
448 

Simply Transitive Groups of Motions. 
By Lu the r  Pfahler  Eisenhart ,  Princeton University. 

This paper deals with Simply Transitive Groups of Motions of 
Riemannian spaces of any order which admits an orthogonal system 
of hypersurfaces. The various normal forms of the fundamental qua- 
dratic differential form of the spaces possessing these properties are 
determined and the expressions for the vectors of the infinitesimal 
generators of the corresponding group. 

1. Consider a simply transitive group G~ in n variables x~ the 
vectors of 1he group being denoted by ~ where ~ indicates the vector 
and i the  component. Quantities ~e are uniquely determined by 

( 1 . 1 )  ~.~ ~:' ~:' ~ t 

We define functions A~k by 

8~k 

Ox 7 8x J : 

from which we have 

(1.3) -~--~ +~.Ajk-~-O, xJ ~a ~,,j~=,,- 
8x j 8 

If g~:. arc the components of the fundamental tensor of a space 
V~ a necessary and sufficient condition that G~ be a group of motions 
is that the following equations of Killing be satisfied: 

8glj -bgih~7~ § =02). (1.4) }~ ~-~ ~ x~ 

By means of (1.3) these may be put in the equivalent form 

agiJ g~h A~k__g.h A ~ = 0 .  (1.5) a x~ 

1) The summation convention is used throughout this paper. 

2) C. G., p. 217 ; a reference of this kind is to the author's Continuous Groups 

of Transformations. 
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We denote by ~ the vectors of the group F~ reciprocal to G~ ; 
they satisfy the completely integrable system of differential equations 8) 

(1.6) ~ ' "hA~ Ox j "l-~a h j ~ U .  

From (1.8) and (1.6) we have 

8 ~ ?'i (1.:) 5)=o. 

Hence if we choose the initial values of a set of solutions of (1.6) to 
satisfy the conditions 

(1.8) gq ~' r ~ :  0 (:~ ~: ~), go' ~i ~ = e~, 

where the e's are + 1 or - - 1  according to the signature of the fun- 
damental form of V,,, equations (1.8) hold for all values of the x's. 
Since any solution of (1.6) is a linear combination with constant 
coefficients of the set, we have 

When a V,~ admits a simply transitive group G,, the basis of  
the reciprocal group can be chosen so its vectors form an orthogonal 
ennuple of  unit vectors. 

Since the ~'s arc the vectors of a group, we have 

8~ J 
(1.9) 

which may be written 

(1.10) 

where a comma followed by an index indicates covariant differentiation 
with respect to the g's. 

If we put 
(1.11) ~ ; = g q  ~,  

then 

(1.12) ~ e ~  (:r not summed), ~)3-----8~. 

If by definition 

(1.13) Y~a=~'~i~'~ ~,  y ~ + y ~ = 0 ' )  

it follows from (1.10) that 

~) C. G., p. 113. 
4) Cf. R .G. ,  p. 97; a reference of this kind is the author 's  Riemannian 

Geometry. 
Mona~sh. fiir Mathematik und Physik. 4:8. Band. 29 
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(1.14) y ~ l ~ - - y ~ e ~ e ~  (8 not summed). 

From this result it follows that 5) 

A necessary and sufficient condition that the vectors ~i be 
normal is that the constants of structure e~ for % ~ y different be 
zero; in this case the "~'s are the normals to the hypersurfaces of an 
n-taply orthogonal system of hypersurfaces in the V,~ admitting the G,~ 
of vectors ~*~ as a group of motions. 

If we put 

(1.15) e,~=c,~---~ (:r not summed)~ 

it follows from the Jacob i  relations 6) 

_ e -  5 _ e -  5 ~ e -  5 A 

conditions of the above theorem are satisfied we 

(1.16) 

that when the 
must have 

(1.i7) Cva Ca~--Cv~ C~a ~O.  

When the V,~ is referred to the orthogonal system of hypersur- 
faces to which the vectors ~ are normal and we put 

(1.1S) g~=e~H~, go=O (i ~:j), 
we have 

(1.19) ~ =  H~. ' ~ = 0  (i~= :~). 

In this coordinate system equations (1.9) reduce to 

l o g  H~ 
(1.20) o a~.~ ~ c~s Hs (i =~j). 

For a general coordinate system we have from (1.3) and (1.6) that 
each of the vectors :~ satisfies 

(1.21) } ~ 3 _ _ ~  ~ a~' a x---~ ~ 0 .  

For the case under consideration and the particular coordinate system 
for which (1.19) holds, it follows from (1.21) that 

�9 i (1.22) -----xc:, 

s) Of. R .  G.,  p .  117.  

6) C . G . ,  p .  26.  
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where X i are functions of x * alone, and 

(12 )  logH  dx ~ + - - X ~ O e x  ~ (i not summed). 

If we differentiate these equations with respect to x3 ( j ~  i), we find 
that the resulting equations are satisfied in consequence of (1.17). 

We shall show that the above results apply to any V,~ which 
admits a simply transitive group of motions and an n-tuply orthogonal 
system of hypersurfaecs. I n  fact, when the latter system is parametric, 
equations (1.5) for i ~ j  reduce by (1.18) to 

0H, 
- -H~A~k~0  (i not summed). 

0 x  k 

Consequently equations (1.6) admit the n independent solutions (1.19) 
and these are the vectors of the reciprocal group. Accordingly we have 
(1.22) and from (1.2)we find that A j k ~ 0  for i :~j ,  so that (1.5) are 
satisfied when g~ j~0  for i ~ j .  Hence the solutions of (1.20) and 
(1.23) which are obtained in the following sections constitute the most 
general types of a V,~ admitting a simply transitive group of motions 
and an n-tuply orthogonal system of hypersurfaces. 

2. For a V~ we have from (1.20) the two equations 

(2.1) o log g~ H2, O log B~ //1. 
0 x ~ Can 0 x 1 - -  c21 

If Hl~eons t . ,  we have by a suitable choice of coordinates, the two 
possible quadratic forms 

(2.2) e~ ( d x l ) 2 +  e~ (dx~) ~ 

where a is a constant, and from (1.22) and (1.23) by a suitable choice 
of basis the respective matrices of the vectors ~ 

1 0 1 e -~*!  
(2.4) 

0 1 0 1 

(2.5) 

When neither //1 nor H2 is a constant, we have from ('2.1) 

02 l o g  H 1 0//1 / j - y A r  ~ 
Ox 10x" c ~ 1 c ~ " ~ ' ~ - 1  O 2C 2 ~ 

29* 
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Integrating with respect to x '2 and taking for a new x~ a suitable 
function of xt~ we obtain 

0 log H~ 
0 X 1 ~ c21 HI~ 

from which and (2.1) we have the form 

1 ( 1 (2.6) (x~-x~)~_ c~ + ~ ] 

and the matrix of the vectors ~ is 

1 1 

X l X 2 

The Gaussian curvature of (2.3) is - - e  l a  ~ and of (2.6) it is 
--@1 cgl + e ~ ) ~  so that the curvature is constant~ which is negative 
if the fundamental form is positive definite v). 

3. In this and the next section we understand that n > 2 and in 
this section we consider the case when one of the H's~ say H~ does 
not involve one of the variables other than x~ say x~; then from 
(1.20) we have 

(3.1) c21 = 0 .  
From the equation 

Ct2 C ~ l - - c z l  C 1 ~ = 0  

obtained from (1.17) it follows that 

(3.2) c , = 0  ( l = 3 , . . . ,  n) or c ~ = 0 .  

When the first of these conditions is satisfied, we have from (1.20) 

03 log H 1 --C,, ,1 _ _  ( m : 2 ,  . . n ) .  
0x '~ 0x ~ Ox ~ 

Consequently H I : X  ~ r ( x  ~, . . . .  , x'~)~ where X1 is a function of x~ 
alone; by a suitable choice of a new x t as a function of x 1 we have 
X 1 = 1  in the new coordinate system, in consequence of which and 
the first of (3.2) all the H ' s  are independent of x~ and a solution of 
(1.23) is 

(3,3) X ' l =  ~ ,  

Conversely, if equations (1,23) admit a solution involving only 
one non-vanishing component~ say X~, the coordinate x ~ can be chosen 

~) Cf. C. G., p. 228. 
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so that we have (3.3) and then from (1.23) it follows that all the 
H ' s  arc independent of xL Under these conditions by a suitable choice 
of basis of the group, we have 

(3.4) ' 1 �9 0 log//1 a~ (~, j = 2 , .  n), X ~ = a ~ x ,  X~ o #  - -  " "  

where the a's are constants. 

I f / / 1  is a constant, the a's are zero, and for n > 2 we have 
for the matrix of the vectors 

(3.5) 
1 0 

0 M 

where M is determined for the V,~_: with the fundamental form 
g~ dx~dx~(i, j = 2 , . . . ,  n) by the various methods we are applying 
t o a  ~ .  

When /-/1 is not constant, by a suitable renumbering of the 
coordinates, if necessary, we have tha t / /1  is a function of x ' - , . . . ,  xp 
(p~n) .  From (1.20) we have 

0 log H, ~caHa, C a ~ - C l a  ( a = 2 ,  . .  p ) ,  
(3.6) Ox~ �9 , 

from which it follows that the numbers c, are all different from zero, 
and any  H~ is a function of x ' ~ , . . . ,  xp with the possible excep- 
tion of x ~. 

Expressing the conditions ot integrability of (1.20), we have in 
particular 

H a 
(3.7) c ~ a - -  - -  

x c 

from which it follows that 

0 H c 
Vie = 0 ~ x  a 

i = 1 , . . . ,  p ;  ) 

a, c = 2 ,  . . , p i a ~ c  ' 

Cb,~tbc~ (a, b ~ 2 , . . . ,  p ;  a:~b). 

From these equations and (1.17) in which y = l ,  we find that all the 
numbers tb are equal, so that we write 

(3.8) C~o=tCo, t # O  (a, b = 2 , . . . ,  p; a # b ) .  

Consequently we have from (1.20), (3.6) and (3.8) 

log H b __ t c~ H ,  = t a log ~r 1 (3.9) - -  - - ,  
0 x ~ 0 x a 
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from which for a given b and a ~ 2 , . . . ~  p (a~b),  we have by a 
suitable choice of x ~ 

(3.10) H b = H :  ( b : 2 , . . . ,  p). 

From this result and (3.9) we obtain 

1 
tcax ~ ( a ~ 2 ,  . .  n), (3.1.1) H~ " ' 

the possible additive constant being removed by a suitable choice of one 
of the x,s. 

From (3.4) and (3.9) we have 

(3.12) X ~ = a ~ x ' ,  X~cbH~=--a~ (b, ~ = 2 , . . . :  n), 

in consequence of which we have from (1.23) 

(3.13) t. 

By a suitable choice of basis we have a ~ = l ,  a ~ 0  (s>2)~ and the 
solutions of (3.12) and (3.13) are 

X ~ = x  1, X~tx~ ~ +d:,~ c~d,2~O 

(3.14) X~=O, X ~ = d ; ,  c,,d~=O ( a = 2 , . . . , p ; s > p ) ,  

When p ~ n ,  the matrix of the vectors of the group is 

(3.15) 

1 0 . . . . . . .  0 
X 1 t x  2 . . . . . .  t x  n 

o . . . . . .  

. . . . . . . .  o , ~ . 

0 d ~ . . . . . . .  d~ 

~ m ~ 2 ~ . . . ,  n;t  
c'~ db~O[b=3~.  , n f 

When p < n from the equations 

(3.16) Cs,C,~--C~bCb~=O (a, b - - 2 , . . . ,  p; s>p) ,  

we see that any He involves all or none of the coordinates x2,...~xP. 
If none of them involve these coordinates, the fundamental form con- 
sists of two distinct parts 

(3.17) el H~ ( d x l ) ~ + . . . + e ~  ~ ( d x ~ )  2, 

ep+, tl~+l (dxP+l)~+. . .+e~H~(dx~) "2, 
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and the matrix of the ~'s is 

(3.18) 

0 

o 

where M1 is of the form (3.15) and M~ is any possible matrix for 
the second part (3.17) of the fundamental form. 

We consider next the case when every Hs for s > p  involves 
x ~-, . . . ,  xp.  From the equations 

c s ~ c a t - - c ,  t c t ~ = O  (s, t ~ p +  l ,  . . . , n) 

it follows that none of the H's involve x ~ + ~ , . . . ,  x ~. From (3.16) 
and (3.8) we have 

V s a =  tsCa, 

and consequently from (1.20) 

log H~ __ t~ c~ H e  = t~ ~ log H~ , 
0 x a ~ x ~ 

so that 
(3.19) H ~ = H [  ~ . 

Then from (1.17), (3.9), (3.19), (3.10) and (3.12) we obtain 

and the matrix is by a suitable choice of basis 

(3.20) 

1 0 0 

x 1 t x  ~ t x  3 

0 c ~ - c , .  0 . . .  

0 % 0 . . . O - c ~  

0 

0 

t x P  

0 0 

O. 

1 0 

0 1 

0 

0 0 0 

tp_~lxp+l tp+~xp+ 2. t~x  ~ 

0 

0 

0 
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If only one of the H's,  say H~, does not involve x~ . . . .  x p  
from the equation 

(3.21) c~scs~--c~c~s ~ 0  

for u ~ n ,  s ~ p + l ,  . . . .  n - - 1  it follows that H,~ is a function of 
x '~ alone and this leads to a matrix analogous to (3.5), where M i s  
of the form (3.20) of order n - - 1 .  

If certain of the H's do not involve x ~ . . . ,  xp say H,~ for 
u ~ r + l ~ . . . ,  n (by a suitable renumbering), then from (3.21) for 
u ~ - - - r + l , . . . ~  n and s ~ p + l , . . . ,  r, it follows that H~ are inde- 
pendent of x p + ~ , . . . ,  x ~ and we have a matrix (3.18), where 
3/: is of the form (3.20) and Ms is any possible matrix for 

The case when c , s = c , , ~ O  is of the type not yet fully dis- 
cussed~ that is, when (3.1) and the second of (3.2) are satisfied. We 
consider this case now and observe that H: does not involve x 2 and 
H~ not x:. If  H: involves only x~ we have the case (3.5). Con- 
sequently we assume that H: involves x3 . . . ,  xp, by suitable num- 
bering of the coordinates, so that we have equations (3.6) for a ~ 3  . . . .  , p. 
Also .H: must involve x~; otherwise the Ha given by (3.6) do not 
involve x: and then from 

(3.22) C.~ 1 Cla--CsaCal  ~ 0  

we have c~:~0, so that all the H's  do not involve x~, and this is 
the case previously considered. From 

C12 C2a--Cla  Cots ~ 0  

we have c,2~---0. Hence p < n ,  otherwise some of the H's  involve x 2, 
which is the case previously considered with the roles of 1 and 2 
interchanged. 

From (3.22) for s-----2 we have c ~ , ~ 0  and consequently H~ 
does not involve x:, x 3 , . . . ,  xp. Since p ~ n ,  we have c : ~ 0  for 
s~p .  If c~:~0 for any s, we have the case (3.1) and the first of 
(3.2) with s and 1 in place of 1 and 2 respectively. Hence c ~ 0  
for s ~ p  and from (3.22) we have c ~ 0 ,  that is Hs for s ~ p  are 
independent of x~, x ~ , . . . ,  xp. Hence the fundamental form consists 
of the two distinct parts 

Ze~H~(dx~)~, ~2e, H~(dx~) ~ q = a ,  3 , . .  , p ;  ~=2,  p + :  . . . . .  n) 
l t 

such that the coefficients of either part involve only the variables of 
that part. For the first of these all of the c's are different from zero, 
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and for the second no conditions have been established. Hence when 
in the next section we consider the case where all the c's are different 
from zero, this result and the consequences of (3.1) and the first of 
conditions (3.2) are the only possible types. Consequently for any V,, 
we have one of these types~ or a combination of them, each applying 
to an isolated part of the fundamental form. In the latter case the 
group for V,, is the direct product of the groups for these parts as 
follows from (1.23).  

4. In this section we consider the case when each of the H 's  
involves all the coordinates, that is none of the constants c,~ is zero. 
From (2.5) we have in this case 

(4.1) 0 log  111 c~ H~ +`5, 0+ - - 0 .  
0 x ~ 0 x 2 

Differentiating this equation with respect to x ~ for / > 2  and making 
use of the equation obtained from (2.5) on replacing 2 by l, we have 

( c ~ - - c n )  OH, __ 0 + 
Ox ~ Oxt ' (4.2) 

and consequently 

0~//1 - -0 .  
( c t l - - c~ l )  Ox ~ ox ~ 

From this equation and (4.2) it follows that if 5 

03//1 --0~ 
0x  ~ 0 x  ~ 

from which and (1.20) we have 

(4.3) c~z + c~ ~ 0, 

and from these equations and (l.17) we obtain 

contains x '~ then 

(4.4) ctl + cn ~---0, cl2 -4- c~ ~ ~ 0 .  

From the first of these equations and (4.2) we obtain 

(4.5) - - 2  C21 H1 =+--~ 0 , 

where o involves the x's other than x 1 not involved in 6. When this 
expression is substituted in (4.1), we obtain 

1 ( ) 
- -  -5-~x~ + 2 - 0 ~  ~ 2 ' 

From the above statement about 0 and the form of this equation it 
follows that r is at most a function of xk 
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From (4.5) and (1.20) we have 

0+ 
(4.7) c~H~-- Ox~ 

+ + o  �9 

Substituting this expression and the similar one for H,, in 

we obtain 

O log H l 
ctm gm, 

ax ~ 

o+ 
0 0 + 0 x "~ 

Ox ~" l o g ~ f f = 2 c ~ m  + + 0  (z # ~), 

since from equations analogous to (4.4) and from (1.17) we find that 
cu,~c~,~. Since + does not contain x~ and o does, the above equation 
is not possible and consequently + can involve at most one x other 
than x~, say xh Accordingly 0 involves xL x~ and x ~ for s >  3, so 
that from (4.2) and (1.17) it follows that 

(4.8) c ~ = c ~ ,  c ~ = c ~ ,  c ~ = c ,  r  . . . .  , n). 

In consequence of (4.2), (4.3) and (4.8) we have that the equations 

C~3 C31- -Cs  1 C 1 3 ~ 0 ,  Cs 3 C32--Cs2 C 2 3 ~ 0  

are reducible to 

- - -  021 (C83 - -  r ~ 0,  - -  V12 (583 "~- 023 ) = 0,  

which are evidently inconsistent with the assumption that + involves 
xS and o involves an x other than xl and x~. Hence if ,.~ involves an 
x other than x 1, then n ~ 8 ;  otherwise + is at most a function of xl. 

We consider first the ease when ,~ is a function of x~ and x3 
and n ~ 3 ,  and we begin by assuming that equations (1.23) admit a 
solution such that one of the components is zero; the ease when two 
are zero was considered in w 3. By a suitable choice of the coordinates 
without changing the coordinate hypersurfaees, we have the three 
possible eases 

(4.9) 1, 1, 0; 1, 0, 1; 0, 1, 1. 

For the first ease we have from (1.23) 

0H~ a H~ 
Ox ~ ~ ~ = 0  ( / = 1 ,  2, 3). 
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For i =  1 we have from (4.5) 

from which and (4.6) we have 

+ ~ = 0 ~ +  2 0o 
0 x 2 " 

This equation is possible only when + does not involve x .~ contrary to 
the hypothesis. Similar results follow from the other two cases in 
(4.9). Consequently, if there exists a solution none of the components 
are zero and by a suitable choice of the x's we have as one solution 
1, 1, 1 so that from (1.23) we must have 

OH, 0H~ OH, 
(4.10) ox, + ~ + ~ = 0  ( i = 1 ,  2, 3). 

For i = l  this condition is from (4.5) 

0~ a~ ( 0 0  o01 
oJ' + Ox~-- ~-x~ + ~ - x  ~ ' 

and consequently 

o~ + or oo oo 

Expressing the consistency of these equations and (4.6), we find that 
f = 0  and ~=eons t .  Consequently ~b is a function (if x S - - x  ~ and o. 
of x 2 -  x~, and we have from (1.20) 

O' $' 

(4.11) c , ~ H ~ =  + + o '  c, s H a - -  +H-O ' 

where the prime indicates differentiation with respect to the argument 
These exl)reL~sions satisfy (4.10) for i ~ 2 ,  3 identically. When they 
are substituted in (1.23), we obtain 

(4.12) dX~d x ~ ~ A ,  dX~d x ~ ~0"" ( X ~ - - X : ) + A = O ,  

d x ~  ~" ( X  ~ - -  X~'~ + A ~ O, 
d x 3 ~' ~ ~ ~,~ 

where 
1 

A r  

From (4.6) we have 
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(4.13) ~V' ~ - - ~  d/ o " = 0  0'. 
T t T~ 

Adding the first two of equations (4.12), we have 

(4.14) 
1 

[ (x , ) '  + -- x. + x :  = o. 

(4.15) 

Proceeding 
obtain 

(4.16) 

Differentiating this equation successively with respect to x~ and x ~ and 
making use of it and (4.6) in the result, we obtain 

(X ' )"  + ~ X~ = (X~)" + ~ X~. 

in like manner with the first and third of (4.12) we 

x ,  = (x:)" +v  x:.  

We consider first the case when the constant 9 is zero. 
(4.(i) we have 

1 1 1 1 
- -  2 ( x ~ - x ' ) ,  0 - -  2 (x ' - -x~) ,  

and from (4.15), (4.16) and (4.12) we obtain 

where a, b~ c are constants. Hence the matrix of the ~'s is 

From 

1 1 1 Ii 
(4.17) xl x~ x3 ! " 

From (4.5) and (4.11) with the aid of (4.4) we find for the H ' s  the 
expressions 

x J, _ x  ~ 
(4.18) c3.i Hi ~ (x ~ _ xj ) (x i _ x~ ) , 

where i, j ,  k take the values 1~ 2, 3 in cyclic order. 
When 9 is positive, say 4a~, we have from (4.6) 

~ 2 a  cot a(x3--xl), 0 ~ 2 a  cot a ( x ~ - - x ~ ) .  

In this case by a suitable choice of basis the respective members of 
(4.15) and (4.16) may be taken equal to zero for the vectors other 
than 1, 1, 1. Then from (4.15), (4.16) and (4.12) we obtain 

X ~ b  sin 2 a x ~ + c  cos 2 a x  ~ ( : ( ~ 2 ~  3; i ~ l ,  2, 3), 
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where b and c are constants. Hence the matrix is 

(4.19) 

1 1 1 ]  
sin 2ax~ sin 2 a x  ~ sin 2 a x  s 

cos 2 a x  ~ cos 2 a x  ~ cos 2 a x  3 

and the H ' s  are of the form 

sin a (x ~ -- x ~') 
(4.20) c;iH~: 

sin a (x i -- x j) sin a (x t -- x k) " 

When $ is negative, say - - 4 a  ~, we have from (4.6) 

+---~2a coth a(x~--xt )~ 0 = 2 a  coth a(x~--x~) .  

In this Case the matrix is 

(4.21) 
1 1 1 

sinh 2ax~ sinh 2axZ sinh 2ax3 

eosh 2 a x t  cosh 2 a x  ~ cosh 2 a x  ~ 

and the H 's  arc of the form. 

s inh a (x k - -  x d) 
(4.22) cj, I - I , :  

s inh a ( x  ~ - -  x y )  s inh  a (x  i - -  x ~)" 

We consider finally the case when ~ in (4.1) is a function of 
f 

tt 
x I or a constant. I f  w e  put x l . ~ f ( x l ) ~  where 7 - = ~ ,  and note that 

H I - ~ H ~ f ' ,  in the new coordinate system , 5 = 0  and the solution o f  
(4.1) is 

1 
(4.23) ~ = - c~1 (xl + r 

where y is a function of all lhe x's except x~ in accordance with 
the hypothesis of thissection.  From (1.20) we h a v e  

x ~'~ 
(4.24) c~,~t[,,, x~+~ 

and from (4.2) and (1.17) 

(4.25) 

Substituting from (4.24) 
obtain 

e l l  : C21 ~ Ci r e : e l m  

i n , ( l . 20 )  for i > l ,  

O~ :~ O~ 
a x I 0 x m 

( m = 2 , . . . ,  n), 

( / = 3 , . . . ,  n; /+,~). 
because of (4.25) we 
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and consequently 

~ X " + . . . + X " ~  

where X "~ is a function of x "~ alone. I f  we put 

and effect the change of variables given by 

el b~ x ~ x  ~, e,~ b~x'~---~ X ~  

in the new coordinate system we have 

1 
(4.26) H ~ : . . .  = H . - -  z e, b,x,  

i 

and consequently V. is of constant curvature - - ~  e,b~ s). 
i 

may be chosen so that the matrix of the ~'s is 

L. Pfahler E i s e n h a r t, 8imp]y transi t ive groups of motions. 

( m = l ~ . . . ,  n)~ 

( i = 1 ,  , . . , n), 

The basis 

(4.27) 

X 1 X 2 . X 3 . , , X n 

e2 b ~ - e l b ,  0 . . . 0 

e8 b~ 0 - el b~ . . 0 

�9 �9 . . . . .  o . . . ~ , �9 , 

�9 , �9 o , , �9 . , �9 . . . . .  

e,  b ,  0 0 , . - el 51 

As a result of this investigation we have: 
A con formal l y  f i a t  space admi t t i ng  a s i m p l y  t rans i t ive  group  o f  

mot ions  has constant  curvature .  

In fact, if the fundamental form is taken as 

and H involves x t, . . . ,  x ~, we have the case (4.26) and (4.27). I f  H 
involves only some of the x's, say x ~ . . . ~  xp, we have (3.10) and 
(3.19) with t ~ t , =  1, and from (3,11) it follows that the curvature 
is constant�9 

8) Cf. R. G., p. 85. 

(Eingegangen: 25. X. 1935.) 


