Eine Aufgabe über trilinear verwandte Felder.

Von Theodor Schmid in Wien.

Es sei die trilineare Verwandtschaft vorausgesetzt, welche zwischen Grundriß, Aufriß und Kreuzriß besteht.

Die drei Bilder P', P'', P''' eines Punktes P können nicht beliebig, sondern nur als Eckpunkte eines Rechteckes gewählt werden. Der Ursprung O des Projektionssystems ist dann nur insoweit bestimmt, als er auf einer gewissen Geraden liegen muß. Der vierte Eckpunkt des gewählten Rechtecks bildet nämlich die vereinigten Projektionen M', M'', M''' eines Punktes M der Koinzidenzgeralen m, deren vereinigte Projektionen m', m'', m''' den inneren oder äußeren Winkel des Rechteckes halbieren. 1) Auf dieser Geraden muß der Ursprung O liegen. Ist auch der Drehungssinn für die Vereinigung der Grund- und Kreuzrißebene mit der Aufrißebene freigestellt, so kann sowohl die Halbierungsgerade des Innenals auch jene des Außenwinkels des Rechtecks als m', m'', m''' gelten.

Die drei Spuren e_1 , e_2 , e_3 einer Ebene z können beliebig gewählt werden. Der Ursprung O des Pro-

jektionssystems ist dann dreideutig bestimmt.

Zieht man durch den Schnittpunkt \bar{H} von e_1 und e_2 eine Gerade c als Bildachse für den Grund und Aufriß, ferner durch den Schnittpunkt J von e_2 und e_3 eine Gerade a normal zu c als Bildachse für den Aufriß und Kreuzriß, so ergeben a und c einen Schnittpunkt O, ferner a und e_1 einen Punkt X_1 , sowie c und e_3 einen Punkt X_3 . Soll O der Ursprung des Projektionssystems sein, so muß OX_1X_3 ein gleichschenkliges, rechtwinkliges Dreieck sein. Beschreibt nun die Gerade c das Strahlenbüschel H, so beschreibt a ein gleichlaufend kongruentes Strahlenbüschel J und der Punkt O den Kreis k mit dem Durchmesser HJ. Die Halbierungsgeraden des Winkels O beschreiben Strahlenbüschel mit den Endpunkten M und N des zu HJ normalen Kreisdurchmessers als Scheitel. Die Verbindungsgerade x von X_1 und X_3 umhüllt eine Kurve II. Klasse l, welche e_1 im Schnittpunkte L_1 von k und e_1 , sowie e_3 im Schnittpunkte K_3 von k und e_3 berührt, weil X_1 und X_3 auf e_1 und e_3 zwei projektive Punktreihen bilden. Auch die Kreistangenten für H und J werden von dieser Kurve berührt, so daß

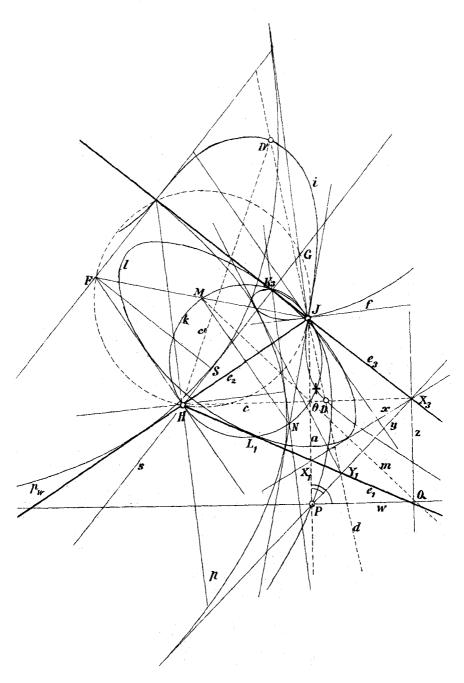
^{1) &}quot;Über das Koinzidenzproblem". Monatshefte für Mathematik und Physik. IV., VI., VII. Jahrgang.

der Mittelpunkt auf MN liegen muß. Zieht man durch jeden Punkt X_3 eine Normale y zu dem entsprechenden Strahle MO des Büschels M, so umhüllen diese Geraden y eine Parabel p, welche ebenfalls die Gerade e_3 berührt. Sie hat den Punkt H als Brennpunkt und die Gerade K_3 N als Scheiteltangente, wie gleich später gezeigt werden soll. Der Kegelschnitt l und die Parabel p haben außer e_3 noch drei gemeinsame Tangenten, in welchen je eine Gerade x mit der entsprechenden Geraden y zusammenfällt, so daß OX_1X_3 ein gleichschenkliges, rechtwinkliges Dreieck wird, womit die drei möglichen Lagen des Ursprungs O gefunden sind.

Jeder Strahl a des Büschels J schneidet die entsprechende Tangente y der Parabel p stets unter dem Winkel von 45°; daher beschreibt der Schnittpunkt P von a und y eine Linie f dritter Ordnung, vierter Klasse, welche J als Doppelpunkt und p als dreifach berührenden Kegelschnitt besitzt. 1) Zieht man durch X_s eine Normale z zur Achse c, so ist das ein Strahl des Kernbüschels R''', und zieht man durch P eine Normale w zur Achse a, so ist das ein Strahl des Kernbüschels T'. Die Geraden z und w'schneiden sich in einem Punkte Q des Strahles MO. Die Gerade z umhüllt eine Parabel p_z , welche H als Brennpunkt und e_3 als Scheiteltangente hat. Die Parabel p geht aus p_z hervor durch Drehung von 45° um H und konforme Verkleinerung im Verhältnisse sin $45 = \frac{1}{2} \sqrt{2}$. Die Gerade w umhüllt eine Parabel p_w , welche aus p_z durch Drehung von 90° um M hervorgeht; daher hat p_w den Schnittpunkt F von JM mit der Kreistangente bei Hals Brennpunkt und die Gerade K_3H als Scheiteltangente. Die Linie f ist die Fußpunkt curve der Parabel p_w . Sie geht deshalb durch den unendlich fernen Punkt der Scheiteltangente K_3 Hsowie durch die absoluten Kreispunkte und muß auch \bar{p}_w dreifach berühren. Der Kreis, welcher M als Mittelpunkt hat und MF als Radius, geht auch durch J und schneidet die Scheiteltangente von p_w in den Punkten G und H; daher sind JG und JHdie Tangenten aus J an p_w . Die erstere bildet einen Winkel von 45° mit e_3 , die letztere ist identisch mit e_2 . Die Doppelpunktstangenten der Linie f sind zu diesen Geraden normal und bilden daher einen Winkel von $(e_2 e_3 - 45^0)$. Ist der Winkel $e_2 e_3 = 135^0$, so wird die Linie f eine Fokale des Quetelet, und zwar eine Strophoide, nämlich es wird JM die Achse und JN die Direktrix der Parabel p_w . Für $e_2 e_3 = 90^{\circ}$ ergibt sich eine Ophiuride, weil K_3 H in e_2 übergeht. Für e_2 $e_3 = 45^{\circ}$ hat die Linie f einen Rückkehr-

^{1) &}quot;Über Berührungskurven und Hülltorsen der windschiefen Helikoide". Sitzungsber. d. kais. Akademie d. Wissenschaften in Wien. Band XCIX. S. 5. Note 1.

Emil Weyr. Theorie der mehrdeutigen geometrischen Elementargebilde. III. Teil. Note C.



punkt und für $e_2 e_3 < 45^{\circ}$ einen isolierten Punkt. Projiziert man die drei Schnittpunkte der Linie f und der Geraden e_1 aus J auf den Kreis k, so erhält man wieder die drei möglichen Lagen des Ursprungs O. Die Linie f hängt nur von der Strecke HJ und von dem Winkel $e_2 e_3$ ab, ändert sich also nicht, wenn e_1 das Büschel H beschreibt. Ist der Drehungssinn für die Vereinigung der Grund- und Kreuzrißebene mit der Aufrißebene freigestellt, so kann auch statt des Punktes M der Punkt N benützt werden,

was drei weitere Lösungen ergibt.

Die Gerade y schneidet e_1 in einem Punkte Y_1 . Verbindet man diesen Punkt durch eine Gerade d mit J, so ist jedem Strahle c des Büschels H ein Strahl d des Büschels J zugewiesen. Jedem Strahle d von J entsprechen aber zwei Strahlen c und c' von H, denn aus Y_1 gehen an die Parabel p zwei Tangenten y, y', welche die Gerade e_3 in zwei Punkten X_3 , X_3 schneiden. Projiziert man diese zwei Punkte aus H, so erhält man die entsprechenden Strahlen c und c'. Ändert sich Y_1 auf e_1 , so entsteht eine Tangenteninvolution der Parabel p, die auf der Tangente e_3 eine Punktinvolution abschneidet; daher bilden die Strahlen c, c' eine Strahleninvolution, welche dem Büschel J projektiv ist. Jeder Strahl d wird von dem entsprechenden Strahlenpaare c, c' in einem Punktpaare D, D' geschnitten, wodurch eine Linie i dritter Ordnung vierter Klasse entsteht, welche H als Doppelpunkt und J als einfachen Punkt besitzt. 1) Rückt der Punkt Y_1 in den Brennpunkt H von p, so besteht das Tangentenpaar aus den Verbindungsgeraden von H mit den absoluten Kreispunkten. Diese Verbindungsgeraden sind aber zugleich die Strahlen, welche ihre Schnittpunkte mit e_3 aus H projizieren. Daraus folgt einerseits, daß die Strahleninvolution H eine symmetrische ist, anderseits, daß dem gemeinsamen Strahle e, die Verbindungsgeraden von H mit den absoluten Kreispunkten entsprechen, welche somit die Doppelpunktstangenten sind. Der Punkt H ist also stets ein isolierter Punkt. Im Büschel J entspricht dem gemeinsamen Strahle e2 die Gerade JN, welche sohin die Tangente der Linie i für den Punkt J ist. Das Punktpaar, welches auf dem Strahle e_3 liegt, besteht aus dem Schnittpunkte mit e_1 und aus dem Berührungspunkte der Parabel p. Die Linie i ergibt mit dem Kreise k außer H und J noch drei Schnittpunkte, für welche das Dreieck DX, Y, ein gleichschenkliges, rechtwinkliges wird, womit wieder die drei möglichen Lagen des Ursprungs O gefunden sind. Die Strahleninvolution H schneidet auf dem Kreise k eine symmetrische Punktinvolution ab. Das zugehörige Parallelstrahlenbüschel aus dem Involutionszentrum erzeugt mit dem Büschel J eine Parabel, welche mit dem Kreise k außer J noch drei Schnittpunkte liefert, und diese sind ebenfalls die drei möglichen Lagen des Punktes O_{\cdot}

¹⁾ Emil Weyr. Theorie der mehrdeutigen geometrischen Elementargebilde.