates of incidence-density ratio 
[37]. It would be better to forget the previously 
advocated data-analytic practice of  modelling for 
exposure as the outcome variate [3, Section 18.4, 38] 
as a conceptually inverted approach because com- 
putational reasons no longer exist for indirect risk 
modelling. Recently, Schouten et al. [39] have adapted 
the standard logistic regression on a manipulated 
case-cohort data set to yield pseudo-likelihood-based 
estimators for the RR instead of estimators of the OR, 
even without invoking the rare disease assumption. 

Alternatively, a Poisson regression approach in 
case-base data allows the RR to be estimated directly 
if the base (cohort or dynamic) population is stable 
within the time strata [33]. For instantaneous time 
strata, essentially the same equally valid results 
would be expected from the time-matched logistic 
regression and the Poisson regression with a piece- 
wise exponential model for the RR. Thus the 
modelling (likelihood formulation) and computation 
(likelihood estimation) can be done without the OR 
being resorted to as an auxiliary parameter in the 
estimation of the risk ratio and the incidence-density 
ratio. 



370 

Concluding remarks 

When the disease under study is common  or the 
prevalence of  exposure  in the base populat ion is 
unstable, the OR can give grossly biased estimates 
of  the underlying true RR. Even though the OR is a 
frequently used parameter,  particularly for the con- 
ditional logistic regression for matched case-referent 
data, the case-base  design with Poisson model l ing 
does permit  the excess risks, the RR and RD, to be 
estimated directly without any rare disease assump- 
tion. Therefore,  the OR has become irrelevant as an 
estimate of  the incidence-proportion ratio or risk ratio 
in cohort studies, and it remains useful in the case- 
referent  sampling of  a stable dynamic population 
only if it is interpreted as an est imate of  the inci- 
dence-density ratio. Thus the odds ratio should, in 
general, give way to the incidence ratio and differ- 
ence as the measures of  choice for exposure effect 
in epidemiology. 

This paper  will have met its purpose if relevant 
discussion on the use of  effect measures in epidemi- 
ology is st imulated and proceeds in a constructive 
direction. 
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