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Summary. We have evaluated the effect of rabies virus infection on interleukin- 
l~x (IL-100 production and its receptors in mouse brain. Study of virus dissemina- 
tion in the central nervous system (CNS) showed a massive infection of main 
brain structures from day 4 post infection (p.i.) up to the agony stage, on day 6 p.i. 
At the same time, IL-lcx concentrations increased in cortical and hippocampal 
homogenates, whereas no change was detected in serum. In non-infected mice, 
IL-10~ binding sites were observed in the dentate gyrus, the cortex, the choroid 
plexus, the meninges and the anterior pituitary. During rabies virus infection, 
a striking decrease in IL-lcx binding sites was observed on day 4 p.i. with 
a complete disappearance on day 6 p.i., except in the pituitary gland where they 
remained at control level. In conclusion, concomitantly with the early rabid 
pathological signs, brain IL-lcx production and IL- la  binding sites are specifi- 
cally and significantly altered by brain viral proliferation. These results indicate 
that IL-I~ could be involved in the brain response to viral infection as a mediator 
and could participate in the genesis of the rabies pathogeny. 

Introduction 

During rabies infection, immune response seems to contribute to the disease 
process [1]. Infection of the central nervous system (CNS) induces minor 
histopathological changes [2, 3], but impairment of several brain functions have 
been hypothesized to be at the origin of the fatal issue of the disease [4]. Rabies 
infection is characterized by a predominant invasion of the majority of neurons 
of the CNS [3-5], but with minor and inconstant cell loss [2, 5]. Rabies induces 
inflammation of the CNS associated with gliosis reaction and perivascular 
lymphocytes infiltration [for reviews see 6]. In the periphery, an overproduction 
of adrenocorticotropic hormone (ACTH) and glucocorticoids due to an alter- 
ation of hypothalamo-hypophyseal axis have been described [7]. This dys- 
regulation is likely to be responsible for the alteration of the immune parameters 
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and the immunosuppression. These effects have been related to the critical role of 
cytokines produced in plasma and brain [8, 9] during viral infection. 

Cytokines are key regulatory mediators involved in the host response to 
immunological challenge, but also in brain injury and in the communication 
between the immune and central nervous systems [-10]. Their expression in both 
systems are under a tight regulatory control. However, under pathological 
conditions, a dysregulation may lead to an overproduction of cytokines. In this 
context, it has been shown that cytokines are important effectors of the inflam- 
matory reaction of the CNS and the associated-encephalopathy (for review see 
[,11]). One of the cytokines known to play an important role in the CNS 
functions and hypothalamo-pituitary-adrenal (HPA) axis regulation is the inter- 
leukin-1 (IL-1). This interleukin is important both by being a major cytokine of 
the immune system and by its widespread neuroendocrine action (for review see 
[,,12]). During inflammation, IL-1 produced in the brain is involved in the 
activation of the HPA axis by stimulation of corticotropin releasing factor (CRF) 
[13-15], and secretion of ACTH [,16, 17] leading to suppression of the peripheral 
immune response [18-22]. An important role for IL-1 in brain and pituitary 
functions is also suggested by the presence of specific IL-1 receptors (IL-1Rs) in 
various structures of the mouse brain: the anterior cortex, the granular and 
molecular cell layers of the dentate gyrus (hippocampal formation), the choroid 
plexus, the meninges and the anterior pituitary [23-25]. All together, these data 
suggest a role for endogenous IL-1Rs/IL-1 synthesis in the brain during the 
host-response to infection process. 

Therefore, in the present study, we have monitored IL-1 ~ production and the 
modification of IL- lcx binding sites in the mouse brain during the course of rabies 
infection, for a better understanding of the role of this cytokine in the rabies 
pathogenesis process. 

Materials and methods 

Animals 

Adult male Balb/c mice (6 weeks-old) were purchased from IFFA CREDO (Lyon, France). 
The animals were kept under controlled light conditions in which the light period was from 
07:00 am to 07:00 pm. Food and water were available ad libitum. Each mouse (3 mice per 
group) received bilateral inoculations (0.05 ml) of fixed rabies virus suspensions containing 
5 x 107 mouse intracerebral lethal doses0/ml (MICLDso/ml) into the muzzle (masseter). 
Under these conditions, the terminal phase occurred at 6 days post-infection (p.i.). 

Virus 

Rabies virus CVS strain (challenge virus standard) was prepared as a 20% homogenate of 
infected mouse brain in saline, aliquoted and frozen at -80 °C at a viral titer of 5 x 107 
MICLDso/ml. This strain, which derives from the original Pasteur strain, was maintained in 
rabbit brain by successive passages. Virus titers were calculated by intracerebral inoculation 
into 14-16 gram Swiss mice as described by Kaplan and Koprowski [26] using the technique 
of Reed-Muench. 
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Interleukin-1 ~ assay 

Interleukin-ls concentration was measured using an enzyme linked immunosorbent assay 
(InterTest-laX mouse IL-la ELISA kit, code 1900-01: Genzyme, Cambridge, U.S.A.). The 
assay has a sensitivity in the range of 15 pg/ml and an intra-assay reproducibility in the range 
of 6.0%. Blood samples were collected at different time intervals. The serum was obtained 
following 5 min centrifugation at 4000 rpm, aliquoted and kept at - 8 0  °C until use. At the 
same time intervals, brains were collected, and the cortices and hippocampi were dissected 
and homogenized at 4 °C in 1 ml of phosphate buffer saline (PBS) [CaC1 e 0.7 mM, MgSO¢ 
0.8 mM] for 30 seconds. The homogenates were centrifuged for 5 min at 10 000 rpm at 4 °C 
and the supernatants were atiquoted and kept at - 80 °C. The assay was performed in 96-well 
microplates. The results were obtained by lecture on a standard scale and were expressed in 
pg/mg of protein after protein dosage by a Coomassie assay (Pierce). 

Brain slices 

Animals were sacrificed by exposure to CO 2 at day 1, 3, 4 and 6 p.i. (agony stage at day 6). 
Brains and pituitaries were removed, frozen on dry ice, and stored at - 80 °C until use. The 
brains were sectioned using a cryostat (Bright, Huntingdon, UK) (15 ~tm thickness) and 
mounted on gelatin-coated slides. Brain sections were selected at level A:2 600 and A:I 500 
according to a mouse stereotaxic atlas [27]. The slides were used either for IL-I~ binding 
experiments or for staining with rabies-specific fluorescent conjugate for observation of 
virus-infected neurons. 

Immunofluorescence 

The sections were fixed in acetone ( -20  °C) and stained with an antirabies nucleocapsid 
antibody coupled with ftuorescein isothiocyanate (FITC) conjugate (Sanofi Diagnostic 
Pasteur, France) for 60min, then washed in PBS and mounted in Elvanol (DuPont de 
Nemours, France), as described previously [28]. The sections were examined through an 
ultra-violet IM35 Zeiss (lena, Germany) microscope equipped with a video-camera (Lhesa, 
Cergy-Pontoise, France) which allows contrast enhancing for simultaneous observation of 
rabies fluorescent loci and determination of anatomical structure. The microscope was 
further equipped with a hard-copy printer (Sony, Japan) delivering contrast-enhanced 
pictures of the video signal. 

Binding experiments 

Binding of radio-labeled human recombinant IL-1 a (h 125I_IL_ 1~) was performed by quanti- 
tative autoradiography. The slide-mounted sections were preincubated 15min at room 
temperature in PBS (pH 7.4), then in RPMI-1640 containing 1% of bovine serum albumin 
and 0.15 nM h 12 sI.IL _l ~ (350 000 cpm/ml, Amersham, Les Ulis, France) at room tempera- 
ture for 2 hours. Non-specific binding was assessed with an excess of unlabeled hIL-l~ 
(10nM) added to the incubation buffer. Following incubation the sections were washed 
5 minutes in PBS buffer at 4 °C for (repeated 5 times), dried and exposed to (3H) Hyperfilm 
(Amersham, Les Ulis, France) for 6 to 14 days. The films were processed and the relative grain 
density quantified by computerizeddensitometry using a color-coded image analyser (RAG 
200, Biocom, Les Ulis, France). An internal polymer standard (Amersham 1 aSi_microscale ) 
was used to quantify the density of receptors. The results were expressed in femtomole/mg 
protein, then transformed in percentage of 125I-IL-1~ bound in comparaison of the maxi- 
mum value of ~25I-IL-l~ bound at day 0. Each point was the mean of 6 measurements 
realized on each slice and with 4 slices per animal. 



576 C. Marquette et at.: Brain IL-I~ production and IL-I~ receptors 

Results 

Virus replication in the mouse brain 

A progressive increase in virus titer was observed in the total brain from day 3 to 
day 6 p.i. (Fig. 1). Staining of tissue sections, over this time period, with an 
anti-rabies virus nucleocapsid antibody conjugated to FITC showed a progress- 
ive spread out of the viral infection throughout the brain. On day 3 p.i., few viral 
particles are detected in the cortex and thalamus (data not shown). On day 4 p.i., 
the cortex, the amygdala, the habenular lateral nuclei, the thalamus (ventral and 
ventro-lateral parts) and the hypothalamic nuclei showed viral inclusions (data 
not shown). On day 6 p.i. (Fig. 2), the virus was disseminated in a large number of 
neuronal structures: the cortical neurons were heavily infected; the striatum was 
also infected but the infection spared the white matter; the hippocampal forma- 
tion was also well notable for the presence of inclusions in infected neurons 
(mainly the pyramidal layer). However, no viral inclusion was detected in the 
dentate gyrus and the choroid plexus. 

IL-1 ~ production in the mouse hippocampus, cortex, and plasma 

The kinetics of IL-I~ production in the hippocampus and the cerebral cortex 
showed a significant increase of IL-1 ~ production observed from day 4 p.i. until 
the agony phase, on day 6 p.i., compared to IL-I~ levels at day 0. The highest 
cytokine concentration was observed on day 6 p.i. and reached 168 and 60 pg/mg 
of protein in the hippocampus (3 fold increase compared to day 0) (Fig. 3A) and 
cortex (30 fold increase compared to day 0) respectively (Fig. 3B). In contrast, 
IL-I~ concentration in the plasma did not exceed 5 pg/ml of serum during the 
whole course of the disease (data not shown). 
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Fig. 1. Kinetics of rabies virus 
replication in the mouse brain 
cortex after intramasseter inocu- 
lation of fixed rabies virus. Re- 
sults are expressed in mouse 
intracerebral lethal doseso/g 
(MICLDso/g) of brain cortex 
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Fig. 2. Immunofluorescent detection of rabies-virus in the mouse brain at day 6 p.i. The 
brain structures were identified in two coronal sections at levels A:3 250 and A:2600 
according to the stereotaxic atlas of A. Lehman [27]. Abbreviations: ahp area hypo- 
thalamica posterior; Amygd corpus amygdaloidum; ar nucleus arcuatus hypothalami; CC 
corpus callosum; CE capsula externa; Cf commissura fornicis; tin9 cingulum; CI capsula 
interna; cl ctaustrum; cort pit cortex piriformis; dmh nucleus dorsomedialis hypothalami; Ep 
nucleus entopeduncularis; FD fascia dentata; FH fimbria hippocampi; Fx columna fornicis; 
GP globus pallidus; H area tegmentalis; Hbl (Hbm) nucleus lateralis (medialis) habenulae; hip 
hippocampus; MFB fasciculus medialis telencephali; MVnucleus medialis ventralis thalami; 
Ped pedunculus cerebri; P Mare v nucleus premamillaris ventralis; PVnucleus paraven- 
tricularis thalami; pvh nucleus paraventricularis hypothalami; Put putamen; Re nucleus 
reuniens thalami; Ret nucleus reticularis thalami; ST nucleus subthalamicus; troT fasciculus 
mamillothalamicus; V I t i  ventriculus tertius; VL nucleus ventralis thalami, pars lateralis; 
V lat ventriculus lateralis; vmh nucleus ventromedialis hypothalami; VP nucleus ventralis 

thalami, pars posterior; ZI zona incerta 
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Fig. 3. Concentration of IL- 1~ quanti- 
fied in the hippocampus and cerebral 
cortex homogenates of rabies virus- 
infected mice using ELISA assay. 
Results are expressed in the hip- 
pocampus (A) and in the cerebral 
cortex (B) in pg IL-1 ~/mg of protein. 
Error bars not shown are contained 
within the symbol 

IL- I~  binding sites modulation in the mouse brain 

As indicated in Fig. 4, in uninfected control animals (day 0), only two neuronal 
structures exhibited binding capacity for 125I_IL_ 1 ~: very intense binding was 
observed in the dentate gyrus whereas moderate binding occurred in the cortex. 
Besides these structures, 12 si_iL - 1 ~ binding was also observed in the non-neural 
tissue including the meninges, the choroid plexus and the anterior pituitary. 
Following infection, the normal distribution of 125I_IL_l ~ binding was main- 
tained up to day 3 p.i. On day 4 p.i., a strong decrease in 125I-IL-lct binding 
densities was observed in the dentate gyrus, the choroid plexus, the meninges and 
the cortex. By day 6 p.i., IL-I~ binding sites were undetectable in these structures. 
In contrast, the very high density of binding was unaffected in the anterior 
pituitary until the final phase of the disease (day 6 p.i.). 

The image quantification analysis of the kinetics decrease in 125I-IL-lc~ 
binding density was performed for the dentate gyrus and the choroid plexus 
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Fig. 4. Autoradiograms of 125 I-IL-I~ binding in the mouse brain, in control (day 0) and at 3, 
4, 6 days post-infection. Abbreviations: Cx cortex; d4. dentate gyrus; ch. pl. choroid plexus; 

men. meninges; a.p. anterior pituitary 

(Fig. 5): the densities of binding sites dramatically decreased between day 3 and 
day 4 p.i. (80%), and remained at very low levels until the final phase. In the 
cortex, the signal was too weak to accurately quantify variations during the 
different phases of infection. In the pituitary, quantification showed no signifi- 
cant variation in 125I_IL - 1~ binding (data not shown). 

Discussion 

Our report provides evidence for the alteration of IL-I~ and IL-1Rs in the 
mouse brain during rabies virus infection. The data suggest that they participate 
in the profound changes that occur during the disease [5]. A large amount of 
IL-I~ is produced in the cerebral cortex and the hippocampus while the levels of 
peripheral IL-I~ concentration remained low during the entire course of rabies 
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Fig. 5. Quantification of IL-I~ receptors in the dentate gyrus and in the choroid plexus 
during the time course of rabies virus infection. Results were presented in percentage of 

12s I-IL-I~ bound in comparaison of the maximum value of 125 I-IL-I~ bound at day 0 

infection. Our data also provide evidence that IL-lcx production is concurrent 
with an alteration of 12sI-IL-l~ binding density in the dentate gyrus and the 
choroid plexus. This decrease is very significant between days 3 and 4 p.i., and 
with an almost complete disappearance of free receptors on the following days. 
On neuronal tissues, it is interesting to note that alteration of IL-1Rs and IL-10~ 
production were not directly correlated with the presence of infectious virus 
particles, since no viral inclusion could be detected in the dentate gyrus and the 
choroid plexus at any time of the infection. Nissl histologic coloration of sections 
of infected mice brains displayed an intact granular and molecular cell layer of 
the dentate gyrus ([29] and pers. res.). Thus, the decrease in IL-lcx binding sites is 
not due to a direct effect of the virus by either a dysregulation of their expression 
or by induction of neuronal cell death. These results can be compared to the 
modulation of IL-10~ binding site densities observed in mouse brain following 
stimulation by a lipopolysaccharide (LPS) [24], where a "down regulation" of 
hippocampal IL- 1 binding sites occurred [30] due to a concomitant endogenous 
IL-1 production [31-33]. Similar decrease in free IL-1 receptors have been also 
observed in street rabies and in Semliki Forest viral brain infection (Marquette 
and Donnelly, unpubl, data), associated with an increase in brain IL-1 messen- 
gers in this latter virus infection (Donnelly, unpubl, data). Thus, taken together 
these reports allow us to suggest that the alteration of free IL-I~ binding sites 
observed during the progression of rabies, very likely results from the increase 
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of endogenous IL-1~ and support the view that brain IL-1/IL-1Rs changes could 
be involved in a general response of the CNS to pathogen agent-induced 
inflammation. 

Brain IL-1/IL-1Rs alterations could be related to the physiopathological 
events during the disease. IL-1 production and alteration of brain IL-1 binding 
sites occurred when only a few viral inclusions were present in the brain (cortex 
and thalamus) (day 3 p.i.), and when rabies clinical signs are not yet detectable. 
The greatest clinical changes occurred at day 4 p.i. (ruffled fur, cachexia, difficulty 
in mobility) when most of the brain areas were infected and IL-1 system already 
activated. Then, until death, the level of IL-1 increased and remained high 
concomitantly with a dramatic evolution of the clinical signs. Therefore, the early 
IL-1/IL-1 binding changes are not directly linked to the presence of virus in the 
main brain structures, but suggest that very early viral signals from other infected 
neuronal structures are responsible for this host response. 

Important impairments of brain functions have been described in rabies 
pathology and our data could be included in this early neural alterations 
observed during rabies infection. These include modifications of neurotransmitter 
release (5HT, GABA) [34, 35] and their binding to receptors [-36-39]. Alter- 
ations of the brain electrical activity with major changes in the regulation of 
sleep-wake stages have been also reported [40, 41]. Interestingly, IL-1 has been 
shown to be involved in several hippocampal functions including electric 
activities [42-44], acetylcholine release [45], and regulation of mRNA level of 
brain-derived neurotrophic factor [46]. Moreover, intrahippocampal admini- 
stration of IL-1 [~ in rat increased the serotoninergic metabolism locally, and the 
HPA axis activity with an increase of ACTH and corticosterone levels [47]. 
Therefore, our data are consistent with the viral induced-alterations and strongly 
suggest that IL-t may be one of the factor which mediates these viral effects. 
Taken together, these early alterations could represent a viral mechanism for the 
induction of brain dysfunctions leading to the expression of the clinical/patho- 
logical manifestations before the whole brain infection. 

Peripheral immunosuppression may also result from the alteration of brain 
IL-1 concentrations. This has been demonstrated by intracerebroventricular 
injection of IL-1, LPS or gp 120 (both inducing local IL-1 synthesis), inducing 
a marked decrease in spleen lymphocyte activity [48-50]. The cell-mediated 
immunosuppression induced by central IL-1 was shown to depend on the CRF 
release and on the HPA axis stimulation [51, 52]. This leads to the hypothesis 
that endogenous IL-1 produced in the brain, during rabies infection progression, 
may induce ACTH release leading to glucocorticoid overexpressiort and partici- 
pate also in the peripheral immunosuppression observed, i.e. decrease in cell- 
mediated immunity [9, 53, 54], lymphoid depletion [55], and hypoplasia of the 
thymus, spleen and lymph nodes [7]. 

IL-1 and other cytokines (e.g., TNF, IL-6) have been also shown to partici- 
pate in other virus-mediated encephalopathy and immunosuppressive diseases, 
i.e. during measles virus [56] or human immunodeficiency virus infections 
[-57, 58]. Then, brain cytokines are likely to be involved in the regulatory 
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feedback loop leading to amplification of virus replication and in the initiation of 
a neurocytopathic cascade leading to brain disorders. 

In conclusion, our data show that alterations of brain IL-1 and hippocampal 
neuron homeostasis induced by rabies infection may participate to the viral 
mediated-effects responsible for disrupted neuronal and immune functions. 
Therefore, IL-1 and other cytokines produced during virus infection may 
represent a general feature of neurotropic virus for the establishment of sup- 
pressive effects in host immune system. 
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