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CONGRESSIONAL 
COMMITTEE 
ASSIGNMENTS: 
AN OPTIMIZATION MODEL WITH 

INSTITUTIONAL CONSTRAINTS 

Kenneth A. Shepsle-k 

"Scheduling falls more severely than most operations research 
studies into the two groups o£ studies: simple optimally soluble 
examples, and large intractable realistic cases." 

T. A. J. Nicholson 

It has become rather common in the scholarly literature on the United States 

House of Representatives to focus on the activities of the Chamber's subunits - its 
standing committees. Woodrow Witson's intuit ion of nearly a century ago that 
"Congress in session is Congress on public exhibition, while Congress in its 
committee rooms is Congress at work" has been sustained in numerous studies. 

There has been a recent upsurge of interest in the intricate process by which 
members come to be appointed to committees. Empirical studies of the committee 
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assignment process, following Master's (1961) classic piece, have exhausted the data 
of  the public record in detailing matters of  committee personneI. Descriptive 
studies by Achen and Stolarek (1974), Bullock (1971, 1972, 1973), and Clapp 
(1964, Chap. 5), as well as theoretical pieces by Bullock and Sprague (1969), Cohen 
(1974), Rohde  and Shepsle .(1973), Shepsle (1973, 1974), Uslaner (1971), and 
Westefieid (1974), have acknowledged the import  of the committee structure for an 
understanding of Congressional politics and have provided some insight about the 
committee personnel of  that structure. 

While I shall not review the fruits of  this research here, I shoutd, before 
beginning, detail several ways in which this paper differs from the research cited 
above. Although this study is very much an examination of  the committee 
assignment process, it is, first and foremost,  a formal theoretical piece. I have made 
little effort to reproduce the richness of  detail found in other studies; description 
will be a decidedly secondary concern here. Rather I shall be concerned with 
analytical categories and their theoretical consequences. 

Second, the underlying gestalt of  this paper is economic rather than 
sociological. The committee assignment process is viewed as an allocation 
phenomenon in which scarce but valued committee slots are allocated among a 
well-defined clientele group according to carefully specified rules. The sociological 
nexus, expecially between party leaders, members of  the committees charged with 
making assignments, other congressmen, and outside interest groups is given only 
indirect attention. 

Third, though the model presented here is economic and relatively abstract, I 
am fully aware that it is a real institutional process I am studying. I have, 
consequently, a t tempted to defend a middle ground between the highly abstract 
choice-theoretic literature and the often atheoretical descriptive literature on 
Congress. The resulting product undoubtedly does a disservice to both sets of  
studies, but may nonetheless provide an approach that possesses both theoretical 
power and empirical utility. This, in any event, is my intention. 

I. Temporal Sequence of the Committee Assignment Process 

Committee assignments are a party responsibility. Each party has created a 
Committee on Committees (CC) to parcel out committee slots to party members in 
the chamber )  At the beginning of  each Congress the party CCs are faced with the 
task of  filling vacancies in the twenty-one standing committees. 

1The Democratic CC is composed of the 15 (when the Democrats are the majority party) 
Democratic members of the Ways and Means committee. In recent Congresses the Speaker, 
Majority Leader and Chairman of the Party Caucus have been added. They are responsible for 
filling vacancies on all other committees while the entire party caucus fills vacancies on Ways 
and Means. There have been several major changes in this procedure in 1975. The Republican 
CC is composed of one member from each state with some Republican representation in 
Congress. Each member has as many votes as there are Republicians in hFs delegation. As a 
result of this majority ru le -  weighted voting arrangement, Republican appointments are 
dominated by a subcommittee of representatives from states with large Republican delegations. 
The Republican leader chairs his party's CC. 
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Directly following the November election, newly elected and returning 
congressmen submit to their respective CCs their requests for committee assign- 
ments. For newly elected congressmen, the request list is in the form of a 
preference ordering. The typical preference ordering contains three requests (i.e., 
three committees ordered according to preference), though there is considerable 
variation. Some reveal a preference for only a single committee, while others 
rank-order as many as nine committees (see Rohde and Shepsle, 1973). 

For returning members, on the other hand, an informal property right is 
operative: nonfreshmen, whenever feasible, may retain committee assignments held 
in the previous Congress if they wish. If a change is desired, however, a returning 
member may request a transfer to another (presumably more preferable) 
committee, in which case he voluntarily yields his property claim on his previously 
held committee slot; or he may request a dual assignment, in which case he retains 
his previously held slot and is given an additional assignment as well. Only under 
extreme conditions (so long as the property right norm operates) can a returning 
member be forced to resign a previously held committee slot, although an 
occasional voluntary resignation occurs. 

After requests are made lobbying for assignments begins. For some the effort 
is rather casual and uninvolved. For others the effort is much more active. 
Congressmen write letters to members of their CC, setting forth arguments in behalf 
of their requests; pay personal visits to members of the CC, party leaders, 
committee chairmen and their state delegation dean; and solicit letters of 
recommendation on their behalf from their state delegations, from party leaders 
outside the House, and from relevant interest groups. 

At the opening of a new Congress, leaders of the majority and minority 
parties negotiate a committee structure. At this point they determine the size of 
each of the twenty standing committees 2 and the distribution of slots on each 
committee between the majority and minority parties. On each of these decisions 
party leaders are given legislative guidance by the Legislative Reorganization Act 
(LRA) of 1946 and subsequent amendments. That act specifies committee sizes 
(which have consistently been revised upward) and recommends a division of slots 
between majority and minority closely in accord with the party ratio in the 
chamber. The sizes and party ratios on committees negotiated often reflect an 
attempt by leaders to accommodate new demands for committee slots and to avoid 
"bumping" returning members from committees as a consequence of dramatic 
changes in the chamber party ratio (this is the extreme condition, alluded to above, 
in which the property right norm is inoperative). 

The final stage of the assignment process is the actual allocation of slots to 
new and returning congressmen by party CCs. Their final recommendations must be 

2The Committee on Standards of Official Conduct, created in the wake of the scandal 
surrounding Representative Adam Clayton Powell, is omitted from this analysis. Although it is 
the twenty-first standing committee, it appears to have a rather special status that distinguishes 
it from other standing committees. 
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ratified by their respective party caucuses, but this is typically pro forma. 3 
For our purposes, then, the committee assignment process may be char- 

acterized by the following temporal sequence: 
1. the committee configuration in the (t-l) st Congress; 
2. an "exogenous" shock - an election; 
3. the submission of requests by freshmen and returnin:~Congressmen; 
4. the negotiation of a committee structure for the t t Congress, by the 

respective party leaders; 
5. the creation of a committee configuration for the t th Congress by the 

party CCs. 
This temporal sequence suggests that the committee assignment process is, in fact, 
composed of three distinct but interrelated processes, each involving different sets 
of actors (or the same actors in different roles). In order to provide a theoretical 
account of request behavior, negotiated structure, and committee assignments, it is 
necessary to examine actor goals and motives. 

IL Actor Motives 

Elsewhere (Shepsle, 1973) I have provided a rather detailed account of actor 
objectives, focusing on maximizing behavior in an environment of scarce com- 
modities, formal procedures, and competing maximizers. Here I give only a brief 
summary" 
Actor Behavior Obiective 

members submission of requests for initial "good" committee 
committee assignment or transfer assignments 

party negotiation of a committee structure: strategy of 
leaders committee sizes and party ratios "accommodation" 

established 

committee assignments party CC quid pro quos and 
"pipelines" into 
committees 

Since committees lie at the heart of Congressional life, any brief description of the 
actors, their behavior, and the objectives toward which that behavior is aimed is 
bound to ignore relevant institutional details. Nevertheless let me simply observe 
that: 

1) Member requests are motivated by a desire for a "good" assignment, 
where "good" is determined by introspective value judgments, an 
assessment of the likelihood of obtaining a particular assignment, and 
the opinions, advice, and preferences of  interested others, e.g., state 

3For the remainder of this paper Democratic assignments are the focus. Much of the 
model will obviously carry over to Republican assignments, though procedural differences will 
require the rationale for some of the assumptions to be altered. 
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delegations, party leaders, outside advisors. The revealedp@rences of 
members are the culmination of a complex set of  interactions. 

2) party leaders are chiefly interested in accommodating member requests, 
though they do take more particular interest in the money committees 
(Appropriations, Ways and Means) and the agenda committee (Rules). 
The "strategy of accommodation" is succinctly stated by Westefield 
(1974): ". • • committee positions are given the status of a currency, a 
basis of exchange between leaders and followers. The lead- 
e r s . . ,  perceive they can use the currency to accommodate the 
members and thereby induce the members to behave in ways the 
leaders desire. Indeed, the leaders can 'manufacture' this currency and 
add to the resource base at their disposal." 

3) The members of the party CC - the allocation instrument - appear to 
want to induce member cooperation and assistance for their own 
particular projects and aspirations. They, too, attempt to accommodate 
member requests with an eye to eliciting quid pro quo behavior. 

In the next section I present a linear programming model of committee 
assignments. Requests and negotiated structure are taken as exogenous inputs to 
the actual assignment process. Let us turn, then, to a specification of the CC 
objective function and the institutional rules which constrain CC behavior. 

IlL A Programming Model of Committee Assignments 

In the last section I have attempted to specify a context in which actors seek 
to realize goals or objectives. Applicants seek "good" committee assignments; party 
leaders seek "responsive" followers with, in some instances, "correct" policy 
preferences; members of the CC pursue "profitable" trades, bargains, and quidpro 
quos; and other actors, e.g., state delegation leaders, committee chairmen, policy 
coalition leaders, and interest group representatives, through their interactions with 
the principal actors, attempt to influence the latter's interpretations, respectively, 
of "good," "responsive," "correct," and "profitable." Thus goal-seeking is the 
principal mode of behavior and a specific temporal sequence provides the 
behavioral context. 

If  this were all we had - well-defined goals and a specific context - we would 
be limited to a considerable extent in what we could say with confidence. One of 
the fortunate things about institutional analysis, however, is that the feasible range 
of behavior in pursuit of goals is greatly delimited by institutional constraints. 
Some of these constraints are "natural" in the sense that they follow directly from 
a definition of scarcity. Others are simply agreed-upon rules of behavior, e.g., the 
property-right norm. Together these constraints define feasible outcomes. The 
domain of goal-seeking, then, is restricted to a feasible set defined by institutional 
constraints. Our task in this section is to identify these institutional constraints and 
to give them a formal characterization. Before that, some notational conventions 
are stated. 
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Let  M = { 1, 2 . . . . .  m } be a set o f  m appl icants  for  c o m m i t t e e  
assignments.  4 Let  C = { Cl,  c 2 . . . . .  c n } be the set o f  n commi t t ees  pa r t ioned  
in to  the fol lowing subsets: 

E = {c 1, c 2, • • • , c e } is the subset  of  exclusive commit tees ;  
S = Ic - 4 ,  c _ , , , . . . ,  c I is the subset ofsemiexclusive commit tees ;  and 

e~-x e~-z  s l  5 
N = {Cs+l, Cs+ 2 . . . . .  Cn} is the subset  ofnonexclusive  commit tees .  

Final ly  le t  v = (Vl, v 2 . . . . .  Vn) be the commit tee  vacancy vector. The v i are a 
funct ion o f  the elect ion returns and the decisions made at the stage o f  negot ia ted  
structure.  Obviously,  v i • 0 for  all i. 

Define an m x n assignment matrix A with  typica l  e lement  a... The e lement  
ai.. gives the d isposi t ion  o f  the i th congressman vis-a-vis t h e j  th commi t t ee .  I f  aij = 1 

th~n i is assigned to  commi t t ee  j; i f  aij = 0 he is no t  (we havenot ,  as yet ,  in te rp re ted  
values o f  a o ther  than zero or uni ty)  The assignment  mat r ix  A is a formal  

1J 
charac ter iza t ion  o f  a decision by  the CC. 

The CC is no t  unres t r ic ted  in the assignments  i t  can make.  Some o f  these 
restr ict ions,  as I observed above,  are "na tu ra l " ;  o thers  are formal  rules imposed  by  
the Legislative Reorganiza t ion  Act  and its amendments  or by the par ty  caucus. 
Restr ic t ions  fall nea t ly  in to  two categories:  apportionment constraints and service 

restrictions. 

Appoin tment  Constraints: 

[1] The number  of  assignments to the j t h  

[II1 

[III]  

m 

commi t t ee  may  not  exceed vj: E a.. 
i= l  1] 

v.,1 for  all j .  There  are n const ra in ts  o f  this variety.  I f  they are satisfied as 

e~uali t ies then all vacancies are fi l led; otherwise some vacancies remain  
unfil led.  Empir ica l ly ,  vacancies are occasional ly  left  unfi l led (see Shepsle 
(1973, 1 9 7 4 ) ) .  n 
Every congressman must  serve on at  least  one c o m m i t t e e : -  ~ ~ - 1 ,  for  all 
i. j = l  aij 

n 

No congressman is pe rmi t t ed  to  serve on more  than  two commit tees :  j=~l aij 
2, for  all i. 

4As t noted earlier, I focus in this paper on Democratic committee assignments. 
Moreover, it will be less complicated to deal initially with freshmen congressmen. Thus, t do 
not examine committee transfer phenomena. 

5During the 86th through 90th Congresses, the period for which empirical examination 
of this model is conducted (Rohde and Shepsle (1973) and work in progress), the committees 
in each status category were: exclusive: Appropriations, Rules, Ways and Means; semiexcIusi~e: 
Agriculture, Armed Services, Banking and Currency, Education and Labor, Foreign Affairs, 
Interstate and Foreign Commerce, Judiciary, Public Works, Science and Astronautics; 
nonexclusive: District of Columbia, Government Operations, House Administration, Interior 
and Insular Affairs~ Merchant Marine and Fisheries, Un-American Activities, and Veterans 
Affairs. Post Office and Civil Service was changed from semiexclusive to nonexctusive status at 
the beginning of the 88th Congress. Since the time period of this study, Science and 
Astronautics has been changed to Nonexclusive Status and the name of Un-American Activities 
was changed to Internal Security. In the 94th Congress, Internal Security has been eliminated. 
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Service Restrictions: 
[IV] A congressman may serve on at most one exclusive committee; if he does he 

may serve on no other committee, A congressman serving on a semiexclusive 
e 

committee may serve on at most one nonexclusive committee: 3 ~ + 2 
s n j= l  aij 

+ ~ ~ 3 ,  for alli. 
j=e+l aij j=s+l aij 

[V] A congressman may serve on no more than one semiexclusive committee: 

~ 1, for all i. 
j=e+l aij 

[VI] A congressman may not receive a multiple assignment to the same 
nonexclusive committee: a.- ~ 1, for all i, and for j = s+l, , n I j  " ° "  " 

Constraint classes [ I ] - [VI]  define the set of  feasible assignments as specified 
by the formal rules of  the game. For technical as well as obvious substantive 
reasons, one additional class of  contraints is included: 
[VIII] nonncgativity: -aij -~0, for all i and j. 

Having characterized the domain of  feasible A- matrix values formally, I 
conclude this section with a mathematical statement of  the CC objective: the 
management goal. 

Objective Function: Recall that the management goal has the CC attempting 
to maximize the satisfaction of  its applicant clientele by matching, to the extent 
feasible, assignments with requests. Let us, then define a preference matrix P = 
[Pij] ' of  the same order as the assignment matrix A, where 

ii = 1 if applicant i lists committee j in his preference ordering p 
"0 otherwise 

m n 

CC Objective Function: max ~ ~ p..a.. 
A i = l j = l  lj 1j 

That is, the CC's objective is to select a configuration o f  ass ignments-  an A 
m a t r i x -  that maximizes the "correlation" between expressed preferences and 
actual assignments. This is accomplished by the A matrix that maximizes the 
product of  its elements and the corresponding elements of  P. Notice that this 
operational definition ignores the order in which requests are listed, relying instead 
on a crude dichotomy (a committee is either listed or not). This appears to do no 
great disservice to actual data. 

The task, then, of  the CC is to select a matrix consisting of  mn variables so as 
to maximize an objective function linear in those variables, subject to 2ran - ms + 
4m + n constraints linear in those variables. What we have is a linear programming 
problem of a very special sort: it is a variant of  the general assignment problem. 
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IV. Assignment Problems 6 

Assignment problems constitute a general class of  problems concerned with 
the efficient allocation of  indivisible resources. They are treated briefly in most 
linear programming texts, e.g., Gale (1960). A general, detailed survey is provided 
by Motzkin (1956); algorithmic discussions (especially as it relates to the classic 
transportation problem) are found in Balinski (1968), Kuhn (1955, 1956), and 
Tornqvist (1953); relevant theoretical treatments appear in Gale (1956), Heller and 
Tompkins (1956), Hoffman and Kruskal (1956), and yon Neumann (1953); finally, 
applications of  assignment problems include optimal college admissions policies and 
pairing of  marriage partners (Gale and Shapley, 1962), optimal location of  
production facilities (Koopmans and Beckmann, 1957), and exchange economies 
(Shapley and Shubik, 1972). 

In the remainder of  this section I present the simple assignment problem in 
order to motivate the results pertaining to constraints [I]-[VII]  and the objective 
function given in the previous section. The reader is cautioned to observe that the 
simple assignment differs in significant ways from the committee assignment 
problem of  the last section. These differences are spelled out below. Nevertheless, 
the results reported in this section apply to the committee assignment problem as 
well. 

Suppose there is a legislature consisting of  n members and n committee slots. 
Assignments to committees are governed by the following simple rules, where is 
the extent to which the i th individual is assigned to the jtll slot: aij 

(C.1) Each legislator is "completely assigned": 
n 

= 1, for all i, j=l aij 
N 

(C.2) Every vacancy is filled: i=1 ~; aij = 1, for all j. 

(C.3) Nonnegativity: ai~ >~ 0, for all i andj .  

(C.1) through (C.3) define n ~ + 2n constraints, although only n 2 + 2n - 1 of  them 
are independent. Since ~ (.2 aij ) = .~ (i 2 aij ), one of the constraints from (C.1) or 

J J 
(C.2) can be derived from the 2n - 1 others. 

Definition: An assignment is said to be feasible if it satisfies (C.1) through 
(C.3). 7 
The set of feasible points in n 2 - space (since there are n 2 variables a..) is 

characterized by the intersection of 2n - I hyperplanes (C.1 and C.2) with J n 2 
half-spaces (C.3). Since (C.1) through (C.3) require 0 ~ a i j  ~ 1 ,  8 for all i and j, i.e., 

6This section follows the very excellent paper by Koopmans and Beckmann (1957). 
7When t discuss the committee assignment problem the definition of feasibility is the 

same, except (C.t) through (C.3) is repIaced by [I] through [VIII. 
8(C.3) requires nonnegativity. To show that the aij's are bounded from above, assume 

the contrary: ai*i* ~ 1 .  Then from the i *th equation of (C.l) or thej *th equation of (C.2), it 
must be the case }hat some other aij is negative, contrary to (C.3). This completes the proof. 
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the ai.'s are bounded, and since the constraints are linear in the a..'s, the set of  
feasible points is a convex polyhedron. 1.1 

Definition: A vertex (extreme point) of  a convex set is an element o f  the set 
which cannot be expressed as a convex combination of  any two other points 
in the set. 

Extreme points play an important rote in characterizing convex polyhedra. In fact, 
it may be demonstrated that any point in a closed, bounded, convex set is some 
convex combination o f  the set's extreme points. The extreme points play an 
especially prominent role in the problem at hand, as the theorem below suggests: 

THEOREM 1 (Koopmans and Beckmann, 1957): A linear objective 
function defined on a convex polyhedron reaches its maximum at a 
vertex. If  it does not reach a maximum at a vertex, then it reaches a 
maximum at no other point in the polyhedron. If  it reaches a maximum 
at more than one vertex, then it achieves a maximum at every point on 
the face of  the polyhedron defined by those vertices. 
An extremely rigorous proof  of  this theorem is given in Koopmans (1951, p. 

88, note 17). Some geometric intuition wilt give the reader a feel for this result. 
Consider the simple linear system, consisting of  five constraints in two space, 
depicted in Figure 1: 

a 2 , (a) a 2 

\ 

\ [~axlmum 
~ a l  

\ 

~ ~ a x i m u m  

Figure i 
I and It are nonnegativity constraints and III, IV, and V are linear constraints. The 
dotted region - a convex polyhedron - is the feasible set of  values of  a 1 and a 2. 
Projections of  the objective function, which is linear in a I and a2, are also given in 
Figure 1. For any two points on the same projection, the values of  the objective 
function are identical. Any point on a higher projection (one to the "northeast") 
implies a larger value for the objective function than a point on a lower projection 
(one to the "southwest"). I f  the contours of  the objective function are not parallel 
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to any of  the constraint hyperplanes, as in (a), then a unique vertex of  the convex 
polyhedron maximizes the objective function. If, on the other hand, the contours 
are paraUel to a constraint hyperplane (other than the nonnegativity constraints), as 
in (b), then several vertices and the face defined by them maximize the objective 
function. 9 

Theorem 1 tells us that  an optimal assignment, for a given linear objective 
function, occurs at (at least) one of the vertices of  the feasible set. The next task, 
then, is to identify the vertices of  (C.1) through (C.3) and to examine their 
characteristics. 

Definition: A feasible assignment, A, is called a permutation if and only if it 
is a doubly stochastic matrix with aij = 0 or i for all i and j. 
The permutation matrices, for any n, are quite literally the permutations of  
individuals among slots (or slots among individuals). For n = 2 they are 

L 1 0 and 0 1 
0 1 1 0 _  

For any n there are n! permutations. 
THEOREM 2 (Birkhoff, 1946): Let P = {,A 1, A 2 . . . .  A n! } be the 
set of  permutation matrices. A feasible assignment, A*, can be written 
as a weighted average, with nonnegative weights, of  the n! 
permutations: 

n! 
A* = E ~k Ak , 

k=l 
n! 

where )t k > 0, E X k = 1, and Akep.  
k=l  

A proof  of  this theorem is provided by Koopmans and Beckmann (t957,  Appendix 
A). 

Theorem 2 establishes a one-to-one correspondence between the vertices of  
the convex polyhedron defined by (C.1) to (C.3) and the set, P, of  permutations. 
That is, the vertices of  the feasible set are permutation matrices. Together with 
Theorem 1, this has a nonobvious consequence: the maxima (if they exist at all) of  
any objective function, linear in assignments, result in an integral assignment. Thus, 
even if fractional assignments made substantive sense, there would never be any 
need to resort to them. 

The economic consequences of  these theorems, especially as they relate to 
decentralized markets and price systems, are traced by Koopmans and Beckmann 
(1957) and vcill not concern us here. The method, however, will prove most useful. 

9Throughout I do not worry about the existence of optima. The structure of the 
problems with which I am concerned (closed, bounded feasible sets and well-behaved objective 
functions) insures the existence of optimum points. Rarely, however, are these optima unique. 
Thus Figure lb, where multiple optimum points are illustrated, is more typically the case in the 
committee assignment problem. 



C O M M I T T E E  A S S I G N M E N T S  65 

Before returning to the "real world" - I take constraints [I] through [VIII 
and the objective function of the previous section to be a close approximation of 
the "real world" - some major differences between the simple assignment problem 
of (C.1) through (C.3) and the committee assignment problem of the last section 
should be made explicit. First, while it is apparent that the simple assignment 
problem has a feasible set, the same may not be said about the committee 
assignment problem. The simple assignment problem, at the outset, provides n slots 
for n members. The constrainst require the n slots to be allocated so that each 
member receives, in total, exactly a "full" assignment. The committee assignment 
problem, on the other hand, gives no assurances of feasibility. 

Constraints (C.1) to (C.3) of the simple assignment problem suggest an 
extremely simple structure. Because of the simple structure, e.g., the coefficients in 
all constraints equations are zeros and ones, Birkhoff's Theorem readily identifies 
the vertices as the simple permutations. The structure of the committee assignment 
problem is much less simple and elegant - one of the high costs of dealing with real 
institutional processes (see this paper's headnote). It will take considerably more 
analytical effort to achieve interesting results. 

A third important difference between (C.1) and (C.3) and [I] through [VI] 
(excluding the common nonnegativity conditions) is seen at a glance. The former 
are equality constraints while the latter are inequalities. As a result, the committee 
assignment problem opens up an additional possibility: incomplete assignments. 
And empirically (see Shepsle (1973, 1974)) there are numerous instances of 
committee slots !eft vacant by the party CCs. 

Finally, there is the problem of multiple assignments. Constraints [IV] - [VI] 
provide for the possibility of multiple assignments in the committee assignment 
problem. This feature, perhaps more than any other, distinguishes the committee 
and simple assignment problems. 

V. Committee Assignment Problem: Results 

Feasibility Theorem: The condition both necessary and sufficient for 
n 

feasibility is j=~l vj >/m. 

Proof: (1)Necessity. From [I] 

m 

feasibility ÷ Z a.. < v. j = i .... , 
i=l 13 -- J 

+ 
n m n 

r. X a . .  < X v .  
j = l  i=1  13 -- j = l  J 
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From [II], feasibility ÷ 
n 
1 a . .  > 1  

j = l  1 j  - 
i = , . . . ,  m 

-.). 
m n 

E E a . .  > m  
i = 1  j = l  zj  -- 

By transitivity the condition follows and necessity is established. 
n 

(2) Sufficiency: Suppose j=l~ vj ~ m. Then arbitrarily select m of the 

vacancies, assign them (again arbitrarily) one to each i, and leave the remaining 
vacancies (if any) unfilled. [I] and [II] are clearly satisfied, and [III] through 
[VI], which apply to multiple assignments, are trivially satisfied. [VIII, too, is 
satisfied since aij = 1 or 0. Sufficiency is established. Q.E.D. 

I assume m the remainder of this paper that the condition in the Feasibility 
Theorem is satisfied. That is, at the stage of  negotiated structure, allowance is made 
for the number of applicants in the creation of vacancies. Empirically the condition 
is always satisfied (see Shepsle, 1974, Table II). For a similar theorem as applied to 
transportation problems, see Gale (1960, p. 5). 

In order to underscore the complexity of our problem, it is useful, now that 
feasibility problems have been disposed of, to focus on some of  the other features 
that distinguish it from the simple assignment problem. The first is completeness. 

Definition: An assignment is said to be complete if and only if 
m 
£ = i=l aij vj for everyj. 

That is, a complete assignment is one in which each class [I] constraint is 
satisfied as an equality. 
THEOREM 3: For some configurations of vacancies, every feasible assignment 
satisfies some constraint in [I] as an inequality. That is, for some vacancy 
vectors, no feasible assignment is complete. 

e 

Proof A simple example establishes the result. Whenever j=~l vj > m, no 

complete assignment, is feasible (since [IV] is violated otherwise). Other conditions 
rendering complete assignments infeasible are: 

s n 

(1)  E v .  > m (2)  r. v .  > 2m 
j = e + l  J j = e + l  J 

and so on. Q.E.D. 
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Even if we were to suppose that party leaders, at the stage of  negotiated 
structure, at tempt to provide the CCs with a vector o f  vacancies that can be 
completely allocated, the CC objective function may not be compatible with a 
complete assignment. 

THEOREM 4: Even when complete assignments are feasible, they may 
not be optimal. 
Proof'. An example illustrates this result. Let us suppose that only three 

committees have vacancies: v = (re, Vs, Vn) = (2, 3~ 3), where c e,. c s, and c n.are, 

respectively, exclusive, semi-exclusive, and non-exclusive. Let M = | 1,2,3,4,5 } be 
the members seeking assignments. Their requests are recorded ifi ~ the folloMng" 
preference matrrix: 

e S n 

1_ IO 1 1 i o i o P=~ 0 0 1 
4 0 i l 5__ I I 0 

Notice that c 
S 

assignment (not necessarily 
is in excess demand whereas c e is in excess supply. An optimal 

unique) is 

e s n 

I J 
1 0 1 1 
g o I o 

0 0 i 
i o 1 1 
s_ 1 o o 

A O = 

For this assignment v(A °) = ~ ~ o _ • Pijaij - 7. A quick glance at P should convince the 
i j  

reader that A ° does indeed maximize v( ') .  Only eight preferences are expressed in P 
and one of them (in the s column) is impossible to satisfy because of  a supply 
constraint (v s = 3); therefore, at most  seven requests may be satisfied and A °, 

above, does precisely that. Notice that A ° is i ncomple t e -  ~. ale = 1 < v  e. All 
1 

complete assignments require assigning a nonrequestor to c e and removing him 
from at least one committee he requested and received in A °. Consequently, 
complete assignments reduce the objective function. Q.E.D. 

A summary to this point is in order. Having given the necessary and sufficient 
condition for feasibility (Feasibility Theorem), I have demonstrated that for some 
vacancy configurations no complete assignment is feasible (Theorem 3). For others, 
complete assignments may be feasible, but they are not optimal (Theorem 4). These 
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results have underscored three important characteristics of  the assignment process: 
feasibility, completeness, and optimality. One last charac ter i s t ic -  that o f  an 
integral assignment - is considered in Theorem 5. But first two important lemmas. 
Their proofs are straighforward so they are omitted. 

LEMMA 1: Any convex combination of complete assignments is itself a 
complete assignment. 
LEMMA 2: A complete assignment is either a convex combination of  
complete assignments or it is an extreme point. 

We have not, to this point, restricted the aij's to zero or one (though substantively 
this is all that makes sense). In fact, in the simple assignment problem, Theorem 2 
demonstrates that integral assignments emerge as a consequence of  goal-seeking 
behavior. It  is, however, somewhat more problematic in the committee assignment 
problem. 

Definition: An assignment is said to be integral if aij = 0 or t for all i 
and j. 

Clearly, if nonintegral A's are extreme points (vertices) of  the polyhedron C(A), 
defined by [I] through [VII] ,  then they will be optimal for some objective 
functions (see Figure 1). Unfortunately, 

THEOREM 5: For some vacancy configurations, nonintegral points are 
extreme. 

Pro@ Suppose there are two committees with three vacancies, an exclusive 
committee with one slot (Ve=l) and a nonexclusive committee with two slots (Vn= 
2). Let m = 2. By the Feasibility Theorem, feasible assignments exist. With these 
parameters, however, no integral assignment is complete: either one applicant 
receives the exclusive slot and the other one of  the nonexclusive slots ([VII 
prohibits him from receiving both) or both receive nonexclusive slots ([IV] 
prohibits an applicant from serving on any other committee if he receives an 
exclusive committee slot). Yet there do exist nonintegral complete assigninents: 

applicant 

committee 

C C 
e n 

'1 
where 1/3 ~ X ~ 2/3. Note that [IV] is satisfied by both applicants. From Lemma 
2 a complete assignment is either a convex combination of  complete assignments or 
is an extreme point. In either case, some nonintegral points are extreme. In fact, 

E,x 11j E E 1 i/3 i 2/3 i 
X = Xl 2/3 i + 22 1/3 I 
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where X 1 = 2-3X and X 2 = 3X-l, and the latter two A-matrices are extreme points. 
Q.E.D. 

We must conclude, then, that nothing in the structure of  the problem 
precludes fractional assignments. The example in Theorem 5 is our first sure 
illustration that nonintegral assignments may qualify as extreme points. 

At this point there are several possible courses of  action. One is to move away 
from the general linear programming model, opting instead for a more restrictive 
approach: integer programming. A second, and I think more appealing, course of  
action is to draw on a descriptive feature alluded to earlier. Most descriptive studies 
of  committee assignments indicate that freshmen are rarely assigned to exclusive 
committees. Moreover, when freshmen are assigned to these committees, it is 
typically at the behest of  the party leadership. Since more senior members are often 
co-opted to serve on exclusive committees, since the leadership plays an active role 
in recruiting for these committees, and since freshmen are rarely involved in 
exclusive committee recruitment, it makes sense in a study of  freshmen assignments 
to separate out the process by which exclusive committee vacancies are filled and 
focus, instead, on the remaining committees. Hence: 

e 

ASSUMPTION h j=~l vj = 0 

This assumption has a very salutary effect as seen in the following 
consequence, With Assumption 1, constraint [IV] becomes 

s n 

2 g a.. + E a.. < 3 i = I, ..., m 
j=e+l ij j=s+l 1j -- 

which, in turn, may be written as 

s n 
?. a . .  + r. a . .  < 3 i = 1 . . . . .  m 

j = e + l  1 j  j = e + l  1 j  - -  

e 

Moreover, since ~ = 0 by Assumption 1, the second term on the left-hand side 
is recast: j= l  aij 

s n 
[IV*] E a.. + X a.. < 3 i = i, ..., m. 1 j  1 j  -- 

j =e+l j =I 

But this is simply the sum, for each i = 1 . . . . .  m, of  constraints [III] and [V].  This 
result and its consequence are given in Lemma 3 and Theorem 6. 

LEMMA 3: Let X be the set of  points satisfying the system of 
constraints 

n 

(I) ~ ~ij x. < Yi i = I, .. m. 
j=l 3-- " ' 
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Then X satisfies 

(2) 
n 
Z Bj x. <b 

j=l 3-- 

m m 

where Bj = i=lZ 1.I a'ZJ" ' b = i=iZ liYi ' and 1.i- > O. 

Lemma 3 simply asserts that any point satisfying a system of constraints (1) also 
satisfies any nonnegative linear combination of those constraints. 

Pro@ Suppose x = (x 1 . . . . .  Xn) is a point in X satisfying (1). Then 

~ijx'3 < Yi i = i, .... m 
3 

Multiptyingby t.1: ~. t.C~.11j j - - x  < t i y  i i = 1,  . . .  , ra 
J 

E t . c ~ . . x .  < 
• . 1 x j  j - -  . t i Y i  
J_ ] 3_ 

E x (Z X.a. ) < Z Xiy i 
j J i i lj -i 

Z S j X .  < b  
• ] - -  

] 

and (2) is satisfied. Q.E.D. 

THEOREM 6: The convex polyhedra C(a) and C'(a), defined by [I] 
through [VII] and [I] through [III] - [V] through [VII], 
respectively, are identical. 
Proof: By Assumption 1, [IV] becomes [IV*]. In particular, for the k th 

applicant (i = k), [IV] becomes: 
s n 
r + r. < 3. 

j=e+l akj j=l akj -- 
But, for the k th applicant constraints [Ill] and [V] are, respectively: 

n 

r akj < 2 and 
j=l 
s 

2 a k j  <_ 1 
j = e + l  
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Letting [III] and [V] represent the constraint system (1), [tV*] represent 
constraint (2), and the relevant ~k's be unity, Lemma 3 establishes that [IV*] is 
satisfied by all points in C'(a); hence it is identical to C(a). Q.E.D. 

The salutary effect of  Assumption i is the following: tile class [IV] 
constraints are redundant (Theorem 6). Not only is the magnitude of  the problem 
reduced with the elimination of these m constraints; as is seen below, precisely the 
"right" constraints have been eliminated, i.e., class [IV] turns out to be the culprit 
that permits fractional extreme points. 

LEMMA 4 (Hoffman-Kruska l ,  1956): If, in a system of linear 
inequalities with integral coefficients and constant terms, every 
non-singular square submatrix of  the coefficient matrix has determinant 
+ 1, then every extreme solution is integral. 
Lemma 4 provides a useful sufficient condition for the determination of  

integral extreme points. Notice that [ I ] - [ I I I ] ,  [V]-[VII]  is a system of  linear 
inequalities with integral coefficient and constant terms. Also note that  a necessary 
condition for a system to satisfy the premises of  the Iemma is that every coefficient 
be 0, +1, or -1 (since each coefficient is a minimal, i.e., 1 x 1, submatrix of  the 
coefficient matrix). This is true of  the committee assignment problem by virtue of  
Assumption 1 and Theorem 6; otherwise the coefficients of  [IV] would have 
violated the premises of  Lemma 4. 

The property that every submatrix of  the constraint coefficient matrix have a 
determinant of  0, +1, or -1 is known as the unimodular property ( H o f f m a n -  
Kruskat, 1956). 

We have, in effect, replaced one problem with another. Lemma 4 tells us 
when a constraint system has integral extreme points. We need, however, some 
means of determining if the premises of  Lemma 4 are satisfied. The next two 
lemmas and a definition provide such a strategy. 

LEMMA 5 (Heiler-Tompkins, 1956): Let A be an m x n matrix whose 
rows can be partit ioned into two disjoint sets B and C, with the 
following properties: 

(1) every column of  A contains at most two non-zero entries; 
(2) every entry in A is 0, +1, or -1; 
(3) if two non-zero entries in a column of A have the same sign, then 
the row of  one is in B, and the other in C; 
(4) if two non-zero entries in a column of A have opposite signs, 
then the rows of  both are in B, or both in C. 

Then every minor determinant of  A is 0, +1, or -1. 
Definition: A matrix B is said to be Dantzig sufficient for A if A is 
unimodular whenever B is. 

That is, B is Dantzig sufficient for A if, after determining that B is unimodular, it is 
necessarily the case that A is unimodular too. 

LEMMA 6: Dantzig sufficiency in transitive. 
This Lemma follows directly from the previous definition. It  asserts that if B is 
Dantzig sufficient for A, and C Dantzig sufficient for B, then C is Dantzig sufficient 
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for A, 
My stragegy is as follows: beginning with the constraint coefficient matrix 

defined by [ I ] - [ I I I ] ,  [V]- [VII ] ,  a series of  Dantzig sufficiencies are employed to 
produce a matrix to which Lemma 5 is applied directly. With its unimodularity 
established, it follows from" Lemma 6 that the original constraint matrix is 
unimodular and, from Lemma 4, that every extreme solution is integral. 

These results and proofs are found in the Appendix. They allow us to state 
two summary theorems: 

THEOREM 7: The extreme points of  C are integral. 
P r o @  This follows from Assumption 1, Theorem A, and Lemma 4. 

THEOREM 8: Any linear function of  assignments is maximized at an 
integral assignment. 

Pro@ This is a direct implication of  Theorems 1 and 7. 
Theorems 7 and 8 are important. Along with the Feasibility Theorem, they 

characterize "three of  the four important features of  the committee assignment 
problem: feasibility, integral assignments, optimality. These theorems notwith- 
standing, however, Theorem 4 should not be forgotten. Some of  the integral 
extreme points represent incomplete assignments. 

In fact, a simple corollary of  Theorems 1, 4, 7, and 8 is: 
COROLLARY: The extreme points of  the convex polyhedron C, 
defined by [I] - [ I I I ] ,  [V] - [VII] ,  are a proper subset of  all 
"permutations" of  complete and incomplete assignments. In parti- 
cular, every integral assignment, in which at least m vacancies are 
filled and distributed in accord with the remaining contraints, is 
optimal for some objective function. 

Thus, for even moderate m, n, and v, the number of  extreme points is large 
indeed. 10 

VIII. Discussion 

This essay has begun the task of  mapping the operating characteristics of an 
important institutional process. The theoretical posture articulated in the first few 
sections emphasized goal-seeking or maximizing behavior in a context in which 
feasible behavior is constrained by institutional rules of  the game. In the latter part 
of  this essay I have abstracted away much empirical detail (though I have tried to 
persuade the reader, on the basis of  evidence, that the formulation here is 

10In Shepsle (1974), a computing formula is given for the number of extreme points as a 
function of the parameters m and n and the particular distribution ofvi's. To give an example, 
there are nineteen 87th Congress Democratic freshmen (m = 19) applying for 30 vacancies (~.vj 

= 30) on l i  committees (n = 11). With these parameters there are approximately 1.28 x 1319 
extreme points. These points are located in a space of dimehsionality mn= 209. 
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reasonable) in order to capture the basic interaction between goals, constraints, and 
characteristics of outcomes. I shall not review the results here; the reader may wish 
to reread the principal theorems. 

The next t a s k - o n e  that proves the ultimate worth of the preceding 
methodology-  is to tease out some behavioral consequences. The first thing to 
note in this regard is that, formal constraints notwithstanding, there is an 
unimaginably large number of options available to the party CCs (see Shepsle, 
1974). The discretionary authority of the party CCs, that is, is impressive - hence 
their "clout" in Congressional life. Having said this, it is all the more surprising to 
report that the simple optimizing model proposed here works remarkably well. 
Cohen's recent analysis (1974), as well as the author's own empirical work in which 
the objective function value of actual assignments reaches as high as 80% of 
optimal, suggest that it is the technological incapacities of the actors, not serious 
model misspecifications, that account for the deviations between actual and 
optimal. Second, the work of Rohde and Shepsle (1973) that inspired this model 
(also see Achen and Stolarek (1974)) i~rovides substantial empirical support for the 
optimization paradigm proposed here. Finally, elsewhere I have exploited some 
results from duality theory in mathematical programming (see Shepsle, 1973, 
Theorems 10, 11, 12, and 13) to deduce consequences related to the shadow prices 
associated with committee slots. It will be interesting to see whether these "prices" 
play a signalling role to the party leadership akin to the roles ordinary prices and 
shadow prices play in market and planned economies, respectively. 

The strategy of analysis employed h e r e -  conceptualizing goals and con- 
straints in a formal structure and deducing consequences - is limited and 
incomplete. Its ultimate worth depends on further theoretical and detailed 
empirical examinations. It does, however, have the virtue of turning attention away 
from descriptive detail at particular points in time and toward general institutional 
operating characteristics. In this fashion, I believe, we will secure more realiable 
knowledge about institutions and, for the normatively inclined, learn how to 
change them or design better ones. 
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Appendix 
Establishment of  The Unimodularity of  The 

Convex Polyhedron C(A ) 

Before beginning this task, it is convenient to transform the system to matrix 
notation. 

Instead of  writing assignments as a matrix A = [a..], it is convenient to write 
it as a column vector (which I call a) by attaching thlJe rows in A end-to-end in 
sequence: 

a '  = [ a l l  . . .  a l n a 2 1  . . .  a 2 n  . . .  am1 . . .  amn] 

Similarly, the weight matrix P = [Pij] is written as a row vector: p = [ P l l '  P12' 

. . . .  P ln '  P21' P22' " " " ' P2n . . . .  ' P m l '  Pm2 . . . . .  Pmn]" Write the coefficients 

from the constraint inequalities as rows of  a matrix C and, finally, write the 
constant terms of  the constraint system as a column vector: 

d '  = [ V l , . , . , v m , - 1 , . . . , - 1 , 2 , . . . , 2 , 1 , . . . , 1 , 1 , . . . , 1 , 0 , . . . , O ]  

[ I ]  [II] [III] [V] [ V I ]  [VII] 

Notice, that class [IV] has been eliminated. For convenience semiexclusive 
committees are now indexed c l , . . ,  c s, and nonexclusive committees C s + l , . . . ,  c n 
(i.e., there are still n committees indexed). 

The committee assignment problem may now be written as a primal linear 
programming problem in matrix form: 

max p • a 

a 
C" a<d. 

subject to 

The constraint system for five applicants and seven committees (three semiexclusive 
and four nonexclusive) is illustrated in Figure 2. 

LEMMA A: The matrix composed of  coefficients from [I] and IV] is 
Dantzig sufficient for the entire constraint coefficient matrix, C. 

Proof: (a) Let C 1 be the submatrix o f  C with the mn rows defined by [VIII 
deleted. C 1 is Dantzig sufficient for C: the coefficients o f  [VIII appear as mn rows, 
each of  which has (ran-l) entries of  zero and one entry of-1.  Consider an arbitrary 
(k x k) sumatrix, K, o f  C, one (or more) of  whose rows is from [VIII : 

case I : The column of  this row with the -1 entry is in K. Then compute Det 
(K) by expanding along this row. Det (K) = -Det (K1) where K 1 (in C1) is the 
(k-l) x (k-l) submatrix of  K with the type [VIII row and the column in 
which the -1 appears deleted. Since type [VIII constraints affect the 
determinant by a factor o f - l ,  if K 1 is unimodular, so is K. 
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Figure 2: Polyhedron Defined By Constraints (Minus (4)) For Five 
Applicants, Three Semiexclusive Committees and Four Nonexclusive Committees* 
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case 2: Now the column of  the type [VII] constraint row with the -1 entry is 
not in K. The row, then, is composed entirely of  zeros. Cleraly if K 1 (as 
defined above) is unimodular, so is K. 

Together these two cases establish the proposition and the nan type [VIII rows may 
be deleted. (b) By Theorem 6, the submatrix C 2 of C 1 with the m type [IV] 
constraints deleted is Dantzig sufficient for C 1. 

(c) Let C 3 be the submatrix of  C 2 with the m rows of  [II] deleted. C 3 is Dantzig 
sufficient for C2: since any row of [II] ,  say the r th (1 d r  ~ m ) ,  is the negative of  
the r th row of  [ III] ,  any submatrix of  C 2 containina both has a zero determinant. 
Moreover, any submatrix of  C 2 containing the r th row of [II] and the s th row (s 4: 
r) of  [III] has a determinant differing only in sign from the submatrix containing 
the r th and sth rows of  [ I II] .  Therefore, if C 3 is unimodular so is C2, and we may 
delete the type [II] coefficients. 

(d) Let C 4 be the submatrix of  C 3 with the m rows of  [III] deleted. It  is easy to see 
(consult Figure 2) that any row of  [III] is simply the sum of the appropriate row of 
IV] and the (n-s) appropriate rows of  [VI].  By virtue of  this linear dependency 
(and the detailed reasoning set forth in Hoffman and Kuhn, 1956, pp. 205-206), C 4 
is Dantzig sufficient for C 3. 

(e) Let C 5 be the submatrix of  C 4 with the m (n-s) rows of  [VII deleted. By 
reasoning identical to (a), C 5 is Dantzig sufficient for C 4. C 5 is an (m + n) x mn 
matrix whose elements are the coefficients of  classes [I] and [V] exclusively. Since 
Dantzig sufficiency is transitive by Lemma 6, C 5 is Dantzig sufficient for C. Q.E.D. 

It  is now possible to prove 
THEOREM A: The constraint matrix C is unimodular. 

Proof: By Lemma A attention is focused exclusively on the coefficients in [I] and 
[V]. It is shown that this matrix (C 5 of Lemma A) satisfies the Heller-Tompkins 
condition of  Lemma 5. Condition (4) is trivially satisfied since no coefficients in 
[I] and [V] are negative. Condition (2) is satisfied since all coefficients are 0 or +1. 
Observe in [I] - the reader may wish to consult Figure 2 - that each column has 
excactly one non-zero element. In [V] each coIumn has at most one non-zero 
element. Therefore, in C 5 no column has more than two non-zero elements. Hence, 
(1) is satisfied. Finally, to satisfy (3) simply partition C 5 into C~ and ~5"" The 

former is the n x mn matrix defined by [I] alone; the latter is the m x mn matrix 
defined by [V] alone. With (1)-(4) of  Lemma 5 satisfied, C 5 is unimodular. By 
Lemma A, C is unimodular. Q.E.D. 
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