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Summary. In linear programming applications the eco- 
nomic meaning of shadow prices is important. In the case 
primal degeneracy occurs in the optimal solution, the 
values of the dual real variables are not, in general. 
identical with the corresponding shadow prices, or, in 
other words, these values have not the usual meaning in 
comparison with LP optimal solutions without primal 
degeneracy. Several proposals on how to interpret such 
values or how to find the "true" shadow prices have 
been made and terms like "many-sided-" or "two-sided- 
shadow prices" have been coined. Also, when perform- 
ing sensitivity analysis in the case primal degeneracy 
occurs, the so called critical ranges of  the right hand side 
or of  the objective function coefficients cannot be deter- 
mined in the usual way. In this paper, a state-of-the-art- 
survey on these questions is given. 

Zusammenfassung. Bei den Anwendungen der linearen 
Optimierung ist der 6konomische Inhalt der Schatten- 
preise von Bedeutung. Falls eine optimale L6sung primal 
entartet ist, sind die Werte der dualen Strukturvariablen 
im allgemeinen nicht identisch mit den entsprechenden 
Schattenpreisen, oder - anders ausgedrtickt - diese Werte 
kann man nicht so interpretieren wie bei nichtentarteten 
optimalen L6sungen eines linearen Optimierungspro- 
blems. Es gibt in der Literatur verschiedene Vorschl~ge, 
wie diese Werte interpretiert werden sollen oder wie der 
,,richtige" Schattenpreis bestimmt werden soil. Dabei 
werden Bezeichnungen wie ,,vielseitige" bzw. ,,zweisei- 
tige Schattenpreise" eingeftthrt. Auch bei der Durch- 
fiihrung einer Sensitivit~itsanalyse k6nnen im Faile einer 
primalen Entartung die kritischen Bereiche for Parameter 
in der rechten Seite oder in den Zielkoeffizienten nicht 
auf die tibliche Weise bestimmt werden. In diesem Arti- 
kel ist eine Obersicht des gegenw~irtigen Standes zu den 
obigen Problemen gegeben. 

0. Introduction 

Consider 

(LP) max z -- c Tx 
x E X  

with X = [ x E I R n l A x < , b , x > ~ O }  

(LPD) min f = y T b  
y @ Y  

with Y = {y E IR m I A Ty ~> C, y />  0} 

where c = ( c l , . . . , c j , . . . , C n ) V  @IR n,  b = ( b l  . . . .  , b  i . . . . .  
bm)V  @ ~m ,x = ( x  I . . . . .  x ]  . . . . .  Xn) T E IR n , y  = (Y l  . . . . .  

Yi ,  " " , Y m )  T E I R m ,  A an (m xn)-matrix, A =(a I . . . .  , 
a / . . . . .  an),  a/ = (ali . . . . .  ai/ . . . .  , a m / ) T , f  = 1 . . . . .  n. After 
introducing slacks Xn+i, i = 1 , . . ,  m, and computing an 
optimal solution, suppose that B = (ah  . . . . .  a jm) ,  aii E IRm; 

i = 1 . . . . .  m, is the corresponding optimal basis with the 
characteristic basis-index P = { ] l  . . . . .  ]m} such that 
x h , . . . . ,  Xim are basic variables. 

Let us summarize the needed notation in the follow- 
ing optimal simplex tableau, whereas without loss of 
generality suppose that after some rearranging./'l = 1, 

�9 �9 " , ] m  = m .  

Op timal solutio n 

.o x 1 . . .  x m X m +  1 . . .  x n X n +  1 . . .  X n +  m X B  

1 1 . . .  0 a l , m + l  ... a l n  a l , n + l  " '"  ~ l l , n + m  b l  

m 0 . . .  1 a m , m + l  . . .  a m n  a m , n + l  . . .  h m , n + m  b m  

Azj 0 ... 0 Crn+! "" Cn f i l  "-" -~rn Zmax 
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The corresponding optimal basic solution is xB = (xa~, 
. . . ,  XB m)T with xBi = bi, i = 1, ..., m, and the optimal 
objective function value Zma x = cTxB. 

The elements o f  the last row labeled by &zj are 

Azi=ci for / '=  1 . . . . .  n, 

AZi =Yi for j  =n  + 1 . . . .  ,n  +m. 

~z 

= ax; '  / . i f P  

The usual interpretation of  the marginal value or 
shadow price .9i is either (1) 

3z 

.9i = ~b  i 

These elements are sometimes called (optimality) 
criterion elements (hence, the row is called criterion row) 
or reduced costs. In the literature, one does not find a 
unique distinction between ci and.gi in the sense o f  their 
economic interpretation. For example, in [24]: "Scarci- 
ty prices or opportunity costs are defined as the amount 
by which the objective function value increases when a 
scarce resource is increased by one" (p. 92) and "Op- 
portunity costs are called in the terminology o f  linear 
programming shadow prices or dual values" (p. 104). 

In [25]: "Value o f  capacity o f  machine 1 plays the 
role o f  costs; in economics the term opportunity costs 
would be used ... other terms are imputed costs or shad- 
ow prices" (p. 91). 

In [32]: "The final row coefficients (the ~i's - T . G . )  
are sometimes referred to as relative or shadow costs ... 
the final row coefficients o f  the slack variables (the 
Pi's T.G.) are sometimes called shadow prices" (p. 109). 

We shall distinguish two categories o f  the reduced 
costs &zj according, e.g., to Cook and Russel [9], pp. 
151 fand  183f. 

( I )  the 6/'s for/q~ 0 as the opportunity costs 

(2) the ,fi's as the optimal dual values (i.e. the optimal 
values of  the dual real variables), or marginal values or 
shadow prices. 

Without going into technical details o f  construction 
o f  an initial simplex tableau, let us note, that in the case 
the original LP has inequalities o f  the type "~>" and/or 
equalities, they .gi's are found in the columns of  the 
inverse B -  1 which are not all identical with the columns 
of  slacks. In our case with only "~<" the yi 's  are in the 

columns of  the slacks. 
The usual interpretation o f  the opportunity costs ~i is 

either 

(1) the amount by which the objective function value 
decreses setting xj = 1 ,j if P, provided that x i = 1 is feasi- 
ble, i.e., the cost ~I for introducing a product Pi into 
production on the level x i = 1, when in accordance 
with the optimal solution - Pj is not to be produced; or 

(2} ffi is the amount by which cj must increase in order 
to enter x i,/. if:O, into the basis; or 

(3) it is the right partial derivative 

or (2) the "price" for selling or buying one unit o f  the 
i-th resource, i.e..9i is the amount by which Z ma x changes 
changing b i by one unit. 

Let us present a simple illustration. 

Example O. 1: 

m a x z  = 4x 1 + 2x 2 + 9x 3 + 6x 4 

s.t. (with slacks Xn+i, i = 1, 2, n = 4, included) 

x 1 + 2 x  2 + 3 x  3 + x 4 + x  5 = 5 0  

2xl + x2 + 4 x a + 3 x 4 + x  6 = 8 0  

xj>,..O, /"= l . . . . .  6. 

The interpretation could be: maximize the profit produc- 
ing some of  the four products Pj, j = 1 . . . . .  4, restricted 
to two machine-capacity constraints. 

The optimal solution is in Table 1. 

Table 1 

p i 2 5 6 xB 

3 0.2 1 0.6 -0 .2  14 
4 0.4 -1 -0.8 0.6 8 

~zj 0.2 1 0.6 1.8 174 

Here Cl = 0.2,72 = 1,.91 =0.6,.92 = 1.8,Zmax = 174. 
Setting, e.g. x]~ = 1 (0 ~<x I ~< 20, hence x~' is feasible) 
we obtain x3(x~) = 14 0.2x~ = 13.8, x4(x~) = 8 -  
0.4x~ = 7.6, Zmax(X~) = 174 - 0.2x~ = 173.8. The value 
dl = 0.2 represents the opportunity costs for the prod- 
uct P1. 

Changing bl  = 50 by +1 or - 1 ,  the price for selling or 
buying respectively, one unit of  this resource is 0.6 or 
-0 .6 ,  respectively, hence the objective function value 
changes to 174.6 or to 173.4, respectively. In other 
words: The shadow price for capacity resource 1 is 0.6. 
Analogously the shadow price for resource 2 is 1.8. 

Let us recall that a solution is called primal degenerate 
if bi = 0 for at least one i E { 1 . . . . .  m}, it is called dual 
generate i fAz!  = 0 for at least one/" i fp .  
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X 2 

W . F .  

X 

Fig. I 

X 3 

X ~ 

2 

x ~ is overdetermined (4 "hyperplanes") but there is no 
weak redundancy. 

Turning back to (LP), having a primal degenerate so- 
lution it is well known (see, e.g., [10, 16]) that to such 
an EP more than 1 basis can be assigned. This lead to the 
discovery of  so called degeneracy graphs ( [ I5 ,  22]) by 
the aid of  which various properties of  the set bases as- 
sociated with a degenerate EP can be studied. 

Primal degeneracy can be viewed at from various 
viewp oin ts: 

1. Degeneracy in the LP-model 

2. Degeneracy occuring in the course of  computing an 
optimal solution 

3. Degeneracy in an optimal solution. 

We regard cases 1. and 2. as rather technical problems 
because they are closely related to the computing tech- 
niques used to find an optimal solution. In this con- 
nection kmown anticycling methods ([6, 8, 11, 35] - 
see also [7]) have been elaborated. 

The problem we are interested in is the third case, 
especially with respect to the interpretation of  dual 
values and to sensitivity analysis when (primal) degener- 
acy occurs in the optimal solution. 

In Sect.1 we give an overview on the determination 
and interpretation of  shadow prices under degeneracy; in 
Sect. 2 we give an overview on performing sensitivity 
analysis under primal degeneracy. 

1. Two- or Many-Sided Shadow Prices 

Let us first introduce some more notation: 

Fig. 2 
T = { i l D  i = 0} 

L e t  x s be a vertex or extreme point (EP) of  the convex 
polyhedron X = { x  E IR n l A x  ~ b, x ~ 0}. I f  x s is degen- 
erate, one speaks in general about degenerate polytopes 
[ t5] .  Considering X as the constraint set o f  (I.P), the 
connection between (LP) and degenerate polytopes is 
obvious. As is well known, an EP of X is defined by n 

/'z 

hyperplanes 1~ a q x !  = bz ,  i = 1 . . . . .  m (see, e.g., [ 17]). If  
i= i  

x s is overdetermined (i.e. x s is determined by at least 
n + 1 hyperptanes) then x s is degenerate. Degeneracy 
can be caused by weak redundancy ([ 18]) (cf. Figs. 1 
and 2). 

In Fig. 1 the degeneracy o f x  ~ is caused by the weak- 
ly redundant constraint ' w x . "  (x ~ is overdetermined 
because three "hyperplanes" go through x~ in Fig. 2 

x (s) = ( X n + l  . . . .  , x n + i ,  . - - , X n + m )  slacks 

x s̀'i I 
Pi  - shadow price o f i - th  resource hi ,  

p~ - shadow price of  the i-th resource for the c a s e  b i 

increases by 1 

P i -  shadow price of  the i-th resource for the c a s e  b i 

decreases by i. 

Let us state that in case there is no primal degeneracy 
the following holds: 

.Pi = P+ = P i  = P i  for all i = 1, ., m. 
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The (probably) first author who dealt in a publication Table 4 
with the interpretation of  dual values in an optimal solu- 
tion to (LP) under degeneracy in the sense of shadow 
prices was Strum [30]. He mentions, among other things, 5 
the paper by Wright [36] who dealt with asset services 1 
and who based his work on the theory of shadow pricing 2 
developed within LP, however, without taking account 
of degeneracy. Strum says that ". . .  uses of shadow prices zxz i 
are to be found also in other papers on accounting re- 
search ...". The purpose of this note is to show, by 
means of an example, the need to make such distinc- 
tions" (i.e. "gain in having one more unit of a resource" 
and "loss in having one less unit"). Strum uses a 3 x 2- 
example to illustrate the necessity to introduce "two- 
sided" shadow prices. His example reads: 

Example 1.1. (Strum [30]): 

max z = 2x 1 + 3x2 

s.t. 3x1+ x2~< 48 

3Xl + 4x2 ~< 120 

x l + 2x2 ~< 56 

X l ~ O  , x 2 ~ O .  

In Table 2 is the "first" primal degenerate optimal solu- 
tion, in Table 3 the second one and in Table 4 is another 
primal degenerate solution associated with the same EP, 
which we shall need in connection with the paper by 
Eilon and Flavell [12]. 

Table 2 (Strum 130]) 

4 5 x B 

3 -2.5 4.5 0 
1 1 - 2  8 
2 -0.5 1.5 24 

~z i 0.5 0.5 88 

Table 3 

3 5 X B 

4 --0.4 -- 1.8 0 
1 0.4 --0.2 8 
2 --0.2 0.6 24 

AZj 0.2 1.4 88 

3 4 XB 

2/9 5/9 0 
4/9 -1/9 8 

-1/3  1/3 24 

-1/9  7/9 88 

Note that, from Table 3 it follows that constraint No. 
2 is weakly redundant. 

Strum [30] shows that (cf. Table 2, column "5") with 
b 3 + 1 the shadow price is p~ = 0.5, with b3 - 1 (cf. 
Table 3, column "5") the shadow price is p~ = 1.4. 
Hence Y3 ~P 3 ,  P~ 4=p~, thus P3 does not exist. He 
speaks therefore of "two-sided shadow prices" and con- 
cludes that "from the viewpoint of foundations of ac- 
counting measurement, care must be taken to distinguish 
between the concepts 'value of one more trait of resource' 
and 'value of one less unit of the same resource' ". 

Eilon and Flavell try to show in their paper [ 12] that 
other than two marginal values exist and call the shadow 
prices in the case of primal degeneracy "many-sided". 
They generate for Strum's example a third tableau (Ta- 
ble 4) assigned to the optimal EP; this tableau is however 
formally not optimal (Az 3 = P l = -1/9 < 0). They estab- 
lish an interesting correspondence between dual infeasi- 
bility and the effects of omission of a constraint. How- 
ever, as is shown in several other papers [1, 13, 19] and, 
as shown below, "many-sided" is not reasonable either 
from the economic or from the formal points of view. 

In case primal degeneracy occurs in an optimal solu- 
tion to (LP), Aucamp and Steinberg [2] introduce left- 

and right-partial derivatives for character- 

izing shadow prices when the i-th resource increases or 
decreases, respectively. They also state that "although a 
constraint is redundant (causing degeneracy in the opti- 
mal solution T.G.), its presence does affect the shadow 
prices of the remaining constraints defining the optimal 
EP". Hence an omission of the redundant constraint is 
not possible. Aucamp and Steinberg [2] also clarify the 
connection between the primal and dual problems show- 
ing that, if in the dual there exist multiple optimal solu- 
tions, then the optimal values of  the dual variables are 
not equal to shadow prices. They confine their investi- 
gations to increasing resource b i, and say that "a similar 
analysis applies to marginal decreases in a resource ..." 
(p. 558). They prove then the following Theorem 1 (the 
detailed proof is in [3]). 

Theorem 1 (Aucamp and Steinberg [2, 3]). I f  there are 

K optimal EP's for  (LPo), then 
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p+ = min {y}k)} 
k 

and i lK  > 1 and b > 0 then further 

(known as the optimal value function - see e.g. [4, 14, 
28]), which is a nondecreasing, continuous, piecewise 
linear and concave function. The directional derivative 
o f F  at b in the direction u is defined as 

p4=9 (k), l<k<~K ,  

where ~(k) is the k-th dual solution vector and p is the 
shadow price vector. 

They quote Williams [34] saying that "a more general 
version of this theorem is stated and proved in Williams" 
(p. 559).We will discuss the results of Williams in Sect. 2. 

Aucamp and Steinberg [2] introduce the so called 
VDPR (valid _dual pivot row) defining the r-th row being 
a VDPR iff 

(a) [~ = 0 

(b) a~i4=0=~0]>0 fora l l / '~p .  

To obtain an alternate optimal dual solution in one 
simplex iteration such that the "degenerate variable" 
XBr, r E T, is replaced by the nonbasic variable x k, the 
following should hold: 

k:ar'minl ar; l 
Agkal [1] shows that the above conditions are not 

correct, and hence the proof of Corollary 2 in [2] is not 
valid. 

DuF(b)= lira 
t-~O+ t 

F(b + tu) - F ( b )  

Then 

P+u = DuF(b), Pu = - D(_ u)F(b), 

where Akgtil considers the possibility, "a decision maker 
can face an offer concerning a combination of  several 
resources, i.e. a 'package' deal" (p. 426), which is re- 
presented by the vector u. 

The positive shadow price p+ of the i-th constraint is 
then defined by 

p~ = DeiF(b), u := e i - the i-th unit vector 

and the negative shadow price Pi  as 

pV = - D ( _ e i ) F ( b )  >~ O, u := - e  i. 

Here p]- is interpreted as the "maximal buying price" for 
the i-th resource, and Pi as the "least selling price" for 
the i-th resource. Denoting by 

H(t) = F(b + tu), 

Corollary 2 (Aucamp and Steinberg [2]). I f  the optimal 
primal is degenerate and the corresponding dual is not, 
then there exists an alternate dual optimal solution. 

Akgtil [1] shows that the correct conditions for the 
r-th row, r E T, to be a VDPR are: 

(a) br = 0 

(b) d , i < O ~ g / > O  for all ]qip 

because of the known rules for the dual simplex method. 
The definition o fk  as 

k = arg min { @ " dri < O 1 . 

AkgiJl [1] defines shadow prices in another way, which 
uses the same principles as Shapiro [28] (p. 37f.). He 
introduces the function 

F(b ) = max {c rx tAx  <~b, x >1 0} 

Akg01 [ 1 ] shows that p~ and pg are the one-sided deriva- 
, ,  4- tires of H at t = 0, i.e. Pu andpu are nothing but slopes 

of H(t) at t = 0" (p. 427). 
He also endorses the result of Aucamp and Steinberg 

[2] that p~ = min {3~ k) } and adds 
k 

Pi = max { p}k)}, 
k 

which follows from the above results. With this he proves 
that "many-sided shadow prices" are not reasonable. 

In connection with the Menger-Wieser-Theory of  im- 
putation [23, 27, 29, 33], Uzawa [31] shows that, in 
case the "opportunity costs" are not well defined, two 
of them - the one from upward and the other from 
downward - can be defined. 

We will not go into Uzawa's theory in detail; we men- 
tion only that Uzawa introduces the (optimal value) 
function 

h(b) = max { f (x) tx  >~ O,g(x) <~b } 

and based on the concavity of h(b), he shows that 
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~h ah 

ab+ 

(compare with Akgiil [1]). Thus, Uzawa [31] also con- 
siders "two-sided" shadow prices. 

In connection with parameterizing the original data 
of  an LP, Saaty [26] also mentions the "two-sided" 
character of shadow prices when the parameter t takes 
on a critical value. 

A very recent paper on the subject shadow prices is 
due to A. Ben-Israel and S. D. Fl~m [5]. Based on the 
theory of canonical bases developed by A. Ben-Israel 
the authors obtain similar results as already described 
above. 

An extensive work on the effects of  degeneracy in the 
interpretation of shadow prices has been done by G. 
Knolmayer [19-21].  He uses pure economic arguments 
to show that Eilon and Flavell's [ 12] "many-sided" shad- 
ow prices are not reasonable. He also comes to the re- 
sult of  the existence of two shadow prices under degen- 
eracy and determines p~ and p,7 by analyzing the alge- 
braic sign of dq for i E T and / ~ p belonging to slack 
variables in an optimal (degenerate) solution. 

He shows: Let brand /~r be the lower and upper 
bounds of br, respectively, in the sense of  ordinary sen- 
sitivity analysis. Then, if the optimal primal solution is 
nondegenerate, 

br < br < br holds, 

if it is degenerate, then 3 cases are possible: 

(a) b~ = br < b~ 

(b; b, <br=7,r 

(e) b r = b r = b r  

Let Xn+ r be the r-th slack variable and B the correspond- 
ing optimal basis. Then, .Vr can be interpreted 

(i) like in a nondegenerate solution if 

{iv) there is no interpretation if 

(3) there exist k E T and l E T such that 

a k , n + r  " a l ,n+r  ~ O. 

Knolmayer [ 19] has derived these results earlier then 
Akgiil; as a matter of fact, Knolmayer's results can be 
easily derived from the viewpoint of  the function H(t) in 
Akgtil [1] and/or - as Knolmayer mentions in [21] - 
from the very well known rules for performing sensitivi- 
ty analysis with respect to b. 

Aucamp and Steinberg [2] claim that in order to 
dermine p{ and P7 for all i = 1, ..., m, it is necessary to 
generate all alternate optimal dual solutions (tableau). 
Knolmayer [19, 21] gives an algorithm according to 
which this is not necessary. This follows also from the 
theory of linear parametric programming (compare 
Section 2). 

Let us demonstrate the determination of p [  and 
p~- ~' i using first Knolmayer's example in [21] (Exam- 
ple 1.2) (degeneracy caused by weak redundancy) and 
then another Example 1.3 in which degeneracy is not 
caused by weak redundancy. 

Example 1.2 (Knolmayer [21]): 

maxz  = 100x I + 150x 2 + 160x 3 

s.t. 0.5x 1 + x 2 +x  3 ~ 125 

xl  + 0.5x2 + x  a ~< 100 

x 1 + x 2 +x  3 ~< 150 

x 2 +x  3 ~< 100 

x i ~ > 0 , / =  1 ,2 ,3  

The "first" optimal solution is in Table 5. 

Table 5 

Pl 3 4 5 x B 

di.n+ r = 0 

(ii) like p+ if 

for all i E T, 1 2/3 -2 /3  4/3 50 
2 2/3 4/3 -2/3 100 
6 1/3 2/3 2/3 0 
7 1/3 4/3* 2/3 0 

(1) 8i, n+ r >1 0 

ai,  n+ r > 0 

(iii) like P7 if 

(2) ~i.n+r ~< 0 

ai,  n+ r < 0 

V i E T  and 

for at least one i E T, 

V i E T  and 

for at least one i E T, 

n~ 20/3 400/3 100/3 20,000 

We note that in row "6" all d6j, j trip, are negative 
and the value of  x6 = 0. This implies that constraint No. 
3 is weakly redundant [ 18]. 

We determine the RHS-ranges in terms of bi(Xi) = 
b i + ~ i , i  = 1 . . . . .  4: 
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? ` ~ E I - ? , O ] ;  ?`2E[O,O]; 

?`3 E [0, ~o); ?,4 ~ [0, 0% 

Using Akgiil's H(t) in terms of  ?`i we obtain: p~ = 400/3, 
p~ = 0, p~ = 0. This result corresponds to the "algebraic- 
signs analysis" due to Knolmayer (e.g., column "4":  in 
rows "6"  and "7", i .e .  for i E T, we have d64 < 0, ti74 < 0, 
hence P t  = 400/3). 

We need p~, p~, P2, P3 and p~.  Therefore, a dual 
simplex step with respect to i E T is performed which 
leads to Table 6. 

Table 6 

P2 3 5 7 XB 

i t /2  i I/2 50 
2 1 0 t 100 
6 1/2 1 1/2 0 
4 1/4 1/2 3/4 0 

AZ/ 40 100 100 20,000 

the corresponding tableau because all needed informa- 
tion is available. 

We note once more that in the above example, like in 
all others used by the above cited authors, degeneracy is 
caused by weak redundancy. In the next example this is 
not the case. 

Example 1.3." 

maxz  = x~ + 2x 2 +x  3 + 0.5x4 

s.t .  X 1 + X  2 +X 3 ~ 2  

X 1 +X3  + X 4 ~ < 2  

X 2 + X 3 + X 4 ~< 2 

X 1 +X2 + X 4 ~ 2  

X / ~ > O , j = l  . . . . .  4. 

The "first" optimal tableau is in Table 8. 

Table 8 

Pl  1 3 5 7 x B 

Here we can see that constraint No. 1 is also weakly 
redundant. We have: 

?,~ E[0,oo);  ?`2 ~ [ - 5 0 , 0 ] ;  ?`3 ~[0,oo);  

?`4 E [-100, 0], 

2 1 1 2 1 2 
4 0 1" 1 -1 0 
6 1 0 1 1 2 
8 l 1"* 1 0 0 

A~ 1.5 0.5 0.5 1 4 

hencep~ = O,p~ = 100,p~ = 0,p?~ = 100. 
We still need p~, p~ ; therefore, a dual simplex step 

(i E T) is performed which leads to Table 7. 

We proceed a Iittie more systematically, using Akgiil's 
[ 1 ] idea. Determine p7 and P i ,  i = 1 . . . . .  4. 

From Table 8 it follows: 

Table 7 

03 5 6 7 X B 

1 0 1 - 1  50 
2 - 2 2 0 100 
3 2 - 2  ~- 0 
4 0 1/2 - 1 / 2 "  0 

AZj 20 80 60 20,000 

?`1 E l 0 , 0 ]  ~ p l ,  p~ not available 

?`2 E[ -2 ,oo)  ~P2  =P~ =P~ =Y2 = 0 

X3 E [-2,  0] ~ p ~  = i,  p~ not available 

?`4 E [0, oo) ~ p~ = 0, P4 not available. 

Determine: P+I, Pl, P+3, P4. Therefore one dual step (Ta- 
ble 9). 

We have: 

Table 9 

P2 t 4 5 7 XB 

?`1 ~[0,~176 ?`2 ~ [0 ,50 ] ;  ?`3 E l - 5 0 , 0 ] ;  

?`4 E [0, 0], hence p~ = 202p~= 80. 

Though there exists another alternate optimal solu- 
tion (replacing x4 by xT), it is not necessary to generate 

2 1 1 1 2 2 
3 0 1 -1  1 0 
6 ~ 0 1 I 2 
8 t* 1 0 1 0 

A~ 1.5 0.5 1 1.5 4 
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Here wehave: 2. Sensitivity Analysis Under Primal Degeneracy 

Xl E [-2, 0] = p y  = 1, p'~ not available 

X 3 E [0, 0] ~p~  not available 

X4 E [0, ~] ~p,]  = 0 already known, 

pa not available 

Determine p'~, p~, pg. A dual step leads to Table 10. 

Table 10 

P3 4 5 7 8 x B 

2 0 1 1 1 2 

3 1 1 "  1 0 0 
6 1 1 0 1 2 
I 1 0 1 -1 0 

a z i 2 1 0 1.5 4 

Here we have: 

Xl E [-2, 0] ~ P i  = 1 already known, 

p~ not available 

xa [o, oo) = 0 

X4 E [-2, 0] = p% = 1.5 

Determine p~. One dual step leads to Table 11. 

Table 11 

04 3 4 7 8 x B 

2 1 1 2 1 2 
5 1 1 --1 0 0 
6 1 0 1 1 2 
1 0 --1 1 --1 0 

AZ/ 1 1 1 1.5 4 

Here we have: 

~k 1 E [0,  o~) = ' P l  = 0, 

hence p~ and p7 are determined for all i = 1 . . . . .  4. 
Note that though in Table 10 the dual is degenerate, 

this has no influence on the determination of the pi's.  

Using LP for solving problems in the practice, most com- 
mercial LP-software provides RHS-or objective function 
coefficients (OFC) ranging as a powerfull Decision Sup- 
port System for the manager. However, as it is in the 
case of the shadow prices, RHS or OFC-ranging fails to 
give correct results when primal degeneracy occurs in an 
optimal solution. 

As Evans and Baker [ 13] say, "This problem, if over- 
looked, has significant managerial implications" (p. 348). 
These authors complain about "the apparent lack of 
mention of these issues in any textbook, even in the 
treatice of post-optimality analysis by Gal [ 14]". Let us 
say that this assertion is simply not true. Knolmayer 
[19, 20] provides detailed results on this topics and, in 
the mentioned book by Gal [ 14], this problem is tackled 
e.g. on pp. 21f., 40f., 133,136,295,313,395 etc. 

Since there are some differences between sensitivity 
analysis caused by weak redundancy and not caused by 
weak redundancy, we shall split this section into two 
parts. 

Before we start the specific considerations, some 
general notes are necessary. 

Namely, in ordinary sensitivity analysis (without 
degeneracy) the imperative is to compute the critical 
region of a parameter such that the found opt imal  basis 
(solution, tableau, basis-index) does no t  change. 

In primal degenerate cases there are several bases 
assigned to and optimal EP x ~ Hence the question is, 
what should be understood by sensitivity analysis in this 
case. Clearly, it is not enough to consider one optimal 
basis associated with x ~ On the countrary, a "paramet- 
ric analysis" over several bases B k EB ~ where B ~ is the 
set bases associated with x ~ [15, 22] ought to be per- 
formed. As follows from the theory of parametric pro- 
gramming (see, e.g. [4, 14]) the corresponding "overall" 
critical region of admissible parameters is the union of 
the critical regions associated with the single bases B k. 
In terms of br@r) = b r + ~.r, r ~ { 1 . . . . .  m} fixed and 
bi(Xi) = b i for all i :/:r, Knolmayer [21], and in terms of 
cj ( t i )  = c / +  t i ,  ] E { 1 . . . . .  n) fixed, Evans and Baker [ 13] 
perform sensitivity analysis in about this way. 

Let 
(2.1) 

8 ~ := {[~Ol~z~k) >10 f o r a l l j q ~ p k , k  = 1, . . . , K } C B  ~ 

be the set of optimal bases associated with x ~ With re- 
spect to br(Xr) = br + Xr let 

(2.2) 
A(r g) := {XriX~k)(Xr) 1> 0} for every k E {1, ...,K} 

be the critical region of ~k r with respect to the basis 
/~g E/~ ~ . Then the "overall critical region for k r with 
respect to x ~ is 
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x t2 ~[ -1 ,  1]; 
a r := U A~ k) (2.3) 

k = l  

since c2 = 1 it follows in terms o f c  2 that 

c2 ~ [0, 2], 

A proposal how to define sensitivity analysis with 
respect to br(Xr) under primal degeneracy is: 

Determine Ar (see (2.3)) such that for all Xr ~ A~ at 
least one basis/}k E/}o remains optimal. 

With respect to cj(t j)  = cj + tj the proposal is not the 
t9 2 same: K 

Determine the "overall" critical region Tj =kO= T/(k) 
l 2 

such that for all tj E TI the set/)o does not change. 1 
4 Note that these definitions can be easily extended to 

the vectorparametric cases b(X) = b + FA, where F is an 
(m x s) matrix X E IR s, or c(t) = c + Ht, where H is an ,~zj 

(n x p) matrix, t E IR p . 

2.1 Sensit ivi ty Analysis Under Primal Degeneracy 

Caused by  Weak Redundancy  

Evans and Baker [ 13] investigate cost ranging saying that 
"we shall take an intuitive point o f  view, directed pri- 
marily at users of  LP software. The underlying theory 
can be found in most standard textbooks". 

Let us present Evans' and Baker's example P1 in [ 13]. 

Setting tl = - 1 ,  column "4"  becomes pivot-column. 
Pivoting yields Table 13. 

Table 13 

3 5 XB 

0 1 5 
1 1 5 
1" 1 0 

2 1 15 

Here we have ta E [-2,  -1] ,  i.e. cl G [0, 1], which 
constradicts the result of  Evans and Baker who claim 
ci ~ [0 ,~ ) .  

Setting t t = - 2 ,  column "3"  becomes pivot-column. 
Evans and Baker use d43 = -1 as pivot which contradicts 
the generation o f  alternate optimal solutions (in case the 
dual is degenerate). However, in order to stay in the set 
~o,  this step is necessary. In this way they obtain Table 
14. 

m a x z  = 2x 1 + X  2 

s.t. x I + x  2 ~ 10 

x t  <~ 5 

x2<~ 5 

x 1 9 0 ,  x 2 9 0 .  

In Table 12 an optimal solution is presented. 

Table 14 

P3 4 5 

2 0 1 5 
1 1 0 5 
3 1 1 0 

azj 2 1 15 

XB 

Table 12 (Evans/Baker [ 131) 

Pl 3 4 XB 

2 1 1 5 
1 0 1 5 
5 1 1" 0 

Az/ 1 1 15 

Here we have tl  E [ - 2 , ~ ) , i . e . c l  C [0,~,'), and it fol- 
lows that constraint No. 1 is weakly redundant. 

Evans and Baker conclude correctly that the "true 
range" (p. 351) is c 1 I> 0. 

We will show now that, since degeneracy is caused by 
weak redundancy, it is possible to omit the weakly re- 
dundant constraint No. 1 in Table 14 obtaining the same 
result. Omitting constraint No. 1, we obtain Table 15. 

We note that replacing xs by x 3 it can be seen that 
the constraint No. 1 is weakly redundant. In terms of  
cj(t j)  = cj + O,J = 1,2,  we have: 

t I E [ - 1 , ~ 1 7 6  sinceel = 2 it follows in terms of  c I that 

el c [ 1 , ~ )  

Table 15 

4 5 x B 

2 0 1 5 
1 1 0 5 

~z i 2 1 15 
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Here we have: t l  E [ -2 ,  oo)=~cl E [0, oo), hence the 
result is the same when the weakly redundant constraint 
is included. 

It is clear that omitting a weakly redundant constraint 
in an optimal solution has no influence on the cost rang- 
ing because the weakly redundant constraint does not in- 
fluence the "admissible rotat ion" of  the objective func- 
tion. 

Concerning RHS-ranging, Evans and Baker say that 
"we do not specifically address changes in the RHS 
coefficients since these are simply dual to sensitivity 
analysis o f  the objective function coefficients". This is, 
especially with respect to weak redundancy as causing 
degeneracy, not correct, because, with respect to the 
RHS, it is not possible to omit  weakly redundant con- 
straints. 

To show this, turn back to Table 12. Here we have in 
terms o f  bi(?`i) = b i + ?`i : 

?`~ ~ [-5,  0]; ?,2 6 [0, 5]; ?`3 ~ [0, 0% 

Replacing Xs by x 3 we obtain Table 14. Hence, we have: 

?`! ~ [0, =); ?`2 ~ [-5,  0]; ?,3 ~ [-5,  0]. 

2.2 Sensit ivi ty Analysis  Under Primal Degeneracy 

no t  Caused by  Weak redundancy 

The main difference in performing sensitivity analysis 
under degeneracy between degeneracy caused and not 
caused by weak redundancy is with respect to the OFC. 
As shown above in Sect. 2.1, in case degeneracy is 
caused by weak redundancy the corresponding weakly 
redundant constraint can be simply omitted and sensitiv- 
ity analysis with respect to OFC is performed like in a 
nondegenerate case. 

This is not possible to do with respect to the RHS. 
As also shown above, omitting the weakly redundant 
constraints, the results differ in this case crucially from 
those obtained with the weakly redundant constraint 
included. 

However, when degeneracy is not caused by weak 
redundancy, there is nothing to omit and the above 
described approach applies. To show this, we shall use 
our Example 1.3. 

Let us start with Table 8 and consider as an example 
c3(t3) = c 3 + t 3 . From Table 8 it follows that t 3 E (-oo, 
0.5] and the pivot-column is column "3" ;  the pivot- 
element is labeled by 2 stars. Pivoting we obtain Table 16. 

Thus ?`1 E [ -5 ,  o~), ?`2 E [ -5 ,  5] and ?`3 E [ -5 ,  o~) taking 
the corresponding set-unions. Leaving constraint No. 1, Table 16 
we have Table 15. Here ?`x becomes senseless, ?`2 E [ -5 ,  Ps 
oo) what obviously differs from the above result. Con- 
sider an optimal EP in IR n which is defined by n con- 2 
straints plus a weakly redundant one. Introducing ?`k in 4 

the sense bk(?`k) = b k + ?`k means geometrically to move 6 
the k-th constraint (more exactly: the boundary hyper- 3 
plane of  the k-th constraint) parallel to itself. Let r 4: k 
be the index of  the weakly redundant constraint. Azj 

Then it is obvious that "moving" the k-th constraint 
the r-th weakly redundant constraint influences the 
"admissible moving" of  the k-th constraint (see also 
what was cited above from the paper by Aucamp and 
Steinberg [2]). Thus the "admissible moving" of  the k-th 
constraint depends heavily on whether the r-th constraint 
is omited or not. 

Knolmayer [20] has found that investigating sensitivi- Table 17 
ty analysis with respect to the RHS b, one has to gener- 
ate a part of  the optimal tableaux assigned to the degen- P6 
crate EP, determine for each o f  them the critical region 2 
# k )  =r?`(k) X~k)], k = 1, K, and take the union t_/ , �9 ", 4 
(2.3). 6 

He claimes that the same applies to the objective func- 5 
tion coefficients sensitivity analysis, what as shown 
above - is not correct in cases when degeneracy is caused az/ 
by weak redundancy. 

1 5 7 8 x B 

0 1 1 1 2 
-1 0 1 1 0 

1 1 1 0 2 
1 - 1 "  0 1 0 

2 1 1 -0.5 4 

Here we have t 3 E[0 .5 ;  1] and column "5"  is pivot 
column. Pivoting with the labeled pivot we obtain 
Table 17. 

1 3 7 8 x B 

-1 
1 
0 
1 

1 1 2 2 
0 -1 1 0 
1 1 1 2 

-1 0 -1 0 

1 1 1 0.5 4 

Here t 3 @(-0% 1] = (-oo, 0.5] U[0 .5 ;  1]. The "para- 
metric analysis" with respect to/~o is over because using 
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the possible pivot dsa = -1  in Table 17 yields Ps, which 
is already investigated in Table 16. 

We shall now concisely deal with the paper by Wil- 
liams [34] who deals with conditions under which the 
marginal value of an LP with respect to some perturba- 
tion exists. Given (LP) and (LPD) he introduces the 
matrix 

which generates (LP) and (LPD). He then introduces the 
feasible sets for (LP) and (LPo) as 

S(A):={xEIRnlx>IO, Ax<'-.b} and 

T(A) := {y E IR m [ y >~ O,ATy ) c } ,  

respectively, as well as the corresponding sets of optimal 
vectors x ~ and yO as 

S~ := (x 0 ~ ~n lx ~ ~S(A),cTx~ >t crx 

for allx ~ S(A)} 

To(A) := {yO ~ 1RmlyO ~ T(A), b ry ~ < b Ty 

for ally E T(A)}. 

The value of  the objectives implied by-4 is bTy ~ = cTx ~ 
and is denoted by r Williams [34] introduces the 
pertubation matrix 

in the sense of 

(LPH) max (c + ?a)Tx 

particular, a right) derivative at a = 0. "Such a derivative 
exists if 

(i) there is a (nondegenerate closed) interval [0, so l  in 
the domain off(u) ,  

(iiJf(a) is continuous to the right ofa = 0, 

(iii] the limit 

f ' (0)  = lira 
O: ---~0 + O~ 

exists" ([34], p 84). 

Williams proves then the following theorems: 

Theorem 2.1 (Williams [34]). Let the LP A be given. 
Then necessary and sufficient conditions that the mar- 
ginal value f'(O) o f  the LP A with respect to the perturba- 
tion [-1exists for every [t is that both the primal and dual 
optimal sets of  ft, i.e. the sets S~ and T~ be 
bounded, or equivalently, that the regularity conditions 

R1 w~>0, ATw,<~O=~cTw<O 

for every vector w 

R2 v~>O, vTA>~O~vrb>O 

for every vector v 

be satisfied by ~1. 

Theorem 2.2 (Williams [34]). Let A satisfy the regularity 
conditions R1 and R2, and let ffI be any perturbation 
matrix. Then the marginal value f'(O) o f  A with respect 
to 171 is given by 

f ' (0) = max rain 'Is ( H , x ~  ~ 
x ~176 yO~rO(~) 

s.t. (A + H~) x < (b + 3a) 

x>~O 

and correspondingly for (LPo). He then considers the LP 
generated by (A + a/7/) and defines the function 

f(,~) = ~,(A + ~ 4 ) ,  

which is the known optimal value function (mentioned 
already above - cf. Akgiil [1], see also [4, 14]) with 
respect to the perturbation I)'. The domain o f f (a )  is the 
set of  values of  a for which s~ + a/7/) and T~ + a/7/) 
are not empty. 

The problem to be solved is to determine conditions 
onA such that for every H,f(a) possesses a one-sided (in 

where '.II([1, x ~ yO) is the Lagranglan defined t)3, 

H(A, x, y) = crx + yrb  - y rAx ,  

transformed accordingly to (LPH) above. 

These results are comparable with those by Akgtil [ 1] 
who derived them using convex analysis and applied 
them directly to the degenerate case, and as a particu- 
lar case - with those by Aucamp and Steinberg [2]. 

Conclusions 

Shadow prices and sensitivity analysis results are impor- 
tant information for a decision making process, particu- 
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lady  when the implementat ion o f  an opt imal  result using 
LP fail in the case o f  primal degeneracy in an optimal 
solution. Commercial codes do not  provide the corre- 

sponding information correctly because they are devel- 
oped for nondegenerate cases only.  

For tunate ly ,  several authors noticed these circum- 
stances and it turned out  that ,  in case o f  primal degener- 
acy in an optimal solution to an LP, there are two shadow 
prices for each resource ("selling" and "buying"  one 

unit o f  the corresponding resource) which can be deter- 
mined. Various approaches have been proposed to deter- 

mine such shadow prices. One o f  them, which seems to 

be the most reasonable one and which is a modification 
and combinat ion o f  Akgiil's [1] and Knolmayer 's  [19, 

21] methods,  is described in this paper (Sect. 1). 
There remains, however, some open questions, par- 

ticularly with respect to sensitivity analysis under degen- 

eracy. 
F rom the theory o f  degenerate EP's and the associated 

degeneracy graphs [15, 22] it follows that if  U is the 
number  o f  all bases (nodes) associated with a degenerate 
EP x ~ only a part U~< U is associated with optimal 

tableaux. 
Now the question arises whether the " t rue"  critical 

region A i for k i is really determined by analyzing optimal 
tableaux/~o (see (2.2)) associated with the degenerate 
EP x ~ or whether it is necessary to investigate all 

nodes in the so called N-tree in the degeneracy graph 
[22] or that  a subset o f  the set o f  all nodes associated 
with a degenerate EP should be investigated in order to 

determine Ai correctly.  
Another  question is how to define the critical region 

with respect to changes ofbi or c / unde r  primal degener- 
acy. Namely,  in terms o f  bi(Xz') = bi + Xi, i E { 1 , . . . ,  m}, 
in nondegenerate cases the imperative is to determine 

the critical region A i o f  ~.i such that  for all h i E A i the 
optimal  basis does not  change. In degenerate cases there 
are, however, several bases associated with the optimal 
extreme point .  A proposal how to define Ai under primal 
degeneracy is formulated above (Sect. 2). Note that in 
degenerate cases there are differences between sensitivity 
analysis with respect to b or to c and that there remain 

still open questions. 
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