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Summary. In this paper two-person zero-sum stochastic 
games are considered with the average payoff as criterion. 
It is assumed that in each state one of the players gov- 
erns the transitions. We will establish an algorithm, 
which yields in a finite number of iterations the solution 
of the game i.e. the value of the game and optimal sta- 
tionary strategies for both players. An essential part of 
our algorithm is formed by the linear programming prob- 
lem which solves a one player control stochastic game. 
Furthermore, our algorithm provides a constructive proof 
of  the existence of the value and of optimal stationary 
strategies for both players. In addition, the finiteness of 
our algorithm proves also the ordered field property of 
the switching control stochastic game. 

Zusammenfassung. Wir betrachten stochastische Zwei- 
personen-Nullsummenspiele mit der durchschnittlichen 
Auszahlung als Kriterium. Wir nehmen an, dag in jedem 
Zustand einer der Spieler das Obergangsgesetz kontrol- 
liert und entwickeln einen Algorithmus, der nach end- 
lichen vielen Iterationsschritten die L6sung des Spiels - 
d. h. den Spielwert und optimale station~ire Strategien 
fiir beide Spieler - liefert. Ein wesentlicher Teil unseres 
Algorithmus besteht aus dem linearen Programm, das 
ein stochastisches Spiel 10st, bei dem ein Spieler das 
r bestimmt. Dartiber hinaus geben wir mit 
unserem Algorithmus einen konstruktiven Beweis der 
Existenz des Spietwertes und optimaler station~irer Stra- 
tegien ftir beide Spieler. Welter zeigt die Endlichkeit un- 
seres Algorithmus die "ordered field property" stochasti- 
scher Spiele mit wechselnder Kontrolle des Obergangsge- 
setzes. 

1. Introduction 

In 1975 Parthasarathy and Raghavan began studying the 
class of two-person zero-sum stochastic games, where 
one of the players controls the transitions in all states. 
Their interest was in finding suitable algorithms for this 
class of games. Their first result was the fact that for dis- 
counted games of this type, there exists an LP-algorithm 
and that the value of such a game lies in the same ordered 
field as the other game parameters. 

Stern [13] also in 1975 established the existence of 
the value for such games in the undiscounted case. This 
result was also obtained by Bewley and Kohlberg [1] in 
1976. 

In 1976 Parthasarathy and Raghavan proved, that for 
the undiscounted case the order field property also holds 
and they gave an algorithm for the irreducible case. They 
presented these results at the Dynamic Programming 
Conference in Vancouver in 1976. The results appeared 
recently in [11 ]. 

In 1979 Filar and Raghavan [6] found an algorithm 
for the undiscounted one player control games and pres- 
ented their results at the Oberwolfach Conference on 
Game Theory in 1980. However, that algorithm was 
not very efficient. 

An efficient LP-algorithm was found in 1980 inde- 
pendently by Vrieze [14] and Hordijk and Kallenberg 
[9], based on minimal harmonic functions. 

In his Ph.D. dissertation, Filar [4] also proved that 
for discounted and undiscounted stochastic games, with 
switching controls, the ordered field property holds [5]. 
This indicated that for the switching control case, a 
finite algorithm should also exist and a first attempt to 
find such an algorithm was made in [7]. 

The purpose of this paper is to provide an efficient 
algorithm for the undiscounted game. 
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2. Definitions and Notations 

A switching control stochastic game (notation F) is char- 
acterized by a seven-tuple 

p(llk, p):= Z p(l[k,j)Pk(]) i f k ~ S 2 .  
j~A2R 

Qap is the Cesaro-limit of Pop, i.e. 

(S, S 1 , S  2, { A l k ; k ~ S } ,  ( A z k ; k E S } , r , p ) .  

Here S := {1, 2 . . . . .  N} (the state space) andAnk := {1, 
2, ..., mnk } (the set of  pure actions for player n in state 
k). S1 and $2 are subsets of S such that $1 n S 2 = 
and S 1 U $2 = S. (S n is the subset of states were player 
n E {1,2)controls the transitions), r is a realvalued func- 
tion (the payofffunction) on the set T := ((k, i, j); k E S, 
i ~Atk, / '  EA2k}. [In this paper the variable/will always 
refer to a pure action of player 1 and j to a pure action 
of player 2.] The realvalued function p : U ~ U U 2 -~ 
(the transition law), where 

t 

Qop :=lim ( t + l )  -1 I~ Woo, 
t ~  n = 0  

where p~O is the identity matrix and Ponp = Pop" tCdao -1 
for n />  1. r~p is the vector in ~ N ,  with k-th coordinate 

r(k, ok, Pk) := N N r(k, i, j)ok(i)flk(j). 
i~Alk j~A2k 

The meaning of r (k, ak, j)  and r(k, i, Ok) will be obvious. 
Note that the following property holds: 

U 1 := ((Ilk, i); IES,  kES1 ,  i E A l k  } Qop = Pop" Qop = Qop " Pop. 

U z := {(llk, j ) ; IES ,  k E S 2 , j E A 2 k  } 

has the properties 

p(llk, i) >~ O for all k E S1, i E A I~ and 

pql~,  0 = 1, 
l@S 

[For detailed information we refer to Derman [2].] 
V(nl, n2) will stand for the limit expected average 

payoff for a pair of strategies (nl ,  rr:). V(rq, n2) is an 
N-vector, where the k-th coordinate corresponds to the 
particular stochastic game with state k as starting state. 
Note that if nl and rr 2 are both stationary strategies, say 
o and p, then V(o, p) = Qoproo. 

The game is said to have a value, if coordinatewise 

p( ll k, j) >~ 0 for all k E S2, j @ A 2k and 

p(llk, j) = 1. 
lES 

The interpretation of these parameters is as follows: if in 
state k E S, the players take pure actions i and j respec- 
tively, then player 1 obtains an immediate payoff r(k, 
i, j) from player 2 and the system moves with probabili- 
ty p(lik, i) to state l E S if k E S1 and with probability 
p(llk, j) i fk  E S  2.  

A strategy for player 1 (player 2) in the infinite stage 
game is denoted by rrl (rr2). A stationary strategy for 
player 1 (player 2) is denoted by cr (p). Then o = (01, 
02, ..., ON) , where o h = (ok(l), Ok(2) . . . . .  ak(mtk)) is 
a mixed action for player 1 in state k, choosing pure ac- 
tion i E A 1 k with probability ok(i). 

By car(ok) we mean the set { i E A l k ;  ok(i) > 0) .  
Car(0k) has an analogous meaning. 

For a pair of  stationary strategies (o, t )  we introduce 
N x N-matrices Pop and Qoo and the N-vector roo. Here 
Pop is the N x N-transition matrix, with in the (k, /)-th 
entry the number 

p(llk, o) := ~ p(llk, i)ok(i) i l k@S1,  and 
iEA l k 

sup inf V(rq, 7r2) = inf sup V(rq, n2). 
7r 1 7r 2 rr 2 rr I 

A strategy 7r~ (Try) for player 1 (player 2) is called opti- 
mal if the value (say V) exists and if 

inf V(rr~, rr2) I> V (sup V(rq, rr~) ~< 1I). 
~r 2 rt 1 

Further notation, which will be used is [f(i, ]) ]B • c, which 
denotes a matrix game with entries f(i, /), (L 1) ~ B x C. 
The value such a game will be denoted by Val [f(i,/)]. 

B• 

By an extreme optimal action for player h E (1,2 } in a 
matrix game, we mean an extreme point of the convex 
set of optimal mixed actions of player h. From Shapley 
and Snow [12], we know that the set of  optimal mixed 
actions of a player in a matrix game is a polytope, so 
there are only a finite number of extreme optimal ac- 
tions. 

If v, w~R~V,  b y v > w w e  shall mean: vg ~>Wk for 
a l l k E  ( 1 , . . . , N }  and v t > w t  for at least o n e l E  {1, 
.... N}. 

By ON we denote an N.vector with each component 
equal to 0 and by 0NN (N x N)-matrix is meant where 
each element equals 0. 
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3. Preliminaries 

In this section some well-known facts will be recalled. 
Furthermore, two LP-problems and their duals will be 
stated, which form the body of our algorithm. 

(jjj) - Z r(k, i, j ) z k ( j )  + d~ >~ O 
]CA2k 

for all k ~S, i ~ A i k ,  

(jv) Yk(j),Zg(j)>~0 f o r a l l k ~ S , j ~ A : ~ .  

Lemma 3.1. For stationary strategies ?J and ~ we have 

inf V(6, 7rz) = rnin V(6, p) = nfin V(6, pP), 
n2 P pP 

sup V(7 h , iS) = max V(o, ~) = max V(o p, b). 
r~ 1 o op 

[Here o p and pP are pure stationary strategies, i.e. 
oPk(i) E (0, 1 } and Off(J) ~ (0, 1 } for all k ~ S, i ~Al~, 

j ~ A 2 k . ]  

A proof of this lemma, which runs along the same 
lines as the proof of Theorem 1, p. 91 in Derman [2], 
can be found in Hordijk et al. [10]. 

We will now state the linear programming problem, 
which corresponds to a player 2 control stochastic game 
(S, {Alk ; k CS}, {Azk;k @ S} ,r ,p) (whereSl= 0,S 2 =S). 

[Here 6kt := 1 i fk  = l and 6kl := 0 otherwise.] 
Note that with an x = (x I . . . . .  XN) obeying (iii) and 

(iv), one can associate a stationary strategy ox = (Oxl . . . .  , 
axN ) for player 1 in an obvious way. 

As shown in Vrieze [141, solving LP1 and DLP1 cor- 
responds to solving the player 2 control stochastic game, 

A A A �9 with respect to the average payoff criterion. If g, v, x is a 
solution of LP1, then ~,is the value of the stochastic game 
and o~ is an optimal strategy for player 1. Optimal sta- 
tionary strategies for player 2 correspond to solutions of 
DLP1. 

In the following, for a player 2 control stochastic game 
P, R(I)  will denote the sets of states k, for wich player 2 
has an optimal stationary strategy #, such that state k is 
recurrent for P(p). 

Lemma 3.2. Let  g = (gl ,  g2 . . . .  , gN) be the valuefora 
player 2 control stochastic game. Then 

LPI. Variables: g = (gl . . . . .  gN), V = (V 1 . . . . .  ~)N), X = 
= { x k ( i ) ; k E S ,  i E A l k ) .  

Max E gk subject to 
k~S  

(i) gk - ~, p(llk, j)gt <,O 
I~S 

(ii) gg + vk - ~ r(k, i, j ) x k ( i  ) -- 
iCA lk 

for all k CS,  j E A z k  

(iii) E x k ( i ) = l  for a l lkES ,  
iEAlk 

(iv) xk(i)>~O for all k ~S,  i E A l k .  

gk=min  )2 p(llk,  j )g  I f o r a l l k c S .  
]~A2k ICS 

Let  Ozg := {j E A z k ; g g  = E p(l lk ,  j)gt}. L e t v @ I R  N 
I~S 

be such that 

for all k E S, j EA2k, 
gk +Vk < - Val [ r (k , i , ] )+  ~ p(l lk ,  j)vt] 

AlkxO2k lCS 
p(l lk ,  j)vt <~O 

t~s for all k C S. 

DLP1. Dual variables: d =(d i  . . . . .  dx),  y = {Yk(J); k @ S, 
j E A 2 k ) ,  z=  { z k ( j ) ; k E S ,  j E A 2 k ) .  

M_in E d k subject to 
k ~ S  

(J) ~" ~ (~xl - -p( l lk ,  j ) )Yk(J)  + 
kCS jGA2k 

+ E zt(j) --- 1 for all l ~ S, 
J~A21 

~ )  Y~ ~ ( 6 k t - - p ( l l k ,  j ) ) z k ( j ) = O  for all l E S, 
k~S  j~A2k  

(,) 

Then the equality sign in (*) holds for each k ER(I ' ) .  

Proof. The value g = (gl, g2 . . . . .  gN) satisfies condition 
(i) of LP1. Sog  k ~< min Z p(llk,  f)g l f o r e a c h k E S .  

jCA2k I~S 

However in Vrieze [14], Lemma 2.9 it is shown that the 
equality sign holds for each k E S, when g is part of an 
optimal solution to LP1. 

Concerning the second assertion, take/~ ER(F) and let 
p* be an optimal stationary strategy for player 2 such that 
state tc is recurrent with respect toP(/9*). Let E(p*) be the 
ergodic set towhich fc belongs. By the first partofthis the- 
orem we have g <~ P(p*) .  g. By multiplying both sides of 
this vector inequality with Q(p*) and remembering that 
Q �9 P = Q, it follows that the equality sign holds at least 
in the components corresponding to the states belonging 
to E(p*). We denote the parts of g, P, Q, r and v corre- 
sponding to the set E(p*) by g, if, ~, ~ and ~ respectively. 
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Then g = P(p*)  �9 g, hence g = p t ( p , )  . ~ for each t E I'q 
and then g = 0 (P*)  "g. 

Now suppose that the inequality sign in (*) is strict for 
state ~. Then there exists a stationary strategy a for play- 
er 1 such that 

+ ~ < ?oo* + P(P*)  " ~" 

A 
Multiplying this vector inequality by  Q(p*) yields: 

all pure stationary strategies pP) LP2 is feasible and has 
a solution, which correspond to a solution of  the game. 
We will need an extension of  their results to what we call 
a semi-transient player 2 control stochastic game. That is 
a game with average payoff  value ON, such that 

I c S  

p(llk, ])  ~< 1 for all ] E A2k and all k E S, and such that 
player 2 has a stationary strategy p, such that  correspond- 
ing to P(p) all states are transient. 

A A . g  . A  
g = a ( p * )  < 0 ( p * )  top, .  

Hence p* cannot be optimal, which is a contradiction. 
Tiffs shows that for each k E R ( F )  the equality sign 
holds in (*). [] 

With a player 2 control stochastic game we associate 
also another linear programming problem LP2. Because 
we will use this program for games, with payoffs  of  the 
type r(k, i, ])  - gk, it is convenient to incorporate this 
special form already at this place. So gl ,  ..., gN in LP2 
are not variables like in LP1 but constants. 

LP2. Variables: u = ( U l ,  u 2 . . . . .  UN) , X = {xe(i) ;  k E S, 
i C A l x ) .  

Max ~ u e subject to 
k ~ S  

(i) u e  - ~ ( r ( k ,  i, ] )  - gk)xk(i)  
i~A 1 k 

- ~ p(llk,])Ul<~O f o r a l l k E S a n d f ~ A 2 k ,  
lES 

(ii) ]~ xe(i  )= 1 and xe(i ) >10 
i~A I k 

for all k E S  and i ~ A l e .  

DLP2. Dual variables: b = (b 1 . . . . .  bN), Y = (Ye(/'); k E S, 
] E A 2 k ) .  

Min 2~ b e subject to 
k ~ S  

(j) Y~ ~ ( S e t - p ( l l k ,  j ) ) yk ( j )=  l 
k ~ S  j ~ A  2k 

for all I@S, 

(jj) - ]~ (r(k, i, ]) - gg)Ye(J) + be >t 0 
]~A 2k 

for all k ~ S, i E A l k ,  

(Jjj) Yk(/)  >1 0 for all k C S, ] C A2e. 

Hordijk and Kallenberg [8] have shown that  for the tran- 
sient case (i.e. for the case where lira pt(op)  = OWN for 

t--+~ 

Lemma 3.3. For a semi-transient player 2 control sto- 
chastic game with payoffs o f  the form r( k, i, f)  - ge and 
average payoff  value ON the corresponding linear pro- 
gram LP2 is feasible and has a solution u*, for which 

u~ = Val 
A l k X A 2 k  

for all k ~ S. 

[r(k, i , ] ) - g e  + Z p(llk, j)u~] 
I~S 

Proof. Add a state N + 1, where both players have one 
action 1 and such that p ( N  + 1 I N  + 1, 1) = 1, r(N+ 1, 
1, 1) = 0 a n d p ( N + I I k , ] ) =  1 -  ~ p(llk, f) forall 

IES 

k E S. Then we obtain a stochastic game with non-stop- 
ping transition probabilities and which obviously has also 
average payoff  value ON. But this means (cf. Federgruen 
[3], theorem 7.4.1) that there exists a vector v E 1~ N+ l, 
such that 

v k = Val jr(k, i, ]) - gk + 
A l k x A 2 k  

for all k ~ (1, 2 . . . . .  N +  1). 

/ ) vd  tESU {iv+ 1 ) p(llk, 

Let Xk = (xk(1), Xk(2), ..., xk(m 1 k)) be an optimal mixed 
action for the above matrix game. Then it can be easily 
checked that the pair (u, x) satisfies conditions (i) and 
(ii) o f  LP2 where uk = Vx - VN+ 1 for each k E S. So LP2 
is feasible. Next take an arbitrary feasible pair (u, x) for 
LP2. Let p be such that, corresponding to P(p),  all states 
are transient. Then condition (i) implies 

u <~ rox p - g + P(p) u 

and by iterating this inequality we obtain as a conse- 
quence of  the transiency of  all states: 

u < ~ e t ( ; )  (roxp - g) < sup ~ e ' ( ; )  (top - g). 
t = 0 a t = 0 

Since P(p) corresponds to a transient Markov chain, we 
may  conclude that for the feasible solutions (u, x) of  
LP2, ~ uk is uniformly bounded. Now let (u*, x*)  be an 
optimal solution of I_P2 and suppose that there is a state 
k such that 
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* < Val [r(k, i , j ) - - g k  + E p(l lk ,  j )u~].  u k 
A I k xA 2k l ~ S  

Let 2 k be an optimal action for player 1 for the matrix 
game in the right side of  the above inequality. Then for 
e > 0, small enough, it follows that  

uk + e <~ min Y~ (r(k, i, j )  -- gg).fk(i) + 
j i ~ A l k  

+ ~ p(llk, j)u~ +p(kltc, j) (u~ + e). 
tes\ (x } 

But then the pair(h, )?)with ht = u~', )?/(i) = x~(i) i f / ~  k 
and fig = Uk + e, :~g(i) = :~k(i) is feasible for LP2. More- 
over 2; fit > 23 u;'. This leads to a contradiction since 

l ~ S  I~S  

we have assumed, that (u*, x*) is an optimal solution of  
LP2. Hence the equality in the lemma holds. [] 

4. The Algorithm 

The correspon_ding LP2-program of  this game will be 
denoted be LP2(F(S 0, g, w, o c, (O2~; k �9 S O })). 

Now we have enough tools to establish our algorithm. 

Algorithm 

Step I. Take t = 0 and choose g(0) = ( - M  . . . . .  - M )  
(where m = max [r(k, i, f) i) ,  choose w(0) = ON, S(0) = 

k,~/ 
= O, oc(o) such that for each k C Sl the action o~(0) is 

an extreme optimal action for player 1 in the matrix 
game [r(k, i,/)]A ik • 2k. 

Step 2. Take general t and the associated current values 
of  the entities g(t) ,  w( t ) ,  S( t ) ,  oe(t). Determine for each 
k CS1 

O l k ( t +  1) := ( i E A l k ;  ~ p ( l [ k ,  i ) g l ( t  ) = 
l ~ S  

= max 23 p(l lk,  7)gt(t))  
[CA lk  I~S  

In this section we will state a finite algorithm, which gives 
in a finite number  of  steps the solution for the switching 
control proplem P = (S, S 1, $2, {Alk; k E S}, {A2k; 
k E S } , r , p ) .  

The part  of  a stationary strategy o of  player 1, which 
refers to the set St, is denoted by o c. If  we fix a particular 
o c, then the remaining game is a player 2 control stochas- 
tic game, denoted by l~(oc). Hence 1~(o c) = (3, (Alk; 
k �9 S ) ,  (A2k ;k  E S), t ~, ig), where S = S = $1 US2,where 

f o r k � 9  = {1} ,A2k=A2k ,  F ( k , l , j ) =  ~ r(k, 
i~A I k 

i, j )o~(i) ,  D(llk, j )  = ~ p(l lk ,  i)o~(i),  and for k �9 S 2" 
i~A l k  

~ t l k  = A l k ,  A 2 k  = A 2 k ,  r ( k ,  i, ] )  = r (k ,  i, f), i)(llk,  j )  = 

= p(l[k, j). The corresponding LPl-linear program for 
this game will be denoted by LP1 (P(oc)).  

Now fix for a moment  a subset So c S, vectors g, 
w E IR N, aparticular o c and for each k �9 So a non-empty 
subset O2g of  A2g. Then corresponding to F and the five 
parameters S o, g, w, o r and {O2k; k � 9  o } we introduce 
the player 2 control stochastic game P (S o, g, w, o c, 
{ o2k; k �9 So )) = <~q, (~/~k; k �9 S),  {A:~; k �9 S), i, ~> 
where S= So, and where for k �9 S n Sl: Alk = (1 },A-2k = 

= 02k, f(k,  i, j )  = --gk + E (r(k,  i, f )  + 2 p(llk,  
i~A l k  I ~ S \ S o  

i)wt)o~(i),D(llk,  j )  = Z p(l lk ,  i)o~(i) for l � 9  So, and 
i~A  1 k 

where for k ~ S c~ $2 : A lk  = Aak, A-z\ = 02g, [(k, i, j )  = 
= -gk + r(k, i, j )  + Z p(l lk ,  j ) w  t and lS(llk, f )  = 

I ~ S \ S  o 

= p(l  Ik, j )  for I C So = 5?. 

and for each k C S 2 : 

02k( t+ l) := ( j C A 2 k ;  ~ p(llk,  j ) g t ( t ) = g k ( t ) } .  
ICS 

Proceed to step 3. 

Step 3. Choose oe(t + 1) such that for each k C $1, 
o~(t + 1) is an extreme optimal action for player 1 in 
the matrix game 

Alk(t  ) := [r(k, i, j ) +  ~ p(l lk ,  i)wl(t)]Olk(t+l)xA2k. 
I~S  

However, if Car (of ( t ) )  C Olk( t  + 1) and if 

gk(t)  + Wk(t) = Val(Alk(t))  = rain r(k, of ( t ) ,  j )  
J 

+ Y, p(l lk,  o~( t ) )wt ( t  ) 
l ~ S  

then put o~(t + 1) := Ok(t ) . e  

Step 4. Obtain g(t  + 1), v(t + 1) by solving LP1 (P(oe(t  + 
+ 1))). 

Step 5. I f g ( t  + 1) ~: g(  t ), then put w(  t + 1 ) : = v ( t  + 1), 
S( t  + 1) = 0 and return to step 2, taking t := t + 1. 

I f g ( t  + 1) = g(t) ,  then go to step 6. 

Step 6. Put 0 2 g ( t  + 1) := A2k for k E S I . 
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Let G~ (t + 1) := (k ~ S~;g~(t) + Wk(t ) < Val(Alx(t))} 

G2 (t + 1) := (k E S 2 ;gg(t) + Wk(t ) < Val(A2k(t) )) 

where A2k(t) = [r(k, i, j)+ ~, p(llk, j)wt(t)]A~k• ~ ). 
l 

PUt G(t+ 1):= Gt ( t+  1) UG2(t+ 1). 

If G(t + 1) = 0, then go to step 9. Else put 
S(t + 1) := G(t + 1) t_) S(t) and go to step 7. 

Step 7. Put 02k(t + 1) := A2k fork ~ S(t+ 1) n $2. Find 
uk(t + 1) for each k ~ S(t  + 1) by solving for a semi-tran- 
sient l~layer 2 control stochastic game the LP problem 
LP2 (P (S(t + 1), g(t + 1), w(t), oe(t + 1), (02g(t + 1); 
k ES ( t+  1)))). 

Step 8. Put wk(t + 1) := wk(t) i fk  ~ S ( t  + 1) and 

w k ( t  + 1) :=Uk( t  + 1 ) i f k E S ( t  + 1). 

Return to step 2 with t := t + 1. 

Step 9. The vector g(t) is now the value vector for the 
original game. Further o* and p* are optimal stationary 

, 
strategies, if they are chosen as follows: for k E SI, o k 
and p]  must be optimal in the matrix game Alk(t ), and 
for k E $2, off and Pfc must be optimal in the matrix 
game A2k(t). 

In proving that in step 9 we indeed obtain a solution 
of the game we will show that in each stage t = 0, 1, 2 . . . .  
the following eight properties are valid. Here g(-1)  is 
chosen, such that g( -1)  ~< g(0) = (-M, - M  . . . . .  -M). 
We recall that R(F), where F is a player 2 control sto- 
chastic game is defined as the set of states k for which 
player 2 has an optimal stationary strategy such that 
state k is recurrent with respect to P(p). 

Al(t): gk(t) <<- ~ p(llk, o~(t))gt(t) for each k E  S 1 
I~S 

A2(t): gk(t) << - ~ p(llk, /)gt(t) foreach k CS2,j EA2k 
lES 

Bl(t): gk(t) + wk(t) <<.r(k, o~(t),j) + 

+ ~ p(llk, o~(t))wt(t) 
IES 

for each k E $1 and j E A2k 

E(t): S(t) nR(P(gC(t)) = 0 

F(t): Ifg(t)  = g(t - 1) and G(t) 4= O 

then w(t) > w(t - 1). 

Since g(-1)~<g(0), it follows that At(0), As(0 ), 
Ba(0), B2(0), C(0), O(0), E(0) and F(0) hold. By induc- 
tion on t we want to prove that Al(t)  . . . . .  F(t) hold for 
each t E ~0, 1, ...). To this purpose, we need a string of 
lemmas. 

Lemma 4.1. Suppose gk(t)= max Z p(llk, i)gl(t) for 
lEA lk  IES 

k E $1. Then Car(o~(t)) C Oak(t + 1). 

If, furthermore, property Bl(t  ) holds, then for all 
j@A2k 

gk(t) + wk(t) <~r(k, o~(t + 1),j) + 

+ Z p(llk, o~(t + 1))wt(t ). 
IES 

Proof Condition (i) of LPl(l~(~(t))) yields: gk(t) <~ 
<~ ~ p(llk, a~(t))gt(t), which in combination with the 

IES 

assumption in the lemma can only be true ifgk(t) = 
l~S 

p(llk, hgl(t) for each [E  Car(o~(t)). Hence Car(o~(t) C 
C Olk(t + 1). This fact in combination with Bl(t)implies 

gk(t) + wk(t) <<- rain (r(k, o~(t),j) + 
J 

+ ~ p(llk, o~(t))wt(t)) <~ Val Alk(t ) = 

l 

= min(r(k, o~(t+ 1),])+ ~ p(llk, o~(t+ 1)wt(t)). [] 
j lOS 

Lemma 4.2. Properties A l ( t + 1) and A z( t + 1) hold. 

Proof. This is an immediate consequence of condition (i) 
of LPl(l~(oe(t + 1)). [] 

Lemma 4.3. Suppose that Al(t),  A2(t), Bl( t)andB~(t)  
hold. Then C( t + 1) hoMs. 

B2(t): 

c(t): 

D(t): 

gk(t) + wk(t) <~ Val(Azk(t)) for each k E $2 

g(t) >~g(t - 1) 

Ifg(t)  = g ( t -  1), then 

C R ( r ( o C ( t -  1)), and 

for each k E R(g~(oc(t))) 

R(~(oc ( t ) )  

o~(0  = o f ( t  - 1) 

Proof. Choose the stationary strategy ~ = (ol . . . . .  ON) as 
follows. If k E S1, then take 6k-- o~:(t + 1), and if k E $2, 
then let 6k be an optimal action in the matrix game 
A2k(t). Let pP be an arbitrary pure stationary strategy. 
It is sufficient to show that V(6, pP) >~ g(t). By Aa(t), 
A2(t) and step 2 of the algorithm, we have 

g(t) <Poop g(t). (1) 
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A consequence of (1) is that the equality sign holds for 
the coordinates corresponding to the recurrent states of 
Paop. We denote this set of states by R ( 6 ,  pP). For 
k ER(6,  pP) f~ $1, this yields: 

which k belongs, p is also optimal in l~(~c(t)), and clearly 
the state k is recurrent, which shows that R(f'(ac(t + 1)))C 
C R(p(oe(t)). [] 

ge(t) = ~, p(llk, o~(t + 1))gl(t ) = 
l ~ S  

= max E p(llk, i)gl(t ). 
i l ~ S  

So we may apply Lemma 4.1, obtaining 

ge(t) +We(t) <.r(k, 6k, P p) + ~ p(tlk, 6k)wt(t ). (2) 
l ~ S  

Lemma 4.5. Suppose Al(t), Bl(t), B2(t ) and E(t) hold. 
Then E(t + 1) holds. 

Proof. If g(t + 1) >g(t) ,  then S(t + 1) = 0 , and then 
E(t + 1) is true. Hence, suppose g(t + 1) = g(t). From 
E(t) and R(f '(ac(t  + 1))) CR(P(oe(t)))  (Lemma 4.4) it 
follows that S(t)C~ R(~(ac(t + 1)))= 0. It now suffices 
to show that G(t + 1) n R(P(oC(t + 1))) = 0. Using Lem- 
ma 4.1 and Lemma 3.2 we obtain: 

For k E R(6, pP) 71 S 2 we have by B2(t ) and by the choice 
of 6, noting that Car(p~) c 02k(t + 1)" 

gk(t) + wk(t) <,r(k, 6e, PP) + ~ p(llk, pP)w1(t ). (3) 
l ~ S  

The inequalities (1), (2) and (3) imply: g(t) ~ Qaopraop = 

= V(ff, pP). Hence g(t + 1) >~g(t). [] 

gk( t) + Wk( t) = Val(Ale(t)) 

and 

gk(t) + we(t) = Val(A2g(t)) 

for k ~R(F(oc(t  + 1))) (1S1 

for k C R(F(oC(t + 1))) ~ S~. 

Hence it follows from the definition of G(t + 1) in step 6 
that G(t + 1) (~ R(('(oc(t + 1))) = 0- [] 

Lemma 4.4. Suppose Al(t), Bt(t) and B2(t) hold. Then 
D( t + 1) holds. 

Proof. Suppose g(t + 1) =g(t). Observe that in I'(ac(t + 1)) 
player 2 has in the states belonging to S 1 no influence on 
the transitions. Then by Lemma 3.2 we have gk(t) = 
= ~ p(llk, a~(t+ 1) "gl(t) for each kES1 .  Since 

l E S  

Car(o~(t + 1)) C 01e(t + 1) this implies gk(t) = max 
i ~ A  l k  

p(11k, i) �9 gt(t) for all k @ S 1 . Hence, by l_emma 4.1 
l ~ S  

for each k E $1 : 

ge(t) + Wk(t) ~<min r(k, o~(t + 1),]) + 
i 

+ ~ p(llk, o~(t + 1))wt(t ). (4) 
l ~ S  

Since g(t + 1) = g(t) equals the value of l~(oc(t + 1)), Lem. 
ma 3.2 can be applied to (4) and B2(t ), implying that for 
k E R (I '(ac(t + 1))) the equality sign holds in the respec- 
tive inequalities, which shows that for k ER (I~(oc(t + 1))) 
the action o~(t) is optimal in the matrix game Ale(t ). So 
by step 3 of the algorithm 

o~(t + 1) = of(t)  for all k @R(f'(oe(t + 1))) N $1. (5) 

Fix k E R (l'(oC(t + 1))) and let/9 be optimal for player 2 
in f'(oc(t + 1)) and such that k is a recurrent state with 
respect to P. Then (5) implies, that in the ergodic set to 

Lemma 4.6. Suppose Al(t), Bl(t), B2(t) and E(t) hold. 
Then F( t + 1) holds. 

Proof. Suppose g(t + 1) = g(t) and G(t + 1) r 0. From 
Al(t), Bl(t ) and Lemma 4.1 we obtain that for k E S(t + 
+ 1) n $1: 

gk(t) + We(t) <~ min (r(k, o~(t + 1),f)  + 
J 

+ ~ p(llk, o~(t + 1))wt(t) (6) 
l C S  

and for k C S(t  + 1) c3 $2 we see from B2(t): 

gk(t) + wk(t) <<, Val(A2k(t)). (7) 

As G(t + 1) 4= 0, the strict inequality holds in (6) and (7) 
at least in one component. 

Since the value of F(oC(t + 1)) equals g(t + 1)=g(t) 
and since S(t + 1) ~ R(P(oc(t + 1))) = 0 (Lemma 4.5) it 
can be verified that the game P(S(t + 1), g(t + 1), w(t), 
~c(t + 1), (02k(t + 1); k E S(t + 1)}) is a semi-transient 
player 2 control stochastic game. Namely 

(a) Obviously E fg(llk, j)<<.l f o r k @ S ( t + l ) ,  
i~8(t+1) 

(b) the part corresponding to S(t + 1) of an optimal sta- 
tionary strategy of player 2 in the game F(aC(t + 1)), 
gives when applied in I~( . . . . .  , . ,  .) a transient stochastic 
matrix and 



22 O.J. Vrieze et al.: A Finite Algorithm for the Switching Control Stochastic Game 

(c) the average reward value equals ON. By (b) it follows 
that the value is at most ON. I f  a stationary strategy p 
for player 2 in l a ( . , . , . , . ,  .) is such that some states of  
S(t  + 1) are recurrent, then p is bad for player 2 in view 
of  S(t  + l) QR(l~(oc( t  + 1))) = 0. Hence the best player 
2 can do in I" is playing a transient stationary strategy, 
resulting in value ON. 

Let for k E S(t  + 1) n $2, ~k be an optimal action for 
player 1 in Azk(t ). Then, putting ~g(1) = 1 if k @ S ( t  + 
+ 1) ~ $1, it can be seen that the pair ({wk(t) ;k C S(t  + 1) }, 
(~k(i); k E S(t  + 1), iEAlk}) satisfies conditions (i) and 

(ii) o f  LP2(I;( . , . ,  . . . . .  )). But in (6) and (7) at least one 
strict inequality sign holds. Hence we obtain for the so- 
lution (Uk; k E S(t + 1) ) o f  this LP2 problem: uk >1 wk(t )  
for all k E S(t  + 1) with the inequality sign holding for at 
least one coordinate (cf. l_emma 3.3). [] 

Lemma 4.7. Suppose A l ( t ) ,  Bl( t ) ,  B2(t) and E(t)  holds. 
T h e n B l ( t  + I) andB2( t  + 1) hold. 

Proof  I f g ( t  + 1) 4=g( t ) , thenBl ( t  + 1) and B2(t + 1) fol- 
low from the condition (ii) o f  LP1 (f ' (oe(t  + 1))). Suppose 
now g(t  + 1) = g(t).  From F(t  + 1) (Lemma 4.6) we get 
wk( t  + 1) ~> wk(t)  for each k C S(t  + 1). By definition 
wk( t  + 1) = wk(t)  for each k E S \ S ( t  + 1). So using Bl(t) ,  
B2(t) and Lemma 4.1 we then have that B l ( t  + 1) and 
B2(t  + l) hold for k E S \ S ( t  + 1). However by condition 
(i) of  LP2(la(S(t + 1), g(t  + 1), w(t) ,  oC(t + 1), {O2k(t + 1); 
k E S(t  + 1)})) it follows, that Bl ( t  + 1) and B2(t  + 1) 
also hold for k E S(t + 1). [] 

Now, combining the Lemmas 4 .1 -4 .7 ,  we may con- 
clude that the assumption "Al( t ) ,  A2(t),  Bl( t ) ,  B2(t), 
C(t), D(t),  E(t)  and F(t)  hold"  follows that "Al ( t  + 1), 
A2( t+  1) ,Bl ( t  + 1),B2(t + 1), C(t+ 1) ,D(t  + 1),E(t  +1) 
and F( t  + 1) hold". Hence we have 

Theorem 4.8. For each t E {0, 1 , 2  . . . .  ) the properties 
A l(t),  A2(t),  B1 (t), B2(t), C(t), D(t),  E(t)  and F(t)  hold. 

Important  is the following 

Theorem 4.9. The algorithm stops after a f inite number 
o f  iterations. 

Proof  Parthasarathy and Raghavan [ 11 ] have shown that  
an extreme optimal action for player 1 in a matrix game 
of  payoff  type [f(i, ])  + h(i)]A • is also an extreme op- 
timal action for player 1 in some subgame [f(i, J)]~• 
with a C A (cf. [ 11 ], Lemma 4.1, p. 381). Applied to step 
3 of  our algorithm, this means that  for each state k E S1 
an extreme optimal action will be chosen o f  some matrix 
game [r(k, i, ])]Otlk(t)xA 2k, where aak(t) C A lk .  

Shapley and Snow have shown that a matrix game has 
only a finite number of  extreme optimal actions. Further- 
more, a matrix game has a finite number of  submatrices 
and there are a finite number of  states, which ensures for 
each t that 

the set from which oe(t) is chosen is a finite one. (8) 

It remains to show, that no cycles can occur, i.e. that no 
strategy repeats infinitely often. 

By the properties C(t) and F(t)  we can see that for 
each t exactly one of  the following events occurs: 

HI :  g ( t ) > g ( t -  1), 

n2:  g(t) = g( t  - 1), ~c(t) 4= ~c(t - 1), G(t) 4= O, 

w(t )  > w( t  - 1), 

H3: 

H4: 

Since 
Ctt): 

g(t) = g( t  - 1), oC(t) = ac(t - 1), G(t) 4= O, 

w( t )  > w( t  - 1), 

g(t) = g(t  - 1), ec(t) = ac(t  - 1), G(t) = O. 

I~(o~(t)) only depends on oC(t) we have in view of  

if H1 occurs on t, then oC(m) :~ oC(n), 

m@ {t, t +  1 . . . .  } and n E  { t - 1 , t -  2 , . . . , 0 )  

(9) 

Now suppose that from stage t, H2 repeats itself infinite- 
ly often. Since IS(t) I ~< z - 1 we may assume without 
loss of  generality that S(t) = S(t  + 1) = S(t  + 2) = ... But 
then observe that the optimal value o f  

LP2(Ia(S(t - 1 + n), g( t  - 1 + n), w ( t  - 2 + n), oC(t - 
- 1 + n), { 0 2 k ( t -  1 + n); k ~ S ( t -  1 +n)} ) )  in step 7 
of  the algorithm only depends on { o ~ ( t - 1  + n); 
k ~ S ( t - 1  + n ) = S ( t ) ) ,  for each n = l , 2 , . . ,  for the 
other parameters do not change. 

But since w( t  - 1 + l) > w( t  - 2 +I) we get oC(m + 
+ n) 4 = oe(m), for n = 1 , 2 , . . .  a n d r e =  t -  1, t ,  t + 1 , . . .  
But then in view o f (9 )  we see: 

H2 can not repeat itself infinitely often (lO) 

Let n be the first time H2 does not occur. Then either 
S(n) = 0 in which case H 1 occurs, or it happens that H4 
occurs, or possibly H3 occurs. 

If H3 occurs on t, then by  the construction of  Gl(t) 
and G2(t) and by the equality in Lemma 3.3 we see that 
G(t) C~ S(t  - 1) = 0. Hence: 

If  H3 occurs then S(t) strictly includes S(t  - 1) (11) 

As last statement we have: 
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If H4 occurs then the algorithm stops (12) 

Now observe that from (10) and (11) we may conclude 
that a sequence in which only the events H2 and H3 oc- 
cur can not happen. But then in view of  (9) it lasts a fi- 
nite number of  iterations before H4 occurs, which by 
(12) proves the theorem. [] 

Similarly for an arbitrary pure stationary strategy o p of  
player 1 we derive from (13)- (17) :  

g(t) >i PaPo* g(t) 

gk(t) + wk(t) >~ r(k, oPk, p~) + 

kCS1)  

Z p(llk, pP)wt(t), 
l@S 

(21) 

(22) 

Theorem 4.10. Step 9 of  the algorithm is reached after a 
finite number o f  iterations and provides a solution to the 
game, Le. g(t) equals the value o f  the game and p* and 
a* are optimal stationary strategies for player 1 and 
player 2 respectively. 

Proof By Theorem 4.9 step 9 is reached in a finite num- 

ber of  iterations. From g(t + 1 )=g( t )  it follows (cf. the 
proof  of  Lemma 4.4): 

gk( t )=  max ~ p(llk, i).gl(t) f o r e a c h k E S  t (13) 
i~A  l k  l ~ S  

Next observe from Lemma 3.2 that 

gg(t)=min ~ p(llk,]) .gl(t)  for each k e  $2.(14 ) 
]CA 2k lES  

From the definitions of  o* and p* we know: 

Car(o~) C 0 1 k ( t  + 1), kES1 and 

Car(p~) C 02k(t + 1), k E S 2 .  (15) 

From Lemma 4.1, property B2(t ) and G(t + 1) = 0 we 
derive 

gg(t) + wk(t) = Val(Alk(t)), k E $1 (16) 

and 

gk(t) + wx(t) = Val(Azk(t)), k C $2. (17) 

Let pP be an arbitrary pure stationary strategy of  player 
2. Then from (13) - (17)  and the definition of  a* we in- 
fer: 

g(t) <~ Po.opg(t) (18) 

gk(t) + wk(t) <~r(k, a~, p~) + 

k ~ S 1  

p(llk, o~)wt(t), 
l ~ S  

gk(t) + wk(t) <~r(k, o~, p~) + Z p(llk, p~)wt(t), 
ICS 

k ~ S2 .  

(19) 

(20) 

gk(t) + wk(t) >1 r(k, {rPk, O~) + Z p(llk, p~)wt(t), 
l~S  

k E $2. (23) 

Now (18) - (23)  imply 

Qo*op ro*op >~ g( t) >~ Qapo* rop o*. (24) 

Since o p and pP are arbitrary, application of  Lemma 3.1 
to (24) results in 

min V(o*, 7r2) >~g(t) >~ max V(7 h , p*), 
7r 2 7r 1 

which shows the theorem. [] 

We conclude this paper with the remark, that our al- 
gorithm provides a constructive proof  of  the existence of  
the value and of  optimal stationary strategies for both 
players for the switching control stochastic game. Also 
the fact, proved by Filar [4], [5], that player 1 (2) has an 
optimal stationary strategy o* (p*), such that for k E S 1 
(k E &)  o~ (p~,) is an optimal action in a matrix game of  

the form [r(k, i, ] )Llk•  k ([r(k, i,])]Alk• where 
oqk C Alk (o~2k C A2k)) , can be derived from our algo- 
rithm. Furthermore the finiteness of  the algorithm proves 
the ordered field property (cf. [5]). 
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