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Many consider spatial analyses of party competition, inagurated by Downs's 
classic An Economic Theory of Democracy,1 as a "take-off" point for political 
science in the attempt to describe and explain the reciprocal relationships between 
~ublic policy and the process by which democracies select public policy makers, 
i.e., elections. Although numerous case studies and empirical generalizations exist 
which purport to describe these relationships, the obvious complexity of 
democratic processes necessitates formal deductive analysis for any adequate 
general understanding of  them. Spatial analyses, rooted in the economic concept of  
rational action, seek to provide the requisite rigor of formulation. This rigor is 
accompanied by the derivation of inferences concerning the logical imperatives 
toward the organization of policy outcomes (i.e. what policies are forced by the 
structure of  public opinion and from party competition), and toward stability in 
such systems. Spatial research, therefore, focuses on two objectives: (1) increasing 
the deduc t ive  rigor o f  descriptions of democratic processes, and; (2) 
accommodating the assumptions of spatial models with empirical fact. Neither of 
these objectives is obtainable, however, without incurring some cost. 

Davis and I-Iinich, for example, extend the Downsian model to include 
multi-issue elections, and the mathematical rigor of their analyses yield a variety of 
nonobvious theorems, unobtainable through previous, and less regorous, 
formulations. 2 The incurred cost, however, is their assumption that all eligible 
members of the electorate vote - a serious limitation of the applicability of their 
model to the real world. Similarly, Garvey formalizes the citizen's calculus and 
provides a more explicit description of the causes of rational abstention with 
reference to the candidates' strategies.3 The costs of this formalization, however, 
are: (1) retention of the unidimensional assumptidn, and; (2) a decrease in 
deductive rigor (compared to the Davis and Hinich analyses). 4 

The cause of these incurred costs is easily identified: mathematical reasoning 
grows more complex and difficult as deductive rigor increases, as assumptions are 
generalized and stated more explicitly, and as these assumptions are made more 
consonant with empirical fact. This leads us to the objective in this essay - we 
attempt to recoup some of the costs incurred by previous analyses. We postulate a 
calculus of electoral behavior more general than Davis and Hinich's, and more 
rigorous than Downs's or Garvey's. This calculus assumes that a citizen either votes 
for a preferred candidate, or he abstains if sufficient incentives to vote fail to exist. 
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Theorems deduced from this model describe the equilibrium behavior of 
candidates (who are assumed to be maximizing plurality), where equilibrium 
implies that neither candidate has any incentive to adopt an alternative strategy 
while his opponent remains at an equilibrium point. Thus, equilibrium strategies are 
minimax in the game theoretic sense. In this essay we determine necessary and 
sufficient conditions for the existence of pure equilibrium strategies when 
preferences are distributed unimodally across one or more issues (see T1, T2, and 
T3). Briefly, a sufficient condition for the existence of an equilibrium is the 
symmetry and unimodality of  the density of preferences, so that the equilibrium 
point is the mean of the density (see T1). Furthermore, for any unimodal density, 
if an equilibrium exists it is a singular point, i.e., the candidates should converge 
(see T4). We then describe a candidate's plurality maximizing strategy when his 
opponent "fails to adopt a dominant strategy, and we conclude that the candidate 
should adopt a strategy near or at the mean of the density of preferences whenever 
his opponent is near of "far" from the mean (see T5, and T6). Hence, Tullock's 
conclusion that "an extremist candidate can pull a vote-maximizing opponent far 
off toward the extremist's desires" when all eligible citizens vote is not valid when 
nonvoting in the form of alienation is permitted. 5 Finally, we consider the effects 
of variations in the cost of voting (see T7). Assuming that the cost of voting either 
is raised or lowered uniformly throughout the electorate, the values of equilibrium 
strategies are unaffected ff the density of preferences is unimodal and symmetric, 
but ff the density is not symmetric the values of such strategies are affected. Thus, 
although it is obvious that electoral outcomes dan be manipulated if inequities are 
generated in the costs of voting by such measures as intimidation and poll taxes, 
electoral outcomes similarly may be sensitive to "democratic" variations in such 
costs., 

We start with the definitions and assumptions employed in this analysis. Let: 

x=(xl , x 2 .. . . .  x n ) denote the real vector of a citizen's preferred policy 
positions for each of n issues. 

0=(01 , 02 ..... On) denote candidate O's real vector of policy positions for 
each of n issues. 

~t=-(~l , ~2 ..... ~bn) denote candidate @'s real vector of policy positions 
for each of  n issues. 

f (x) = f (Xl, x2 . . . . .  Xn) denote the joint multivariate density function 
of preferences where f (x) is continuously differntiable and defined for all 

xeRn. Without loss of generality we assume E(Xl) = E(x2) = E(Xn) = 0. 

(x - 0) denote the multivariate loss function translating spatial distance 
between a citizen's preferred policies and the policies of a candidate whose 
position is 0 into an inverse utility function (0 ~ (x - 0) < ~ ). 
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~" denote the utility a citizen derives from voting such that, if and only if ¢r 
> 0, he votes, and, if and only if lr d 0 ,  he does not vote. 

Al though these variables are mathematically exact their substantive 

interpretation is less precise. First, the vector x is stated to represent "a vector of 
preferred policy positions." Citizens, however, may not know their preferred 
policies. In order to facilitate the analysis mathematically, however, we assume that 
the electorate behaves as if each citizen estimates a preferred vector and employs it 
in his calculus of voting behavior. This assumption is somewhat less objectionable if 
the "policy" dimensions are interpreted as general dimensions of taste so that party 
identification and personality (image) are included in x as well as the traditional 
measures of governmental outputs (e.g., tax policy, unemployment, interest rates). 
Additionally, we assume that each dimension is continuous. Stokes, for example, 
objects to this assumption because many issues appear to be discrete (i.e., only a 
finite number of spatial positions are avialable). 6 Obviously our assumption is an 
abstraction - made, however, to facilitate the analysis. 

Discrete dimensions suggest that the candidates either cannot readily change 
spatial position (e.g., party identification, religion), or that a single, easily 
identifmble, position is dominant (i.e., Stokes's "valence" issues). The absence of 
cardinal dimensions, therefore, frequently implies fixed spatial policies - the 
candidates are unable to vary e or 4 during a campaign. Generally, candidates 
overcome a disadvantage or take advantage of Ftxed spatial positions by employing 
alternative means of influencing the electorate (e.g., varying uncertainty or the 
saliency of issues). Since we are concerned solely with the analysis of spatial 
strategies, however, we assume cardinal measures of policy or taste. 

Additionally, we assume that all citizens are identical except for the value of 
their preferred policy vectors. Hence, we assume that ,all citizens make identical 
estimates of 0 and 4. Empirically we know this assumption is incorrect 
- cognitive dissonance and ignorance generate diverse estimates of 0 and 4- 
Furthermore, candidates attempt differentiated appeals which, ideally, would 
consist of convincing each citizen that the candidates advocate his or her preferred 
policies. Candidates, however, require modern, mass oriented campaigns, and can 
not attain this ideal. If, therefore, we conceptualize ~ and 4 as those strategies 
which candidates advocate through the mass media (i.e., when differentiated 
appeals are impossible or impractical), our assumption is less objectionable.7 
Similarly, optimal or equilibrium strategies are interpreted as the policies candidates 
should actvocate publicly when differentiated appeals cannot be made. 

The citizen's calculus is defined now by the assumptions which relate 0 and 4 
to the loss and to ¢c. We assume that ~b (x - ~) is a monotonic function of the metric 
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where A is a positive definite nxn matrix. If this loss matrix A is identical for all 
citizens, there exists a linear transformation of  the dimensions such that A is the 
identity matrix I in the transformed space. Thus, with no loss of generality we 
assume, 

n 

( x -0  ) = q~ q=Gl( x i-Oi )2) 

where ~b is monotonic (and clearly the loss function satisfies q~ (x - 0) = ~b (0 - x) ). 
This is a related but weaker assumption that Davis and Hinich's,,They assume that 
the loss function is the convex and quadratic form [[ x - 0 lily In Figure la we 
represent a unidimensional quadratic loss function. Note that a convex loss 
function such as the quadratic implies marginally increasing loss with [[ x - 0 11. In 
Figure lb we represent an alternative loss function satisfying our assumptions. 

Hence, our assumptions permit marginally increasing and marginally decreasing loss. 

With these definitions and assumptions we formulate the citizen's rule of 
candidate choice: 

If a citizen votes, he votes for 0 if and only if ¢ (x - 0) < ¢ (x - I~), or he 
votes for @ if and only if ~b (x- 0) > 4  (x- @). 

The citizen's calculus, remains incomplete, however, without specification of 
a decision rule for voting as against abstaining. Specifically, the relationship 
between 7r and the candidates' strategies must be considered. We assume that U, the 
deterministic factor in It, is a decreasing monotonic function of the loss derived 
from the policies of  the preferred'candidate. Additionally, we assume that 7r is 
affected by stochastic factors, represented by e where E (e) = 0, and the density of 
e is integrable. Consider a citizen preferring 0 to ~. The citizens's utility from 
voting, 7r, is expressed (assuming that 0 is the preferred candidate), 

(1) ~r = u (x, 0) + e 

where U (x,0) is decreasing monotonically with ¢ (x - 0). The variable 7r is a random 
variable with expected value U (x, 0). The probability that ~r > 0 equals the 
probability that e > -  U (x, 0). Assuming that the density of e is independent of x 
and 0, this probability is expressed as a function of ~b (x- 0), or, simply as 
g (x - 0). 8 Hence, g (x - 0) = Pr [ i f > 0 ] .  
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It is easily seen that g (x - 0), the probability that the citizen votes if his 
preferred policy vector is x, and his preferred candidate is 0, is symmetric about 0. 
To prove symmetry consider two citizens, the first preferring the policy vector 0 + 
6, and the second preferring the vector 0 - 6. Their respective losses from /9 are 
,~b(0+6)-0)  = ~b(5), a n d ~  (0 -  6 ) -  0) = ~b(-6). Since ~bis assumed to be 
symmetric, however, ~(6) = ~b(-~i), so that U(0 + 6, 0) = U(0- ~, 0). Therefore, g(0 + 
6 - 0) = g(6) = g(0 -5- 0) = g(-6), and g(x 0) is symmetric. 

This property is clarified by examining explicit formulations of  U (x,/9). 
Confider the unidimenfional case when e is absent (i.e., the variance of e equals 
zero), and U (x, 0) is expressed, 

(2) u (x, 0) = A -  C ~ (x - 0) 

(A and C are arbitrary positive constants). Obviously expression (2) satisfies our 
assumption that U (x, 0) is decreasing monotonically with ~ (x - 0). Further, U (x, 
0) is positive for ~b (x - 0) ~ A / C ,  equals zero for ~b (x - 0) = A/C, and is negative for 
all ~b (x - 0) ~ A/C. For any fixed 0, assume that ~ (x -0) = A/C if the distance 
between x and 0 equals 6 ~ 0. Hence: all citizens preferring policies such that this 
distance is less than 6 vote with probability equal to one, and all citizens preferring 
policies such that this distance is greater than or equal to 6 vote with probability 
equal to zero. For expression (2) and n=l,  g (x, 0) is represented in Figure 2. 
Observe that if, for example, n = 2, g (x -0) is a cylinder with diameter 26 and 
center at 0. 

Assuming that e has a non-zero variance smoothes g (x - 0). A general form 
for g (x - 0) when n = I is illustrated in Figure 3. 

Including e in our expression for the value of voting, therefore, permits us to use 
the continuous calculus without loss of generality. 

Expression (1) requires that g (x-O) = 1 for x = O, and lim g (x- O) = O, as 
tlx-Oll * ~ . Alternative expressions, however, can constrain g (x - O) to more 
limited ranges. In our analysis, therefore, we assume simply that the range of  g (x - 
O) conforms to the convention of probability numbers and does not exceed the 
interval [0, 1]. 

Before turning to the analysis of  the candidates' strategies a few comments 
are in order concerning the assumption that U (x, 0) varies inversely with ~b (x - 0). 
Observe that, in Figure 3, the greater the discrepancy between a citizen's preferred 
policy and the policy advocated by the citizen's preferred candidate, the less likely 
he is to vote. In the limiting case where Var (e) = 0 (Figure 2), the citizen is 
interpreted as having a range of  "tolerance," 28, which, if the discrepancy between 
x and 0 is greater than 8, he abstains. Thus, our assumption concerning non-voting 
captures the intuitive meaning of  the word "alienation." 
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Obviously, alternative assumptions are available, such as assuming that U 
varies monotonically with I q5 (x - 0) - ~b ( x - 4) 1. This latter assumption conforms 
closely with our intuitive understanding of the term "cross-pressures." While the 
relative importance of alienation and cross-pressures is unknown, both affect 
electoral behavior, and, therefore, optimal campaign strategies. Riker and 
Ordeshook, for example, conclude that the subjective differential in utility 
between two candidates remains an important determinant of turnout after other 
discernable effects are controlled.9 Alternatively, Pool e t  al. observe that the 
cross-pressure hypothesis fails to account fully for fluctuations in turnout.10 
Consider, for example, two citizens, both perceiving little or no difference between 
0 and 4. The first citizen, however, suffers no loss from 0 or @ while the second is 
greatly dissatisfied with both. It is unreasonable to suppose that the second citizen 
votes with a probability equal to that of the first. Neither alienation or 
cross-pressures, therefore, can be eliminated as a cause of variation in turnout. 

We select a single, identifiable, relationship between turnout and strategy, 
however, for two reasons. First, alienation is an important strategic consideration. 

The rise of third parties, the appeals of demagogic candidates, and the success of 
these appeals, for example, can be traced to the effects of alienation. Second, our 
assumption permits manageable analysis. If both causes of non-voting are posited 
simultaneously, additional a priori assumptions are required concerning their 
interrelationship. We posit, therefore, a somewhat restrictive model, but we derive 
from it important and nonobvious results. 11 

Turning now to the analysis of strategies, the candidates' objective functions 
must be specified. Downs assumes that candidates and parties wish to attain office, 
and, therefore, maximize votes. The conclusion that candidates maximize votes, 
however, does not follow from the assumed objective of retaining or obtaining 
office. Specifically, a candidate must consider how many ~otes his opponent 
receives in addition to the number of votes he receives. We assume, therefore, that 
candidates maximize plurality. 

Vote maximization and plurality maximization are distinct criteria for 
selecting strategies. The first does not imply a zero sum game while plurality 
maximization, in effect, interprets electoral competition as two person, and zero 
sum. Hence, equilibrium and optimal strategies may be sensitive to this assumption. 
In fact, it can be shown that, although preferences are distributed symmetrically 
and unimodalty, vote maximizing candidates should not converge necessarily to the 
mean, but plurality maximizing candidates should converge. The relevant criterion 
for selecting strategies depends on the context of the election. 
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In one party dominated states, for example, the payoff of electoral 
competition to minor parties is patronage. Frequently, the amount of patronage is a 
function of the total vote claimed by the candidates of the party. Similarly, 
precinct and ward leaders of major as well as minor parties might maximize votes in 
their districts to secure their positions within the party hierarchy. However, in 
closely contested elections, or in elections where both candidates have some chance 
of winning, simple vote maximization loses its relevance. Whenever the rewards of a 
campaign are determined by the closeness of the vote and by who wins, a 
candidate's objective is to maximize his plurality. 

The objective can be expressed in terms of our assumptions about individual 
voting behavior. First, the probability that a randomly selected citizen votes for 0 
is, in vector notation, 

(3) v c  0, ~) = f f (x)  g ( x - O ) d x  
S 

where S ={ x: q~(x-0) < 4 ( x - ~ )  } If candidates maximize plurality, they 
should maximize the probability that a randomly selected citizen votes for/9, minus 
the probability that the citizen votes for @. This objective function is expressed, 

(4) P(O,~)=  f f ( x )  g ( x - O ) d x - f  f(x) g(x-@)dx 
S s 

In this essay we are concerned primarily with determining necessary and 
sufficient conditions for equilibrium. With our assumptions about abstention, we 
prove, for the class of symmetric, unimodal, multivariate f (x), the following: 

(T1) a ur.ique pure equilibrium exists at the mean of f (x), 

where by symmetry we mean f (x) = f (-x). The general proof of this statement is 
contained in Appendix A1. For clarification, we present here a proof of this 
statement when n, the number of issues, equals 1. 

Without loss of generality assume that 0 ~ @. Since the loss functions are 
assumed to be symmetric, all citizens preferring policies to the left of ( 0 + ~0)/2 
prefer 0 while all citizens preferring policies to the right of (0 + ~ ) / 2  prefer 1~. 
Hence, equation (4) becomes, 
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Consider now the rate of change of P (0, 4) with respect to a change in 0, and 4 
constant. Differentiating equation (5) with respect to 0 and integrating by parts, 

(0 + 4) I z 
(6) ap (0, 4)/~0 = f e (x7 g (x- 0) 

_ o o  

where f' (x) = df (x)/dx. 

Let candidate 4 select the mean, 0, o£ f (x) as his strategy. Since f (x) is 

symmetric the mean equals the mode, and f' (x 7 is positive everywhere in the range 
of integration of equation (6). Therefore, since g ( x - 0 ) is everywhere positive, 

aP (0, 4)/no > 0, and candidate 0 increases his plurality by moving towards 4. 
Furthermore, lira P ( 0, 0 )= 0 from the symmetry of £ (x) and g (x - 0). Therefore, 

0 ÷ 0  

if both candidates converge to the mean, neither has any incentive to adopt an 

alternative strategy. Stated differently, the mean dominates all aiternative 

strategies. Furthermore, since the candidates tie after converging to the mean, and 
since f (x) has but a single mean, the mean is a unique pure equilibrium strategy. 

This result, and the more general resuk concerning multivariate f (x), 

emphasizes the importance of the mean on the ideological organization of electoral 

conflict. Davis and Hinich demonstrate the dominance of the mean when all 

eligible citizens vote. Our analysis proves that the mean continues to dominate the 

strategic considerations of the candidate when abstentions from alienation are 

permitted. 

Previously, we assumed that ~b/&9 is identical for alt citizens. Since &~/a0 

can be interpreted as the relative saliency of each issue (recalling that ~b/~0 is a 
vector in the multidimensional caseT, this appears to be a highly objectionable 
assumption. We know that citizens do not all weight the issues in an identical 
fashion. However, it is easily shown that i£ &/~/ao is not identical for all citizens, the 
mean remains the dominant strategy under certain general conditions, tf ~b/~0 is 
distributed independendy of f(x) so that, for any specific value of &~/B0, the 
relevant density of preferences is symmetric, unimodal, and with zero expected 
value, the mean of f (x) is the dominant strategy for the entire population. Stated 
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differently, if  we classify citizens on the basis of  the value of  8~/Sfl, and if the 
density of  preferences for each class of  citizens is unimodal and symmetric, the 
mean of each density is an equilibrium strategy for that density. Whenever these 
means are identical, the common mean is the equilibrium strategy for the entire 
population. 

When abstention from alienation is introduced into the analysis, however, one 
conclusion derived from the Davis and Hinich model is reversed. Specifically, it is 
not necessarily the case that a strategy close to the mean dominates a strategy 
further from the mean.12 A simple counter example is sufficient. The contour lines 
for a bivariate, symmetric, unimodal density are represented graphically in Figure 4. 
The line PP' bisects the  space of competit ion into S and S, with # further from the 
origin, 0, than ~ (i.e., candidate 0 is further from the mean than candidate 1~/). 
Finally the contour lines of  g (x-  0) and g (x -1~) are represented such that turnout 
falls rapidlysas one moves from # or ~. 

It is obvious from this diagram that candidate 0 wins even though the mean, 
0, is in-S. Candidate ff cannot take advantage of his relative closeness to the mean 

as a consequence of the correlation between x l  and x2, and the sensitivity of 
turnout to spatial distance. Candidate ~'s dilemma is rendered more apparant if we 
assume that only those citizens preferring ~ or 0 vote. Obviously 0 wins since he is 
at a higher contour line. We conclude, therefore, that a strategy close to the mean 
dominates a strategy further from the mean, in general, if g (x-  0) and g (x-  I~) 
equal constants (e.g., all eligable citizens vote), or if the issues are uncorrelated (i.e., 
if the contour lines of  f (x) form concentric circles). 

Turning now to the general class of  unimodal densities, (i.e., nonsymmetric 

f (x ) ) ,  we are forced to restrict our focus. Specifically, we consider unidimentional 
competit ion only (i.e., n = 1). For this class of  densities, however, we define 
necessary and sufficient conditions for equilibrium and some general results about 
optimal strategies. First we introduce some additional notation and definitions. 

Let 

(7) 

P 
o 

P 
0 

( o < ¢ )  -- ~ p ( o , ¢ ) / ~ o , o <  

( o >  4,/ -- ~P (o, 4,) / ~o, o > ¢  

We define the interval [Pl,  P2] such that, 

Po(O<ff )>  o, for all 0<¢~<p2 
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(8) P o ( 0 > ~ ) < 0 ,  for all 0 > @ ~ p  1 

and p2 (pl) is the maximum (minimum) value satisfying (8). This interval is known 
to exist for any unimodal f(x); at least the mode satisfies equation (8). 
Furthermo re, if, 

Po( 0 % ~ ) ~ > 0 f o r a l l  0 < ~ , t ~ d i e  P2 = ~' and if 

P o ( 0 > ~ ) < 0  for all0 > ~ ,  takePl . . . .  

Additionally, we define the set of points { x * } such that 

(9) 
X 

O 
4: f f(x) g(x-xo*) dx= ff(x) g ( x - x o )  dx 

_cx~ 

X o 

where X*o e {x* }. Thus, from (9), lira P (0, ~) = 0, if and only if @e Ix* 1. 
0 + 6  

Stated differently, if @ ~ { x*} , l~mP (0, ~) ~ 0. Hence, if candidate @ adopts a 

:g ' 

strategy in the set { x }, P (0, ~) goes to zero as 0 converges to t//, and if ~ is not 
in the set { x* } , ' a  sharp discontinuity appears in P (0, ~) at 0 = ~. This is 
illustrated in Figure 5 for a symmetric density and the g (x - 0) described in Figure 
2. For ~ = 0, the mean of f (x), lim P (0, ~) = 0 by symmetry. However, for @ ~ 0 

0÷~ 
(l~'in our illustration), lira P (0, ~) 4:0 by symmetry. 

0+~ 

Observe that, if f (x) is symmetric the median is always a point in the set { x* } . 
It is easily shown that at most one point in the set { x* } can exist in the 
interval [Pl' P2]" We now can prove that, 

(T2) if Pl ~Xq ~ P2' Xo is a pure strategy equilibrium. 

Finally we conjecture that aP (0, l~)1~0 equals zero at most once for any 
fixed ~, and 0 < ~ (or for any 0 > ~). This conjecture is shown to be true for the 
case where e = 0 in Appendix A2. We now state the necessary condition for 
equilibrium for the class of unimodal, univariate f (x). 



:llm V(O,#) 

~,=o ~ , = , '  

X 

FIGURE 5 



ELECTORAL PROCESS 95 

(T3) a necessary  condition for the existence of a pure strategy equilibril~m is 
Pl ~<x; ~< P2" The equilibrium strategy is Xo, and is unique. 

The proofs of these two theorems are presented in Appendix A3. Observe that it is 
possible for the set of all unimodal, univariate f (x) failing to satisfy the condition * 
Pl ~ Xo < p^ to be a nutl set. Until this possibility is eliminated, however, the 
researcher or tee campaign strategist can conduct parametric analyses by computing 
PI' P2 and x ;  for any specific density and compare their values. 

An important corollary to the previous result is the following: 

(T4) if a pure equilibrium exists it is an identical point for both candidates. 

Stated differently, if an equilibrium strateg 3, exists, the candidates converge to the 
same strategy. This corollary follows from the definition of the interval [Pl' 
p2 ] - one and only one x~ can exist in this interval. Downs's assertion, 
therefore, that the candidates should converge if preferences are distributed 
unimodally appears valid. Note, however, that the set of densities for which 

{ x* I lies outside the interval [Pl' P2 ] may not be empty. Hence, the 
generality of I3owns's assertion is subject to further analysis. 

Assume now that one candidate, say ~, fails to adopt any x;£{ x~}" 

Candidate 0 may now attempt to maximize his plurality instead of minimaxing. 
However, we prove the following: 

(TS) if Pl ~<Xo ~<P2' Pl ~< ~ ~<P2' ~ 4=Xo' then no maximizing strategy exists 
for candidate 0. 

Thus, if candidate ~ adopts a policy in the interval [p. D~], and ~ 4 :x ; ,  for any 
J, ~ Z  

strategy 0 there exists a strategy 0' such that P (0' ~ ) ~  P(0, ~J), i.e., 0' is better 
than 0. To prove this note that from the definition of [~1, P2], candidate 0 should 
converge towards 1~. However, from the definition of x o,. and the condition that 

4= x o , lim P (0, ~) 4: 0, as 0+~. Hence, 0 = l~ dominates all strategies either to the 
right or left of ~ (Figure 5). Without loss of generality assume 0 = ff dominates all 
0 > ~. Candidate 0, therefore, should adopt some strategy to the left of t~. Assume 
he adopts the strategy 0 = @ - 6, where 6 is some arbitrarily small positive number, 
such that ~ -  6 dominates ~. But ~-  6/2 dominates ~-  6, since Po (0 < ~) > 0 .  In 
fact, for any 8, a better strategy exists between ~-  8 and l~. Therefore, no strategy 
exists which maximizes plurality. 
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This conclusion, of course, results from the mathematical properties of the 
limit of P (0, I~) as 0 approaches ~. Observe that if g (x - 0) equals a constant (e.g., 
all eligable citizens vote), Pl = -~ and p^ = ~. Ill principle, therefore, if abstentions 

Z 
are not permitted such as in the Davis and Hinich analyses, no maximizing strategies 
exist. We should be cautious, however, and avoid placing too much significance 
on this result. In the real world, the uncertainties and inertia of the electoral 
process probably prohibit such fine mathematical arguments. Instead, candidates 
are likely to attempt to "get close to" their opponent and leave it at that. 

If, however, ~ ~> P2 or < P l '  maximizing strategies exist, and an interesting 
and important relationship between ~ and the maximizing value of of 0 is observed. 
Specifically. we prove 

(T6) 
:¢ 

if Pl ~ Xo ~< P2' for ~ > P 2 '  a maximizing strategy exists for candidate O. 
If ~' and ~" are two strategies such that ~' > ~" ~'P2'  with O' and 0" the 
corresponding maximizing strategies, then O' <~ 0" ~ P2" 

A parallel statement can be constructed for ~./ < Pl. While the proof of this 
assertion is relegated to Appendix A4 its interpretation is of interest. Briefly, for all 

in the interval [Xo, p ) ] ,  candidate fl should converge towards - but not 
identically to - ~. As ~)* increases beyond P2' however, candidate 0 can now 
maximize his plurality by decreasing 0 from P2' (It can be shown that in the limit 
as t~ + ~, candidate 0's maximizing strategy equals the mean if f (x) is symmetric.) 

In Figure 6 candidate O's maximizing strategy is plotted against I~, for ~ 
x;,  O ~ l~ (this figure should be interpreted as suggestive only). 13 

This description of the behavior of the maximizing 0 with respect to 1]/is 
not without analogues in the real world. It is generally assumed, for example, that 
Senator Goldwater alienated many segments of the American electorate in 1964 

(and his percentage of the vote suggests this). Additionally, President Johnson was 
not simply attempting to win, but to build a concensus and win by a landslide (i.e., 
maximize plurality). The combination of Goldwater's strategy and Johnson's goal 
explains the logic of a consensus strategy which consists of advocating x o. By 
becoming estranged from the bulk of the electorate, Goldwater permitted Johnson 

to maximize his plurality by appealing to the bulk of the electorate. If Goldwater's 
policies had not been so radical, and if Johnson still sought to maximize his 
plurality, it seems safe to say that Johnson would have been drawn towards 
Goldwater's positions. Adoption of x o , therefore, maxmnzes plurahty either when 
the candidates are closely matched or when one candidate advocates extreme 
policies. 
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Consider now the effects of raising or lowering the cost of voting uniformly 
throughout the electorate. 14 If a citizen's cost of voting is raised the utility derived 
from voting decreases, and, ceteris paribus, his probability of voting, g (x - 0), is 
decreased. Hence, a citizen's probability of voting is decreased (increased) if his 
cost of voting is raised (lowered). In terms of the function g (x -/9) illustrated in 
Figure 2, ~ bears an inverse relationship to the cost of voting, ceterisparibus. With 
this relationship between the cost of voting and the probability of voting we prove: 

(T7) If the cost of voting either is raised or lowered uniformly throughout the 
electorate, 

(i) the equilibrium strategy is unaffected if f (x) is a symmetric unimodal 
density, and, 

(ii) the equilibrium strategy is affected, in general, if f(x) is not a 
symmetric density. 

The proof of (i) follows directly from (T1). I f f  (x) is symmetric and unimodal, the 
mean is the equilibrium point for all g (x - 0) satisfying our assumptions. To prove 
(ii) observe that the definition of x * (equation9) is a function of f (x), and 
g (x- 0). It is easily seen that, in general, x o varies as g (x - 0) varies for 
non-symmetric f (x). And, from (T2) and (T3), if an equilibrium exists it is x o. 
Hence, if f (x) is not symmetric and if an equilibrium exists, this equilibrium varies 
as the cost of voting varies. What remains unclear at this point is whether or not the 
existance of an equilibrium is sensitive to the cost of voting. 

Conclusions 

The results reported in this paper, obviously, do not represent a complete 
model of electoral competition. Other than unimodal densities require analysis, and 
alternative causes of nonvoting must be considered (e.g., cross-pressures). Deductive 
theories, however, are developed incrementally, and, hopefully, our results 
contribute to the theory of social choice. Determining conditions under which 
equilibrium or dominant spatial strategies exist is equivalent to determinin~ 
conditions under which individual preferences yield social welfare functions. 13 
Arrow's Inpossibility Theorem states that, in general, no such function exists. 16 
Similarly, Black demonstrates that, for n > 1, quasi-convex preferences are not 
sufficient for dominance.17 Davis and Hinich prove, however, that if preferences 
are distributed symmetrically and if loss functions are symmetric and quadratic, a 
dominant strategy exists. We augment the theory by weakening their assumptions 
about loss functions and assume that losses are symmetric and quasi-convex. We 
then prove that, if abstentions are permitted, if they are assumed to be caused by 
alienation, and if the density of preferences is symmetric and unimodal,the mean 
remains the dominant strategy. 
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Suppose that we restrict the domain of competition between 0 and 4 to the 
line 0 = c4  which passes through the origin. By a rotation of the axis it is possible 
to transform this line onto one of the axis, say Xl. Both candidates, therefore, 
choose the median preferred position of the population of issues 2 through n 
(which have been normalized to zero for convenience). 

Since the loss matrix is the identity, the rotation of the axis leaves the loss 
function ~ invarient, i.e., also in the new coordinate system, ¢ (x - 0) = 

n 

¢ ( ~ (x i - 0i)2 ). Thus, since g (x - 0) is a function o f f ,  g (x- 0) depends only on 
i=1 

n 
(x i - 0i )2, where x i and 0 i are measured in the rotated coordinate system. 

i=1 
Additionally, assume that 41 is also equal to zero (the mean). Assuming without 
loss of generality that 01 ~ 0, equation (4) becomes, 

01/2 

CA1) P(0, 4)= T T x 2, - , g  -,,o " "_oo 0 ( x l  . . . . .  Xn)  

go (Xl - 01' x2 . . . . .  Xn) dXl dx2" " "dxn 

- ] ' . .  )" foc'l,' . . . . . .  Xn> 
. . . .  0112 

go (Xl' x2 . . . . .  Xn) dxl  dx2" " "dxn 

where fo is the density function of preferences in the new coordinate system and go 
is the respective abstention function. Obviously ff f and g are symmetric, fo and go 
are symmetric. 

Simplifying discussion, consider now the bivariate case. Furthermore, 
consider citizens who derive an identical loss from 0, say ~o (x - 0), or an identical 
loss from 4, say go (x- 4), where go (x- 0) = go (x- 4). The preferences of these 
citizens are characterized by two circles on the x I x 2 plane, one, say C, who's center 
is 0, and the other, say D, who's center is 4 = 0 (these preference contours are 
characterized by circles since A is the identity matrix). This situation is depicted in 



g(x-@) = go 

FIGURE 7 
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Figure 7, where some contour lines for f (x) are also represented. (The circles are 
represented as intersecting but an identical argument applies for nonintersecting 
preference contours.) 

From the definition of our abstention function all citizens on the solid 
portion of  these circles vote with identical probabilities, say go, Obviously, these 
are the only citizens who vote with probability go. Now consider the point Pc on C. 
If  we draw a straight line from Pc through the origin 0 this line eventually intersects 
D at Pd. Extend this line to P'c such that the distance Pc 0 equals the distance 0P' c. 
From the unimodality and the symmetry of  f (x) we know that  f (Pc) = £ (P'c)" 
Furthermore, from the circularity of  the abstention function contours, the distance 
Pc 0 (or 0P'c) is greater than the distance 0P d. Finally f (Pd) ~ f (Pc) from the 
unimodality and the symmetry of  f (x), and the fact that Pc, P'c, and Pd lie on a 
straight line passing through the origin. If  0 4: ~J = 0, f (Pd) ~ f  (Pc) for any Pc and 
Pd lying on a line passing through 0, and Pc a point on C for citizens preferring 0 
and Pd a point on D for citizens preferring 0. With respect to citizens voting with 
probability go, therefore, the mean, 0, dominates all 0 4: 0. Obviously this is true 
for any (i.e., all) go, 0 ~ go ~ 1. Hence, as in the univariate case, the median 
dominate all alternative strategies, and, being unique, is a unique equilibrium 
strategy. 

APPENDIX A2 

As evidence supporting our conjecture consider, first, the two limiting cases 
for g: (1) g = c, a constant for all x, and (2) g = 0 for all x @ ~ or 0, and g = c, for x 
= ~J and 0. For case 1, with 0 <~ ~J. 

Op (0, ~)/~0 = c 
(0+ ~)/2 0+ ¢ 

f f' (~) dx = cf ( T )  

Since f (x) is everywhere positive, 0P/00 is always positive. For case (2) 0P/~0 
becomes cf '  (0). Since f '  (x) = 0 only at the mode, OP/00 vanishes at most  once. 

Now consider a rectangular abstention function such as that shown in Figure 

2, namely, 

g ( x - 0 )  = a, foral l  x < -  8, 6 > 0  

g ( x - 0 )  =c,  foral l  0 - 6 ~ x ~ 0 + 6 

g ( x - 0 )  =a ,  foral l  x > 0 + 8 
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where 0 ~<a < c  ~ 1 ,  and 2 6 is the width o fg  (x-/9). 

The function aP (/9, ~)/~/9 is expressed , 

/9-6 0 +  6 
aP(/9,@)la0 = a f f ' (x) d x + c  f f ' (x) d x + a  

- ~ / 9 -6  0t6  
f '  (x) dx 

= a f ( / 9 - 6 ) - - c f ( / 9 - 6 ) + c f ( / 9 + 6 ) - a f ( / 9 + 6 )  

(A3). = (c-a)  [f( /9+8) - f ( 0 - 6 ) ]  

whenever /9+6 < (0+~//)/2. Or, whenever /9+6 ~ C 0 + ~ ) / 2 ,  

/9- 6 (/9+~)/2 
~P(/9,~)/~/9 = a f f ' (x) d x + c  f f ' (x) dx 

-~  /9-6  

(M) .  = cf ( (/9 + ~)/2)  - (c-  a) f (/9- 6) 

We need only consider/9 where (/9 - 6) < 0  (assume the mode of f (x) equals 0), and 
(0 + 6) (or (/9 + ~/)/2) > 0 .  Otherwise ~P/a/9 is either strictly positive or negative. 

Consider first equation (A3). The sign of aP/B0 is determined by the relative 
magnitudes of f C 0 + 6) and - f (0 - 6). The term f (/9 + 6) is monotonically 
decreasing as/9 increases since f' (x) is everywhere negative in the relevant range of 
f(/9 + 6). Similarly, - f (19 - 6) is monotonically decreasing as/9 increases since f' (x) 
is everywhere positive in the relevant range of f (19 - 6). Hence BP/B/9 is 
monotonically decreasing as/9 increases. 

Similarly, for equation (A4), both f((0 + @ / 2), and - 'f ( 0 -  8 ) are 
monotonically decreasing as 0 increases. Hence, ~P/ae is positive for all 0 +6 < 0  
and decreasing thereafter, and can vanish at most once. 

APPENDIX A3 

First, it is obvious from the definition of the interval [17t, I72] that such an 
interval exists and is unique. Now, to prove that 171 ~X*o"-<1?~, x*,~{ x* } , i s a  
sufficient condition for equilibrium assume that the conditio~ is satisfied. If ~ = 
x* o candidate/9 should converge identically to ~. This follows from the definition 
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of [Pl, P2] and X*o in that if either candidate adopts a strategy in this interval his 
opponent should converge towards him. Furthermore, convergence should be 
absolute whenever this strategy is x* o since the Limit of candidate 0's plurality 
approaches zero as 0->~ = X*o. Stated differently, if ~/= X*o, and 0 & ~/, candidate 
0's plurality is less than zero. Hence, x* o dominates all alternative strategies and is 
the equilibrium. 

To prove that P l  ~X*o ~ F 2  is a necessary condition for equilibrium assume 
x o e t X  ~ S eciflcall , assume that that this condition is not satisfied for any . . . p y 

some x o exists m the interval (P2' ~)" Obviously x o dominates all strategies 
greater than X*o. But from the assumption that Po goes to zero at most once and 
that x o > P2' P (0 ~ ~ = Xo) < 0 for an interval to the left of x o. Hence some 
strategy to the ~e * " * ft of x o dormnates x o. Assume candidate 0 adopts one of these 
strategies so that 0 < x*. 

We now have two cases: (1) 0 ~ p . ,  (2) 0 < P l "  For case (1), candidate 
should converge towards 0. If, in the limit 1as ~ + 0, plurality goes to zero, candidate 
0 by the previous argument should adopt some other strategy to the left. If, 
however, plurality does not approach zero as ~2 ÷ 0, the candidate leapfrog back to . 
x o and the cycle resumes. 

For case (2) it is obvious that candidate 0 should not shift to the left so that 
(0 + ~)/2 is less than the mode of f (x). Otherwise, f '  (x) and g (x - 0) are positive 
everywhere in the range of integration of equation (6) and he decreases plurality by 
decreasing 0. For equivalent reasons, ff (0 + ~2)/2 is greater than the mode of f (x), 
candidate ~ should converge towards 0 at least until (0+~)/2 equals the mode. Now 
it is easily shown that if (0 + @)/2 equals the mode of f (x) at least one candidate 
has an incentive to converge some distance towards his opponent so that (0 + ~0)/2 
no longer equals the mode. To prove this, consider equation (6). Since OP (0, @)/a0 
is positive for (0 ÷ ~)/2 equal to the mode and decreasing thereafter, as well as 
continuous, it goes to zero and becomes negative for some (0 + ~)/2 greater than 
the mode. Hence, if the candidates are originally located symmetricaUy about the 
mode of f (x), candidate 0 (and, from an equivalent argument, candidate ~) should 
shift toward ~//(0), The candidates continue this process of adjustment until 0 = 
+- 6. If the plurality goes to zero as 6*0, from the previous argument, some strategy 
to the right or left of ~ dominates ~ and the cycle resumes (if only one x* o 
satisfies equation (9) the range of intransitive strategies is to the left of x* o in this 
example). If plurality does not approach zero as 6~0, the candidates leapfrog to 

* • * • • • 

some. x o and the cycle resumes. Hence, if x o IS not m the interval [p I_,P?] and 
X*o > p~, no equilibrium exists. A parallel proof can be constructed for X*o < P l "  
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APPENDIX A4 

The proof of this statement rests on the fact that if Po(0<4) goes to zero at 
most once for any 4, then Po(0 < ~) goes to zero as 0 ÷ 4 = P • To prove this 
assume the converse, specifically that Po(0 < 4) goes to zero as 0 ~24 for some 4 2> 
P By definition of the interval [p , p ], P (0 < 4) must now be tess than zero 2" 2 o 
for some 0 ~ 4 (otherwise 4 woul~ be said to satisfy 4 ~p - ) .  It must also be the 
case, however, that for some 0 < 4, Po (0 < ~) 2>0, such as a~ for which (0 + 4)/2 
is less than the mode of f(x). And since Po is continuous it must equal zero for 
some 0 < ~. Hence, it follows that Po vanishes at least twice, in violation of our 
conjecture. A parallel proof can be constructed for Pl" 

Now consider two ~, 4' > ~"  2> P2" From equation (6) it is easily seen that 
Po (0 < ~') < Po (0 < ~"). Stated differently, as 4 increases, Po decreases for any 
fixed 0 greater than the mode of f(x). Furthermore, from the previous discussion 
we know that Po(0 = P2 < i/)) < 0. Hence for some smaller values of 0, say 0' and 
0", we find, 

Po (0' < 4') = 0 

Vo (0" <~")=  0 

By our conjecture we know that only one such 0' and 0" exist. Furthermore, since 
Po decreases as 4 increases, 

Po (0" < ~') < Po (0" < ~") = O. 

Hence 0 must be reduced from 0" to 0' as ~ increases from 4" to ~' to make Po = 
0. Parallel arguments can be developed for ~ < P l "  QED 
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