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Summary. Assuming that the time-to-failure and repair 
time distributions are of phase type, a variety of  reliabi- 
lity models with a small number of  components may be 
studied in terms of finite-state Markov processes. Al- 
though the state spaces of these processes are typically 
large, their infinitesimal generators are highly structured. 
By utilizing the formalism of PH-distributions, it is pos- 
sible to construct efficient algorithms to evaluate a large 
number of  quantities of interest. Some new properties of 
PH-distributions are also established. 

Zusarnmenfassung. Ftir Verteilungen der Lebensdauer 
und der Reparaturdauer vom Phasentyp lassen sich bei 
kleiner Komponentenanzahl eine Reihe yon Zuverl~is- 
sigkeitsmodellen mit Hilfe yon Markoff-Prozessen mit 
endlichem Zustandsraum untersuchen. Zwar sind die 
Zustandsr~iume dieser Prozesse grot~, doch sind die Ma- 
trizen der Obergangsraten stark strukturiert. Durch An- 
wendung des Formalismus der Verteilungen vom Phasen- 
typ lassen sich effiziente Algorithmen zur Berechnung 
einer grogen Anzahl interessierender Gr6t~en entwickeln. 
Daneben werden einige neue Eigenschaften der Vertei- 

lungen vom Phasentyp dargestellt. 

1. Introduction 

There is an extensive literature on the reliability of sys- 
tems with two and three components under varying as- 
sumptions on the failures and repairs [2, 3, 7]. With 
general distributions for the times-to-failure and the re- 
pair times, one may at best obtain highly formal expres- 
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sions for the probability distributions and other quanti- 
ties of interest. These expressions are rarely suitable for 
numerical computation. In most cases, analytically ex- 
plicit expressions are obtainable only under exponential 
assumptions. 

In this paper, we shall demonstrate the utility of the 
probability distributions of phase type (PH-distributions) 
in the construction of algorithmic solutions to such re- 
liability models. The PH-distributions were introduced in 
[5]; a detailed discussion of their properties and of their 
uses in the theory of queues may be found in [6]. Only 
their most basic properties will be reviewed here. 

The distribution F(.) on [0, ~ is of  phase type with 
representation (~, T) if it is that of the time till absorp- 
tion in a finite-state Markov process with generator 

r r0, 10 
and initial probability vector (~, otrn + ~). The nonnegative 
m-vector ~ satisfies 0 < oze ~< 1. Throughout this paper, 
e will denote the column vector with all components 
equal to one, whose length is determined by the context 
in which it appears. The matrix T of order m is non- 
singular, has negative diagonal elements and nonnegative 
off-diagonal elements and satisfies -Te  = T ~ ~ O. The 
distribution F(.)  is given by 

F ( x ) = l - o ~ e x p ( T x ) e ,  forx  ~> 0. 

In order to avoid uninteresting considerations, we shall 
assume that, unless otherwise noted, the PH-distributions 
in this paper do not have a jump at zero. The vector ~ is 
then a probability vector. We may assume, without loss 
of generality, that the generator T + T~ is irreducible. 
The representation (o~, T) is then said to be irreducible. 
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For use in the sequel, we also recall the following 
elementary property. If  T is an irreducible, stable matrix 
with eigenvalue of maximum real part - ~  < 0, and if 

is chosen to be the corresponding left eigenvector, nor- 
malized by ae  = 1, then ot is a positive vector and F(.) is 
the exponential distribution with parameter ~. This 
property is useful in the construction of accuracy checks 
on the algorithm. 

Throughout this paper, a specific model will be used 
to illustrate the general procedure. In Sect. 4, several ad- 
ditional models are briefly described. They may be ana- 
lyzed in exactly the same manner. Although we discuss 
only models with two components, the results obtained 
here may easily be generalized to three or more compo- 
nents. Unfortunately, the high order of the matrices 
which are obtained limits the practical uses of these re- 
suits, since a large amount of computer processing time 
is consumed in attempting to implement algorithmic so- 
lutions. 

For the specific model, we consider two units 1 and 2 
and one repair facility which is utilized on a first-come, 
first-served basis. We may also motivate this discussion 
by considering two machines, 1 and 2, which use a single 
common tool. The times-to-failure of the second inter- 
pretation then correspond to the times during which a 
machine does not require the tool. A repair time cor- 
responds to an interval during which either of the ma- 
chines has the use of the tool. The second machine may 
be idle and waiting for the tool. 

The probability distributions of  the times-to-failure 
and of the repair times are all of phase type with the fol- 
lowing (irreducible) representations 

2 correspond to the cases where the first, respectively 
the second, unit are functioning and the other is in re- 
pair. The set 3 consists of the single indices i', 1 ~< i '  <~ n 1. 
Similarly, 4 consists of the indices ] ' ,  1 ~<]' ~< n 2 . These 
sets correspond to the cases where Unit 1, respectively 
Unit 2, is in repair. The other unit is then idle and waiting 
for repair. 

The symbol | will denote the Kroneeker product of 
two matrices. Specifically, L s M stands for the matrix 
made up of the blocks LiIM. The properties of Kron- 
ecker products are discussed in [1] or [4]. For notational 
convenience, we also introduce the Kroneeker sum of 
two square matrices. If L and M are square matrices of 
orders m and n, thenL |  |  n +Irn s M ,  

where I n and I m are identity matrices of  orders n and m. 
The Markov process has the generator Q, given by 

0 
1 
2 
3 
4 

0 1 2 

TO) .  T(2) I s  T~ (2) T~ | I 
I |176 T(1) eS(2 )  0 
S ~ (1)or(l) s I  0 S(1) �9 T(2) 

o s~ | o 
0 0 /3(1) | S~(2)a(2) 

3 4 

0 0 
0 T~ | I 

I | T ~ (2) 0 
s(1) o 
o s(2) 

(1) 

Time-to-failure Order Repair Order 

Unit 1 [a(1), T(1)] ml [~(1), S(1)] n 1 
Unit 2 [a(2), T(2)] m2 [~(2), S(2)] n 2 

All times-to-failure and repair times are independent ran- 
dom variables. 

2. The Markov Process 

The model with two units and a single repair facility 
may now be studied as a Markov process with ml m2 + 
m i n  2 + m2n 1 + n 1 + n 2 states. The state space may be 
partitioned into five sets of  states. These sets are denoted 
by0 ,  1 , 2 , 3 a n d 4 .  

The set 0 consists of all pairs (i, j )  with 1 ~< i ~<ml, 
1 ~<j ~< m 2 , written in lexicographic order. It corresponds 
to the case where both units are functioning. The set 1 
corresponds to the pairs (i, j ' )  with 1 ~< i ~< ml,  1 ~<]' ~< 
n2, in lexicographic order. The set 2 corresponds to the 
pairs (i', j )  with 1 ~< i' ~< nl,  1 ~<j <~ m 2. The sets 1 and 

Its initial probability vector depends on the initial con- 
ditions one wishes to represent. If  both machines are 
started at the beginning of an "up" period, then the 
(partitioned) initial probability vector is [o~(1)s ~(2), 0, 
O, O, 0]. By exhaustive verification, it se seen that the 
generator Q is irreducible. 

It may be of interest to show how the entries of  Q are 
obtained. The element T(1) �9 T(2) corresponds to the 
case where only a change in the phase of the time-to- 
failure for Unit 1 (T(I) s I) or Unit 2 ( I  s T(2)) may 
occur. The element S~ s/3(2) in the second col- 
umn corresponds to the end of the repair for Unit 1. 
That unit is then instantaneously restarted in a phase of  
the time-to-failure distribution [a(1), T(1)], according 
to the vector a(1). Unit 2, which is waiting for repair, 
is started in a repair phase according to the vector/3(2). 
A typical element of that block is of the form S~(1) 
ai(1)/3],(2). The interpretation of the other elements of 
Q is similar. 

Many quantities of interest to the study of the Mar- 
kov process Q will be discussed in Sect. 3. Before doing 
so, we first prove the following theorem of general interest. 
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Let F(.) be a PH-distribution with representation (a, 
T) and let X 1 . . . . .  X m be the total times spent in each of 
the states 1, ..., m, prior to absorption. 

Theorem 1. The joint Laplaee-Stieltjes transform ~b( s ) = 

E f exp [ - r ~  srXr l l , is given by 

qS(s) = a[A(s)  - T] -1 T ~ (2) 

where 2x(s) = diag (s 1 . . . . .  Sm). 

Proof Formula (2) is easily proved by the method of 
collective marks [8]. The catastrophe process is a Poisson 
process with rate sj, which depends on the state j of the 
absorbing Markov process. Let hij (s, t) be the conditional 
probability that at time t, the Markov process is in the 
(transient) state j and no catastrophe has occurred in 
[0, t], given that it has started in the state i at time 0. 
The matrix h (s, t) has the elements hq (s, t), 1 ~< i, j ~ m. 

By conditioning on the time of the first transition in 
(0, t) (if there is one), we obtain that 

hi](s, t) = 6 6 exp [ ( T u -  si)t] 

t 
+ ~ f exp [(T u - si) ( t  - u)]Tivhvj(s, u)du, 

v~ i  0 
for t >~O, sr>~O, 1 <~r<.m, 1 <.i, j  <.m. 

(3) 

Multiplying both sides of (3) by exp [(s i - Tii)t ] and dif- 
ferentiating with respect to t, readily yields 

m 

h~j(s,t) = ~ [ r -  A(s)]ivhvj(s , t ) ,  (4) 
v = l  

which implies that 

h ( s , t ) = e x p { [ T - A ( s ) ] t ) ,  fort~>0.  (5) 

Finally qS(s), which is alsoprobability that no catastrophe 
occurs before the Markov process is absorbed, is given by 

qS(s) : a f h(s, t )T~  = a[A(s)  - T ] - I T  ~ 
o 

(6) 

Corollary 1. Let  F(.) be a PH.distribution. The m phases 
(transient states) are partitioned into two non-empty 
sets and the vectors a, T ~ and the matrix T are accord- 
ingly partitioned as 

= [5 (1 ) ,  5 (2 )1 ,  

and 

T= 
T(1, 1) T(1,2)  T ~ = ] T~ 
T(2,1)  T(2,2)  ' IT~ " 

Each of the total lengths of time spent in the sets of the 
partition then has a PH-distribution. For the first set, the 
representation (3`, L)  of that PH-distribution is given by 

3' = 5(1) - 5(2)T-1(2,  2)T(2, 1), 

L = T(1, 1) - T(1 ,2)T-1(2 ,  2)T(2, 1). (7) 

For that distribution, the jump at zero is given by 3 ̀~ = 
- a (2 )  T -  1 (2, 2) T~ The vector L ~ corresponding to 
L is equal t o L  ~ = T~ - T(1 ,2)T-1(2 ,  2)T~ 

Proof By Theorem 1, the Laplace-Stieltjes transform of 
the total time spent in the first subset is given by 

[5(1), 5(2)] s I -  r (1 ,  1) - T ( 1 , 2 )  -1 tO(l)[  
-T(2,1) -T(2,2) T~ 2) 1" 

By routine matrix manipulations, this may be put into 
the form 7 ~ + 3,(sI - L ) -  1L o, where the quantities 7 ~ 
3', L and L ~ are as defined above. 

The nonsingularity of the matrix L is shown as fol- 
lows. The matrices T(1, 1) and T(2, 2) are nonsingular, 
since they are principal submatrices of the stable matrix 
T. The matrix L is readily seen to be semi-stable. The 
matrix -T (1 ,  2)T-1(2,  2)T(2, 1) is nonnegative. The 
eigenvalue of maximum real part of L is therefore at 
most equal to the corresponding eigenvalue of T(1, 1). 
Since the latter i s negative, the matrix L is nonsingular. 

From (2) a number of useful moment formulas may 
be derived. Setting [A(s) - T] -1 =M(s),  we readily ob- 
tain that 

3s-- M(s)  = - M ( s )  s for 1 <~i<~m, 

and 

~2 

~s~3sj 
- -  M(s )=M(s )A(e i )M(s )A(e l )M(s  ) 

+ M(s)A(e])M(s)A(ei )M(s) ,  

for 1 ~< i, j <. m. The diagonal matrix A(ei) has the com- 
ponents of the unit e i on the diagonal. 

Corollary 2. 

E(Xl) = (-otT-1)i ,  for 1 <.i<~m, 

E(XiX]) = (otT-1)i(T-1)i j  + (olZ-1)j(Z-1)j i ,  (8) 

for 1 <.i , j<.m.  
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Proof. By differentiation in Formula (2). 

Remark. The matrix Z with Zq = (0tT - 1 ) / ( T  - 1 ) q ,  may 
be efficiently computed. We note that Z = A( a T-  1) T- 1, 
so that Z is evaluated by solving the linear system 

ZT = A(~T-1), (9) 

which is suitable for e.g. Gauss-Seidel iteration. 

After a similhr simplification in the third equation, the 
second and third equations yield 

x(0) [I | T~ + x(1) [ T(1) �9 S(2)1 

+x(2) [eo~(1) | T~162 = 0, 

x(0) [ T~162 | I] + x(1) [ r~162 | ea(2)] 

+x(2) [S(1) * r(2)] = 0. 

3. Algorithmic Procedures 
In order to solve the system consisting of the first 

three equations and the normalizing equation 

3.1. The Stationary Distribution x(O)e+x(1)e+x(2)e+x(3)e+x(4)e=l,  (11) 

The stationary probability vector x of the generator Q is 
the unique (positive) solution to the system of equations 
xQ = O, xe = 1. In view of the high order of the matrix 
Q, it is essential to use its special structure to evaluate 
the components of x. We first partition the vector x as 
[x(0), x(1), x(2), x(3), x(4)], according to the sets of 
states 0, 1,2, 3, 4, and so obtain 

x(0) [ r(1) e T(2)] + x(1) [I |176 

+x(2) [S~ | = 0, 

x(0) [I| T~162 +x(1) [T(1) eS(2)] 

+x(3) [S~ | = 0, 

x(0) [ T~162 | +x(2)[S(1) �9 T(2)] 

+x(4) [r | S~ = 0, (lO) 

x(2) [I | T~ + x(3)S(1) = 0, 

x(1) [ T~ | + x(4)S(2) = 0. 

Since S(1) and S(2) are nonsingular, the last two 
equations may be used to expressx(3) andx(4) in terms 
of x(2) and x(1) respectively. Upon substitution into 
the second and third equations, some worthwhile simpli- 
fications occur. For example, we see that 

x(3) [S~ | B(2)] 

= -x(2)  [I | T~ -1 (1)[S~ | r 

However, 

s-~(1) [s~ | r 

= s - l (1 ) s~  | = -ea(1)  |162 

since S(1)e + S~ = 0. Therefore, we obtain 

o | x(3)[S (1)cx(1) /3(2)1 =x(2)[ea(1) | T~162 

we further partition the vector x(0), x(1) and x(2) as 
follows 

X(0)  = [ X I ( 0  ) . . . . .  Xml  (0)1 , xi(O ) is an m2-vec to r  , 

x(1) = [Xl(1 ) . . . . .  xml(1)] , xi( l )  is an nz-vector, 

X(2)  = [ X l ( 2  ) . . . . .  Xnl (2)], xi(2) is an m2-vec to r .  

By using the particular structure of the Kronecker sums 
and products, which arise as coefficient matrices in these 
equations, we are led to 

ml 
xi(0) [Tu(1)I+ T(2)] + 2 x/(0)Tji(1 ) 

1'=1 

nl 
+ x~(1)S~ (2)a(2) + 

k = l  
xk (2)S~ (1)a/(1) = 0, 

for l ~ i ~ < m l ,  

xi(O) T~162 + xi(1) [ Tfi(1) I + S(2)] 

m 1 nl  
+ s x j (1)~ i ( ! )+  2 

/=1 k = l  
xk(2)r~ = 0, 

for l<~i<~ml ,  (12) 

m 1 ml 
x](O)T~~ + X 

1=1 /=1 
xj(1)TT(1)~i(1)ea(2) 

nl  
+xi(2) [Su(1)I+ T(2)] + Z xk(2)Sm(1 ) = 0, 

k = l  

for l<~i<~nl .  

The equations (12) will now be recast into a form 
which makes them appropriate for solution by block 
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Gauss-Seidel iteration. We do not wish, however, to store 
the inverses of  all the diagonal blocks Tii(1)I + T(2), 
T/i(1)I + S(2),  for 1 ~< i ~< m l ,  and Sii(1)I + T(2), for 
1 ~ i ~< h i .  At the price of  slightly slower convergence, 
we shall evaluate only the three inverses 

M(1) = - [ r ( 1 )  I + T(2 ) ] -  1, 

M(2) = - [ r ( 1 )  I + S(2)1 - a  , 

M(3) = - [ r ( 2 )  I + T(2)] -1 , 

where r (1)  = rain T u (1), 
i (13) 

where r (2)  = rain Sii(1), 
i 

and we rewrite the equations (12) as 

l ml 
x~(O)= - r0 )x ; (0 )+  ~ xi(0)T,(1) 

j=l  

o)/ 
+ [xi(1)S~ = oq(1) xk(2 )S  k (1) M(1),  

L1c=l 

for 1 ~i<<.ml, 

xi(1) = t[xi(0)T~ - r (1)x i (1)  

( 

L 

+ ~ xj(1)Tli(1)+ xk(2)T~ o~i(1 ) M(2),  
j=l  1 

for 1 <.i<.ml, (14) 

t l  l xi(2)  = /3i(1 ) ~2 x/(O)Tj~ 
]=1 

+~i(1 xj(1)e ~ ~(2) 
J 

- r ( 2 ) x i ( 2 )  + 22 xk(2)Sm(1 ) M(3),  
k=l 

for 1 <.i<~n 1. 

We solved the equations (14) by block Gauss-Seidel 
iteration. The successive solution vectors are kept  within 
a compact polytope by forcing them to satisfy the nor- 
malizing equation (1 1). The successive vectors x(3)  and 
x(4)  are easily computed from the last two equations in 
(10). We also note that in (14), several quantities are 
common to a number of  the equations. We have indicated 
such quantities by enclosing them within square brackets. 
It is highly advantageous to plan the computer  code, so 
that these quantities are evaluated only once at each 
iteration. 

It is clear that the five quantities x (0)e, x (1)e, x (2)e, 
x (3)e  and x (4)e  are of  particular interest. They are the 
steady-state probabilities that the system will be found 

in one of  the physically meaningful states, described by 
the sets 0, 1, 2, 3 and 4. Some other inner products are 
also of  interest. To give only one example, the condi- 
tional steady-state probability that Unit 2 is working at 
time t, given that Unit 1 fails at that  time, is equal to 

x(0) [  T~ | 

x(0)[ t~ | e] + x(1)[ T~ | el" 

We note that T~ | e is not a common factor in the 
denominator, since the vector e in the first term is not 
of the same dimension as in the second term. 

3.2. The Time-dependent Solution 

The time-dependent probability vector 2( t )  is found by 
numerical integration of the Chapman-Kolmogorov 
equation 

~' ( t )=s  for t ~> 0. (15) 

The initial conditions need to be chosen so as to reflect 
the physical condition of  the system at t ime t = 0. For 
example, if both units are "new" at t = 0, the vector 2(0)  
is chosen as 

2(0) = [a(1) | o~(2), 0, 0, 0, 01. 

The equation (15) may be solved by any one of  a 
number of  integration methods. It is clear that the partic- 
ular structure of  the matrix Q could be exploited. We 
implemented the classical Runge-Kutta procedure of  
order four and programmed a subroutine for the left 
multiplication of a row vector and the matrix Q. Com- 
putation was halted as soon as the difference between 
the vector 2( t )  and the stationary probability vector x 
became small over an interval o f  sufficient length. 

The initial step size h was chosen heuristically to be 
a small fraction, say 1/100, of  an easily computable 
length L which has a physical significance to the prob- 
lem at hand. For our computations, we chose L to be 
the mean time to system failure. How that quantity may 
be computed is discussed below. 

3.3. Distribution of  the Time to System Failure 

When both machines are inoperational, the system is said 
to have failed, in order to study the distribution H(.) o f  
the time to failure, we lump together the sets o f  states 3 
and 4 of  the Markov process Q into a single absorbing 
state *. We so obtain the absorbing Markov process with 
generator 
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0 
Q. 1 

=2 

0 

T(1) * T(2) 
z | s~ 
S~ | 

0 

1 

I | T ~ (2)~(2) 
T(1) �9 s(2) 

0 
0 

2 

T~ | 
0 

S(1) �9 T(2) 
0 

0 
T ~  
e | T~ 

0 

(16) 

The initial prob ability vector q* of that process may again 
be chosen to reflect initial conditions of interest. With 
both items "new" q* is chosen to be [a(1)| a(2), 0, 0, 0]. 
We may also "enter" the stationary version of the pro- 
cess Q and condition on the event that both units are 
functioning. The vector q*, which correponds to that 
choice of initial conditions is given by 

Ix(o) o] x ( - ~ ,  0, 0, �9 

It is clear that the probability distribution H(-) is of 
phase type. Its representation (7, K) is readily obtained 
from q* and Q*. The distribution H(.) is computed by 
integrating the highly structured system of differential 
equations 

v'(x) = v(x)K,  v(0) = 7, (17) 

and settingH(x) = 1 - v(x)e .  
It is advisable to compute the mean and maybe higher 

moments of H(.) beforehand. Since the mean h' 1 of  H(-) 
is given by h; = - T K - l e ,  we evaluate the vector u = 
- 7 / s  1, by solving the highly structured system of linear 
equations uK = 7. That system is transformed in exactly 
the same manner as discussed in 3.1 above and solved by 
block Gauss-Seidel iteration. The vector u also plays a 
role in the next discussion. 

Knowledge of the mean h~ also provides us with a 
physically meaningful choice of the step size for the in- 
tegration of the differential equations (15) and (17). 

3.4. The Total Time that Both Unitsare Operational be- 
fore System Failure 

Suppose that the time origin is chosen so that at least 
one of the two units is operational. We may be interested 
in the total time that both machines are operational up 
to the first time of system failure. This corresponds to 
specifying an initial probability vector over the sets of 
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states 0, 1 and 2 in Q* and to studying the total sojourn 
time X in the set of states 0, prior to absorption. 

By Corollary 1, the random variable X has a PH-distri- 
bution. Its representation is obtained from the matrix Q*, 
but requires a fair amount of computation, which should 
be planned with care. Before discussing this in greater 
detail, we note that the mean of  X is very easily obtained. 
Let the vector u ~ be the restriction of  the vector u (see 
3.3 above) to those components with indices in 0. Such 
a component u~- is the mean time spent in the state i E 0, 
prior to absorption of the Markov process Q*. The mean 
of X is therefore given by u~ 

By Corollary i,  the representation (3*, L ) of the distri- 
bution G(.) of X is given by 

L = T(1, 1) - T(1 ,2)T-1(2 ,  2)T(2, 1), (18) 

where 

T(1, 1) = T(1) �9 T(2), 

T(1,2) = II | T~ T~ | 

I T(l) eS(2) 0T(2) T(2, 2) = 
0 S(1) �9 

I ~ S~ 

T(2, 1) = S (1)a(1) o I  " 

The initial probability vector q may again be chosen to 
reflect physically meaningful initial conditions. In partic- 
ular, if both items are started "new", then "~ = a(1) | 
~(2). 

The computation and the application of the represen- 
tation (4, L)  present some interesting features. The ma- 
trix L will, in general, not have any particular structure 
left. Since the order of L is m lm 2 ,  the computation of 
the distribution G(.) may require substantial processing 
time. 

In evaluating L, there is merit in computing the non- 
negative matrix 

~ = - T - 1 ( 2 ,  2)T(2, 1), 

by solving the linear system 

[ T(1) �9 S(2)] U = - I  ~ S~ 

[S(1) �9 T(2)] V= -S~ | 

through judicious use of  its particular structure. The di- 
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mensions of the matrices U and V are m 1 n2 x mlm2 
and m2n a x ml  m2 respectively. The matrix Uis parti- 
tioned into an m 1 x m I array of blocks of  dimensions 

X 0 = n2 x m2. The matrix Vis partitioned into an n I x ml  ar- 
ray of square blocks of order rn 2 . 

As in Sect. 3.1 above, the linear equations (20) can be 
rewritten into a form which is well-suited for block X l -  
Gauss-Seidel iteration. The details are entirely similar 
and will be omitted. 

The computation of G(.) itself again requires the x2 = 
numerical integration of a system of linear differential 
equations with constant coefficients. As we may wish to 
consider several initial probability vectors ~, there is X2 

X 3 = _ _  X 2 ,  
clearly an advantage in setting #1 

v ( x ) = e x p ( L x ) e ,  forx ~> 0 

and in solving the system of differential equations 

v ' ( x ) = L v ( x ) ,  x>/O, v(0) = e. 

The distribution G(.) is then given by 

G(x ) = 1 - qv (x  ), forx ~> 0. 

Remark. Corollary 1 may similarly be used to characte- 
rize the distributions of  other times of interest, such as 
the total time one unit (or both) have spent in repair 
prior to system failure. 

3.5. Accuracy Checks 

Algorithms for general PH-distributions have a powerful 
accuracy check, which is based on the property men- 
tioned in Sect. 1. The models, in which PH-distributions 
are used, may usually be solved explicitly under exponen- 
tial assumptions. We may do this in two ways. With the 
exponential distributions in their usual simple form, we 
first obtain the analytic solution explicitly. Next, we 
implement the general algorithm, but choose the repre- 
sentations of  the various PH-distributions so that they 
are in fact exponential. The general algorithm does not 
utilize this fact in any manner, but the two sets of  nu- 
merical results should of course agree. 

For the sake of illustration, let T(1), T(2), S(1) and 
S(2) be the scalars --~kl, --)k2, --#1, and --#2 respectively 
and a(1) = a(2) =/3(1) =/~(2) = 1. The matrix Q o f ( l )  
then becomes 

-X1 -X2 X2 X 1 0 i 
#2 -Xl  - # 2  0 0 ~k 1 

Q = # 1 0 - #  1 -)k2 ~k2 , 
0 #1 0 --B1 
0 0 #2 0 - # 2  

and its stationary probability vector x is given by 

(#1 § X 2 ) ( # 1 # 2  + x l # 2  + x l # I )  #2 
X2 - - - - 7  

X~# 1 Xl 

/'t2 #2(#1 + ~tl) (#1 + )k2) 
X 2 ,  

Xl X~# 1 

XI#I(Xl + #2) (X2 + #2) - X~ X2#1 

(~kl + #1) (~kl + #2 )  (~k2 + #1)  (~k2 + # 2 )  -- )k2 ~'2 2 '  

(~kl + #1) (~'2 + #1)  
= _ X 2 . x 4 1 Xl#I 

In our test problems, we chose T(1), T(2), S(1) and 
S(2) to be irreducible matrices. We computed their 
eigenvalues of maximum real part and corresponding 
left eigenvectors, chosen so as to make the PH-distribu- 
tions exponential. These eigenvalues, respectively - X l ,  
-X2, -#1 ,  and - # 2 ,  were used to evaluate x from the 
preceding formulas. After debugging of  the program, the 
solutions by the general algorithm were found to be in 
excellent agreement with those by the particular formulas. 

The same idea may be used to construct accuracy 
checks for the other items, whose computation we have 
discussed. 

The algorithm has a large number of  other accuracy 
checks. The obvious ones need not be discussed. For 
example, we also interchanged the matrices T (1 )and  
S(1) with T(2) and S(2), to verify that the numerical re- 
sults exhibited the symmetry which is to be expected. 

4. Related Models 

Many of the small-scale reliability models, which have 
been discussed in the literature, may be analyzed in the 
same manner as the model treated above. The specific 
structure of  the matrix Q is different, but the formal 
manipulations leading to a feasible algorithm are entirely 
similar. Two related models will now be briefly described. 

4.1. Two Uni t s -  One Active, the Other in Cold Standby 

The time-to-failure and the repair time distribution are 
PH with representations (a, T) and (/3, S) respectively. 

The sets of  states 0, 1 and 2 now have the following 
significance. 0: neither unit has fared, 
1: standby unit in use, the other unit in repair, 
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2: both  units failed. The first to fail is in repair, the 
other is waiting. 

The matrix Q is now given b y  

0 1 2 

0 r T T~ o/3 0 
1 I I ~ 1 7 6  T ~ S  T ~  
2 0 ~GS~ S 

The number and ordering of  the states in O, 1 and 2 is 

clear from the display. 

4.2. Two Units with One in Cold Standby. 
Unit 1 is Used Whenever it is Operative 

This is a more involved example. Unit 1 is preferred and 
is in use whenever it is operative. Unit 2 is a back-up unit.  
It  can be used only when Unit 1 is in repair; its wear dur- 
ing such periods is accumulated. 

The following PH-distributions are parameters o f  the 
model. 

Time-to-failure order Repair time order 

Unit1 r(1)l m l  [/3(1),S(1)] nl  
Unit 2 [or T(2)] m2 [/3(2), S(2)]  n2 

As in Sect. 2, sets of  states 0, I ,  2, 3 are considered. 
They have the foUowing significance. 

0: Unit 1 in use, Unit 2 on standby, 
1: Unit 1 in repair, Unit 2 in use, 
2: Unit 1 in use, Unit 2 in repair, 
3: Unit 1 in repair, Unit 2 waiting for repair. 
The matrix Q is now given by  

0 
1 

Q=2 
3 

0 1 2 

r(1) | T~ o I  0 
S ~  S(1)  m T(2) 0 
I o S ~  0 T ( 1 ) ~ S ( 2 )  

0 0 S ~  

3 

0 
I |176 
r~174  

s o ) o r  

We see that this model  differs from that  treated above 

only in the priority of  Unit 1, bo th  foruse and for repair. 
The numerical computations for both  model proceed 
along entirely similar lines and some port ions of  the 
two algorithms are identical. This may be put  to use to 
compare numerically the merits o f  the two operating 
policies. Such a comparison is not  analytically feasible. 
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