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Simply Transitive Groups of Motions.
By Luther Pfahler Eisenhart, Princeton University.-

This paper deals with Simply Transitive Groups of Motions of
Riemannian spaces of any order which admits an orthogonal system
of hypersurfaces. The various normal forms of the fundamental qua-
dratic differential form of the spaces possessing these properties are
determined and the expressions for the vectors of the infinitesimal
generators of the corresponding group.

1. Consider a simply transitive group &, in » variables 2%, the
vectors of the group being denoted by E, where « mdlcates the vector
and ¢ the component. Quantities &% are uniquely determined by

(1.1) B E=0, =031

We define functions A}, by

aEr , 38
(1.2) o=t =—H %,
from which we have
agfx i 65? o e
(1.3) g Aj=0, W—Elc A‘;i:O-

If g;; are the components of the fundamental temsor of a space
V., anecessary and sufficient condition that G, be a group of motions
is that the following equations of Killing be satisfied:

3 Eh 3t ;;h

2
(1.4) B g —0?).

By means of (1.3) these may be put in the equivalent form

691

o thAjk gjhA?kZO-

(1.5)

1) The summation convention is used throughout this paper.
%) C. G., p. 217 ; a reference of this kind is to the author’s Continuous Groups
of Transformations.
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We denote by ! the vectors of the group I', reciprocal to G.;
they satisfy the completely integrable system of differential equations3)

8C
(1‘6) PP AhJ‘O
From (1.5) and (1.6) we have
(1.7) (94 Zulp)=0.

Hence if we choose the initial values of a set of solutions of (1.6) to
satisfy the conditions

(1.8) 9ij u;['i‘—“o (xFB), g4 Zl d

where the ¢'s are +1 or —1 according to the signature of the fun-
damental form of V,, equations (1.8) hold for all values of the x’s.
Since any solution of (1.6) is a linear combination with constant
coefficients of the set, we have

When a V, admits a simply transitive group G., the basis of
the reciprocal group can be chosen so ifs vectors form an orthogonal
ennuple of unit vectors.

Since the {’s are the vectors of a group, we have

2%, 24,

(L9) Gt Gt =i,
which may be written
(1.10) Gl i — 0, =il

where a comma followed by an index indicates covariant differentiation
with respect to the ¢’s.

If we put ‘
(1.11) C}l:gij Z:x,
then
(1.12) J0%—e, (« not summed), C =3
If by definition
(1.13) Ya(35=z:fx,jcﬁz a‘;, YaBst+Ypas=—0%)
it follows from (1.10) that

3 C. G, p. 113.

4 Cf. R. G., p. 97; a reference of this kind is the author’s Riemannian
Geometry. .
Moratsh. fiir Mathematik und Physik. 43. Band. 29
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(1.14) Ysup — Yopa— €5 Cap (3 not summed).
From this result it follows that 5)

A necessary and sufficient condition that the vectors (b be
normal is that the constants of structure t.§ for a, 8, v different be
zero; in this case the ('s are the normals to the hypersurfaces of an
n-tuply orthogonal system of hypersurfaces in the V, admitting the G,
of vectors E, as a group of motions.

If we put
(1.15) Cap=Caf (« not summed),
it follows from the Jacobi relations ¢)
(1.16) Gaf Ty + Oy Con - Cye Cep =0
that when the conditions of the above theorem are satisfied we
must have

(117) C'Ya Caﬁ—c.y(g cﬁu——~0.

When the V,, is referred to the orthogonal system of hypersur-
faces to which the vectors (! are normal and we put

(1.18) gi=eHi, g;;=0 (E)
we have
(1.19) Umgrs =0 ()

In this coordinate system equations (1.9) reduce to
8 log H;
8

(1.20) =c; H; (E=J).
For a general coordinate system we have from (1.3) and (1.6) that
each of the vectors &' satisfies
8L, OF
(1.21) g0, — =0.

8 axd

For the case under consideration and the particular coordinate system
for which (1.19) holds, it follows from (1.21) that

(1.22) Er = Xo,

5 Of.R. G., p. 117.
% C.G., p. 26.
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where X! are functions of ' alone, and

dX! 3log H, . )
(1.23) -+ X.=0 (¢ not summed).

da* da

If we differentiate these equations with respect to x/ (jF47), we find
that the resulting equations are satisfied in consequence of (1.17).
We shall show that the above results apply to any ¥, which
admits a simply transitive group of motions and an n-tuply orthogonal
system of hypersurfaces. In fact, when the latter system is parametric,
equations (1.5) for =7 reduce by (1.18) to
0H

- : — H; Al =0 (¢ not summed).
x

Consequently equations (1.6) admit the » independent solutions (1.19)
and these are the vectors of the reeiprocal group. Accordingly we have
(1.22) and from (1.2) we find that Aj,—0 for id=j, so that (1.5) are
satisfied when ¢;=—O0 for i==j. Hence the solutions of (1.20) and
(1.23) which are obtained in the following sections constitute the most
general types of a V, admitting a simply transitive group of motions
and an n-tuply orthogonal system of hypersurfaces.

2. For a V; we have from (1.20) the two equations

0 log H,
0 x?

0 log A,
0 at

(2-1) =c3 H,, =cy H,.

If H,—const.,, we have by a suitable choice of coordinates, the two
possible quadratic forms

(2.2) e, (da1)2+ e, (da?)?
(2.3) e, (dar)2+ e, e? 2 (dx?)2,

where @ is a constant, and from (1.22) and (1.23) by a suitable choice
of basis the respective matrices of the vectors &,

1 0 1 e—oa?
@4)
0 1 0 1

When neither H; nor H, is a constant, we have from 2.1

0? log H,
oxt 9

dH
== Cyy 1o Hy Hy=—cy, '59721 .

(2.5)
29 %
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Integrating with respect to 2 and taking for a new x!' a suitable
function of x!, we obtain

from which and (2.1) we have the form

2.6) 1 (e1(dx1)2 L (dac2)2)

(' — %) €3 3

and the matrix of the vectors . is

1 1
(2.7)

x! x2

The Gaussian curvature of (2.3) is —e a* and of (2.6) it is
— (e, ¢3,+¢%,), so that the cmrvature is constant, which is negative
if the fundamental form is positive definite?).

3. In this and the next section we understand that n>2 and in
this section we consider the case when one of the H’s, say H, does
not involve one of the variables other than z?, say «!; then from
(1.20) we have
(3.1) €5 =0.

From the equation
Cig €91 — €13 613=0

obtained from (1.17) it follows that
(3.2) ¢, =0 (I=3,...,nm or ¢,=0

When the first of these conditions is satisfied, we have from (1.20)

0% log H, A H, c
W:mla—afiz (’m:z,..., n).
Consequently H,—=2X, ¢, («2, ..., 2"), where X, is a function of '

alone; by a suitable choice of a new 2! as a function of z* we have
X,=1 in the new coordinate system, in consequence of which and
the first of (3.2) all the H’s are independent of x! and a solution of
(1.23) is
(3.3) X =3

Conversely, if equations (1,23) admit a solation involving only
one non-vanishing component, say X1, the coordinate 2 can be chosen

" Cf. C. G., p. 228.
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so that we have (3.3) and then from (1.23) it follows that all the
H’s are independent of x*. Under these conditions by a suitable choice
of basis of the group, we have
j 0 log H, .

(38.4) Xp—ap 1, X,g—*;ij—ﬁ:—aﬁ ®,j=2,..., n),
where the a’s are constants.

If H, is a constant, the a’s are zero, and for »>2 we have
for the matrix of the vectors

(8.5) :
o | M

where M is determined for the V,_; with the fundamental form
gij Aot dxi (i, j=2, ..., n) by the various methods we are applying
to a V..

When H, is not constant, by a suitable renumbering of the
coordinates, if necessary, we have that H, is a function of 22, ..., z?
(p=mn). From (1.20) we have

9 log H,

(3.6) %“—-—64 Haa Ca=Cya (a=27 ey p)a

from which it follows that the numbers ¢, are all different from zero,

and any H, is a fanction of #2,..., #? with the possible excep-

tion of z=.

Expressing the conditions ot integrability of (1.20), we have in

particular
o H dH i=1,... ;

(37) Cig— — Cip——r =0 ( ’ y P3 ) ,
9 z° dx” a, c=2,...,p;aFc¢

from which it follows that
Cha==1sCq (@, 6=2, ..., p; ab).

From these equations and (1.17) in which y=1, we find that all the
numbers f, are equal, so that we write

(3.8) : Coa==tCay t£0 (@, b=2,..., p; aZb).
Consequently we have from (1.20), (3.6) and (3.8)

8 log H
(3.9) L:tcaﬂaztﬁ_log_ﬂl

3 x" d2® ’
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from which for a given b and a=2,..., p (a=5), we have by a
suitable choice of z’
(3.10) H,=H! (b=2,..., p).
From this result and (3.9) we obtain

1
(3.11) o teqa” (a=2, ..., n),

1

the possible additive constant being removed by a suitable choice of one
of the «’s.

From (3.4) and (3.9) we have

(3.12) Xp=apat, Xpes Hi==—ag (b, 6=2,..., n),
in consequence of which we have from (1.23)
(3.18) (XpY =agt.

By a suitable choice of basis we have a,—1, a,==0 (s>2), and the
solutions of (3.12) and (3.13) are

Xi=u!, Xo=ta"+ds c,dy3=0

(3.14) Xi=—0, Xi—d, Cads==0 (a==2,...,p;5>p),
When p==n, the matrix of the vectors of the group is

1 0....... 0

LN 7L ta™

0 di ...... ds . a=2,..., n;
3.15 3 3 . verer T}
@) T Oty O(b=3,. .,n)

0 du . v.... dn

When p<n from the equations
(316) csacab'ﬁcsbcbuzo (a’ b:2a°"a P S>p),

we see that any H, involves all or none of the coordinates #2...,2?.
If none of them involve these coordinates, the fundamental form con-
sists of two distinet parts

(3.17) ey HY (do)?+. . .+ H (dw?)?,
epir H2  (do?t1)2 4. 4o HE (da™)?,
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and the matrix of the &'s is

M| o

(3.18)

0| M,

where M, is of the form (3.15) and M, is any possible matrix for
the second part (3.17) of the fundamental form.

We consider next the case when every H, for s>p involves
x%, ..., 2?7, From the equations

Csa Cat— Cst Cia=—0 (3, t=_p+1, ey n)

it follows that none of the H’s involve z2#t+', ..., 2" From (3.16)
and (3.8) we have

Cyq =15 Cq,
and consequently from (1.20)
0 log H,
—gi‘:tscaﬂa:ts 0 log H-i ’
0x® 0"
so that
(8.19) H,—H;*.

Then from (1.17), (3.9), (3.19), (3.10) and (3.12) we obtain
(Xi) =agt,

and the matrix is by a suitable choice of basis

10 0 .... 0 0 0....0

xrix? tad .. EEA F IRY ol PV WA

0 ¢g—c O.. 0 O.......... 0

0 Cp 0 .0 —Cy 0. . ... ..... 0

(3.20)

10........ 0

O 1........ 0

0 e

O. ... ... ... 1
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If only one of the H’s, say H,, does not involve z2 ..., 2P
from the equation
(3.21) Cus Csa— Cua Cas —0
for u=n, s=p+1,..., n—1 it follows that H, is a fanction of

z* alone and this leads to a matrix analogous to (3.5), where M is’
of the form (3.20) of order n»— 1.

If certain of the H’s do not involve z2, ..., x? say H, for
u=r+1,..., » (by a suitable renumbering), then from (3.21) for
u=r+1,..., n and s=p+1,..., r, it follows that H, are inde-

pendent of x?+', .. ., 2~ and we have a matrix (3.18), where
M, is of the form (3.20) and M, is any possible matrix for
3 ew H2 (da™)2.

The case when c¢,;—c,=0 is of the type not yet fully dis-
cussed, that is, when (3.1) and the second of (3.2) are satisfied. We
consider this case now and observe that H, does not involve x2 and
H, not z1. If H, involves only !, we have the case (3.5). Con-
sequently we assume that H, involves 3, ..., z?, by sunitable num-
bering of the coordinates, so that we have equations (3.6) for a==3,. .., p.
Also .H, must involve x!; otherwise the H, given by (3.6) do not
involve «! and then from

(3.22) Cs1 C1a—— Cs4Cay =0

we have ¢, —0, so that all the H’s do not involve !, and this is
the case previously considered. From

€13 Cga——Cyq Cag—0
we have c,,—0. Hence p <n, otherwise some of the H's involve z2,
which is the case previously considered with the roles of 1 and 2
interchanged.

From (3.22) for s—2 we have ¢,,—0 and consequently H,
does mot involve x', x3, ..., zP. Since p<<n, we have c;,=—0 for
s>p. If ¢, +0 for any s, we have the case (3.1) and the first of
(3.2) with s and 1 in place of 1 and 2 respectively. Hence ¢, =0
for s>p and from (3.22) we have ¢,,=0, that is H, for s>p are
independent of x!, #%, ..., x?. Hence the fundamental form consists
of the two distinet parts

YeaHXde'), YeH:(da)* (=1, 3,.. ,p; (=2 p+1,..., n)
1 t

such that the coefficients of either part involve only the variables of
that part. For the first of these all of the ¢’s are different from zero,
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and for the second no conditions have been established. Hence when
in the next section we consider the case where all the ¢’s are different
from zero, this result and the consequences of (3.1) and the first of
conditions (3.2) are the only possible types. Consequently for any V.,
we have one of these types, or a combination of them, each applying
to an isolated part of the fundamental form. In the latter case the
group for V, is the direct product of the groups for these parts as
follows from (1.23).

4, In this section we consider the case when each of the H’s
involves all the coordinates, that is none of the constants ¢, is zero.
From (2.5) we have in this case

9 log H,
9 at

(4.1) — e H 4, 2o,

Differentiating this equation with respect to ' for 2>>2 and making
use of the equation obtained from (2.5) on replacing 2 by I, we have

aH, 3y

4.2) (ery—1ca1) FYARE L
and consequently
0% H,
(er3—¢31) W =0.

From this equation and (4.2) it follows that if ¢ contains 2’ then

3 H,
T
from which and (1.20) we have
(4.3) ¢+ cu==0,

and from these equations and (1.17) we obtain

(4.9) €3t =0, ¢54¢,=—0.
From the first of these equations and (4.2) we obtain
(4.5) —2¢y H={+6,

where © involves the «’s other than z! not involved in ¢. When this
expression is substituted in (4.1), we obtain

3y 1 0 1 9
kg — ===+ = 2) — T
(4.6) ‘ 9t 2 (6m1 2 6)“— 2"

From the above statement about ® and the form of this equation it
follows that o is at most a function of .
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From (4.5) and (1.20) we have

24
dxt
e

Substituting this expression and the similar one for H,, in

(4.7) Clg}Ig ===

d log H,
d 2™ :clmHm-;
we obtain
94
i 8¢ 3 2™
o 83, 20 e i=m,

since from equations analogous to (4.4) and from (1.17) we find that
Cim==Cym. Since ¢ does not contain x* and © does, the above equation
is not possible and consequently ¢ can involve at most one « other
than 21, say 3. Accordingly © involves !, 2® and z° for s >3, so
that from (4.2) and (1.17) it follows that

(4.8) G =Cp1s Cop==0Cpg, Cgs==0C1s (s=4,..., n).

In consequence of (4.2), (4.3) and (4.8) we have that the equations

Csg Cg1—Csy €13==0, Cgg Cy9~—C53 C33=0
are reducible to

— Cy (Csa - 023) =0, —c¢p (Css +¢y3) =0,

which are evidently inconsistent with the assumption that ¢ involves
x% and O involves an z other than z! and 22 Hence if ¢ involves an
2 other than #!, then n==3; otherwise ¢ is at most a function of .

We consider first the case when ¢ is a function of 2' and 3
and n=23, and we begin by assuming that equations (1.23) admit a
solution such that one of the components is zero; the case when two
are zero was considered in § 3. By a suitable choice of the coordinates
without changing the coordinate hypersurfaces, we have the three
possible cases

(4.9) 1,1, 0; 1,0, 1; 0,1, L.

For the first case we have from (1.23)
3H, 3H, :
W+W:O (i=1, 2, 3).
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For i—1 we have from (4.5)

K13 10
+ 69;1 + axz"“o’

from which and (4.6) we have

pr—o?

This equation is possible only when ¢ does not involve x* contrary to
the hypothesis. Similar results follow from the other two cases in
(4.9). Consequently, if there exists a solution none of the components
are zero and by a suitable choice of the 2’s we have as one solution
1, 1, 1 so that from (1.23) we must have

3H, 0dH, JH,

(4.10) 5t 3+ 5 =0 (i=1, 2, 3).
For i=1 this condition is from (4.5)

3y 3y 0 30

i Fﬁ”‘”«ﬁi"*ﬁﬁ%

and consequently

6901 + axs L —r ), 6:01 T ax2 :_f(wl)'

Expressing the consistency of these equations and (4.6), we find that
/=0 and ¢==const. Consequently ¢ is a funetion of x*-—2' and .
of 22— 2!, and we have from (1.20)

o &
6 e

where the prime indicates differentiation with respect to the argument
These expressions satisfy (4.10) for i=2, 3 identically. When they
are substituted in (1.23), we obtain

(4.11) ¢ Hy = ey Hy =

dx} Xy gn ,
(412) W:A’ %2 —.EF(X;—‘X(I)-I-A:O?
dXz &
— 2 (X1— X+ 4—0,

where
1 4 4 4 4
A= g (VY +0) X — & XF—V XT).

From (4.6) we have
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(4.13) ("=—4¢Y, 07=0689"
Adding the first two of equations (4.12), we have

(4.19) & [XY + (X2 — X2+ X2—0.

Differentiating this equation successively with respect to z! and 2 and
making use of it and (4.6) in the result, we obtain

(4.15) (X2 +9 X1 —(X2)" +9 X2

Proceeding in like manner with the first and third of (4.12) we
obtain

(4.16) (X2 +9 X1 = (X9 +9 X,

We consider first the case when the constant ¢ is zero. From
(4.6) we have

1 1 1 1
T=7(x3*$‘)7 5 = 5 @ —a?),

and from (4.15), (4.16) and (4.12) we obtain
Xofsaxﬂ—i-bxf—kc,

where a, b, ¢ are constants. Hence the matrix of the Z's is

1 1 1
(4.17) ' oz 2B
(x1)2 (xz)z (_rs)z

From (4.5) and (4.11) with the aid of (4.4) we find for the H’s the
expressions

xk ozt

(xi — :cj) (x’ — xk) ’

where 4, j, k£ take the values 1, 2, 8 in eyclic order.
When ¢ is positive, say 442, we have from (4.6)
{=2q cot a(z?—axl), O0=2a cot a(zl—az?).

In this case by a suitable choice of basis the respective members of
(4.15) and (4.16) may be taken equal to zero for the vectors other
than 1, 1, 1. Then from (4.15), (4.16) and (4.12) we obtain

Xi=b sin 2az’+c cos 2ax’ (2=2, 3; i=1, 2, 3),
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where b and ¢ are constants. Hence the matrix is

1 1 1
(4.19) sin 2ax' sin 2a2? sin 2a23
cos 2axz! cos 2ax? cos 2azx?

and the H’s are of the form

(420) Cji E — sin a (xk — xj)

sin a (&' — &%) sin o (@' — 2%) )
When ¢ is negative, say —4a?, we have from (4.6)
{=20a coth a(z*—z'), 6=2a coth a(x'—2a2).

In this case the matrix is

1 1 1
(4.21) sinh 2a21  sinh 2422 sinh 2a2?
cosh 2a2!  cosh 2ax? cosh 2ax3

and the H's are of the form-
sinh @ (zf — o)

sinh ¢ (&' — 27) sinh a(z* — 2*)

(422) Cji H,=

We consider finally the case when ¢ in (4.1) is a funetion of

;—=(la, and note that
H,—H,f', in the new coordinate system {—0 and the solution of
(4.1) is

1
(4.23) H T om (@1 +9),

a1 or a constant. If we. put #'=—f(x?), where

where ¢ is a function of all the «'s except !, in accordance with
the hypothesis of this section. From (1.20) we have

e

a k(3
(4.24) Cym Hip=—— 5”—13'? (m=2, ) n)a
and from (4.2) and (1.17)
(4.25) Cli=Ca1y Cm=Cim (I==3,..., n; lm).

Substituting from (4.24) in, (1.20) for ¢>1, because of (4.25) we
obtain
?e

Azt da™ !
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and consequently
o=X24. . + X"

where X™ is a function of z™ alone. If we put

Coy=—0, b1, Clmn=—"Cr bi (m=1,..., n),
and effect the change of variables given by

0, by Bl==xl, 840, E"=X"
in the new coordinate system we have

1 .
(4.26) I{]_= P =Hn=W (l=1, ey 'ﬂ),

and consequently V, is of constant curvature — )1¢;8%%). The basis

may be chosen so that the matrix of the E’s is

(4.27)

...............

...............

As a result of this investigation we have:

A conformally flat space admitting a simply tramsitive group of
motions has constant curvature.

In fact, if the fundamental form is taken as

B (e, (dar)2 4. . .+en(dx)2),

and A involves 2!, ..., z*, we have the case (4.26) and (4.27). If H
involves only some of the a’s, say «2 ..., «?, we have (3.10) and
(3.19) with ¢=t,=1, and from (3.11) it follows that the curvature

is constant.

%) Cf. R. G., p. 85.

(Eingegangen: 25. X. 1935.)



