Fixed Points of Contraction Mappings on Probabilistic Metric Spaces

by

V. M. SEHGAL University of Wyoming

and

A. T. BHARUCHA-REID Wayne State University

ABSTRACT

In this paper the notion of a contraction mapping on a probabilistic metric space is introduced, and several fixed-point theorems for such mappings are proved.

1. Introduction. Probabilistic metric spaces were introduced by Menger [2]. In Menger's theory the concept of distance is considered to be statistical or probabilistic, rather than deterministic; that is to say, given any two points p and q of a metric space, rather than consider a single non-negative real number d(p, q) as a measure of the distance between p and q, a distribution function $F_{pq}(x)$ is introduced which gives the probabilistic interpretation as the distance between p and q is less than x (x > 0). For detailed discussions of probabilistic metric spaces and their applications we refer to Onicescu [3, Chap. VII] and Schweizer [4, 5].

In Section 2 we introduce some basic definitions and concepts from the theory of probabilistic metric spaces which are used in this paper. Section 3 is devoted to the main results of this paper, namely, the proofs of several fixed-point theorems for contraction mappings on probabilistic metric spaces. In a subsequent paper we will utilize theorems of the type considered in this paper to study solutions of operator equations in probabilistic metric spaces.

2. Basic Definitions and Concepts. Let R denote the reals and $R^+ = \{x \in R : x \ge 0\}$.

Definition 1. A mapping $F: R \to R^+$ is called a *distribution function* if it is nondecreasing, left-continuous with $\inf F = 0$ and $\sup F = 1$.

We will denote by \mathscr{L} the set of all distribution functions.

Definition 2. A probabilistic metric space (PM-space) is an ordered pair (E, \mathcal{F}) , where E is an abstract set of elements and \mathcal{F} is a mapping of $E \times E$ into \mathcal{L} . We shall denote the distribution function $\mathcal{F}(p, q)$ by $F_{p,q}$ and $F_{p,q}(x)$

will represent the value of $F_{p,q}$ at $x \in R$. The functions $F_{p,q}$, $p, q \in E$, are assumed to satisfy the following conditions:

- (PM-I) $F_{p,q}(x) = 1$ for all x > 0, if and only if p = q.
- (PM-II) $F_{p,q}(0) = 0.$
- (PM-III) $F_{p,q} = F_{q,p}$.

PM-IV) If
$$F_{p,q}(x) = 1$$
 and $F_{q,r}(y) = 1$, then $F_{p,r}(x+y) = 1$.

Remark. Definition 2 suggests that $F_{p,q}(x)$ may be interpreted as the probability that the distance between p and q is less than x.

Definition 3. A mapping Δ : $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is a Δ -norm if it satisfies

$$\begin{array}{ll} (\Delta \text{-I}) & \Delta(a, 1) = a, \Delta(0, 0) = 0, \\ (\Delta \text{-II}) & \Delta(a, b) = \Delta(b, a), \\ (\Delta \text{-III}) & \Delta(c, d) \geq \Delta(a, b) \text{ for } c \geq a, d \geq b, \\ (\Delta \text{-IV}) & \Delta(\Delta(a, b), c) = \Delta(a, \Delta(b, c)). \end{array}$$

Let \mathscr{B} denote the set of all Δ -norms, partially ordered by $\Delta_1 \leq \Delta_2$ if and only if $\Delta_1(a, b) \leq \Delta_2(a, b)$ for all $a, b \in [0, 1]$ and $\Delta_1, \Delta_2 \in \mathscr{B}$.

Definition 4. A *Menger space* is a triplet (E, \mathcal{F}, Δ) , where (E, \mathcal{F}) is a PM-space and $\Delta \in \mathcal{B}$ satisfies the following triangle inequality:

 $(PM-IV') F_{p,r}(x+y) \ge \Delta(F_{p,q}(x), F_{q,r}(y))$

for all $p, q, r \in E$ and for all $x \ge 0, y \ge 0$.

The concept of a neighborhood in a PM-space was introduced by Schweizer and Sklar [6]. If $p \in E$, and ϵ , λ are positive reals, then an (ϵ, λ) -neighborhood of p, denoted by $U_p(\epsilon, \lambda)$ is defined by

$$U_p(\epsilon, \lambda) = \{q \in E \colon F_{q, p}(\epsilon) > 1 - \lambda\}.$$

The following result is due to Schweizer and Sklar [6].

THEOREM 1. If (E, \mathscr{F}, Δ) is a Menger space and Δ is continuous then (E, \mathscr{F}, Δ) is a Hausdorff space in the topology induced by the family $\{U_p(\epsilon, \lambda): p \in E, \epsilon > 0, \lambda > 0\}$ of neighborhoods.

Note that the above topology satisfies the first axiom of countability. In this topology a sequence $\{p_n\}$ in *E* converges to a $p \in E(p_n \to p)$ if and only if for every $\epsilon > 0$ and $\lambda > 0$, there exists an integer $M(\epsilon, \lambda)$ such that $p_n \in U_p(\epsilon, \lambda)$, i.e., $F_{p,p_n}(\epsilon) > 1-\lambda$, whenever $n \ge M(\epsilon, \lambda)$. The sequence $\{p_n\}$ will be called fundamental in *E* if for each $\epsilon > 0$, $\lambda > 0$, there is an integer $M(\epsilon, \lambda)$ such that $F_{p_n,p_m}(\epsilon) > 1-\lambda$ whenever $n, m \ge M(\epsilon, \lambda)$. In conformity with the completion concept in metric spaces, a Menger space *E* will be called *complete* if each fundamental sequence in *E* converges to an element in *E*.

The following theorem is easy to prove and it establishes a connection between metric spaces and Menger spaces.

THEOREM 2. If (E, d) is a metric space then the metric d induces a mapping $\mathscr{F}: E \times E \to \mathscr{L}$, where $\mathscr{F}(p,q)(p,q \in E)$ is defined by $\mathscr{F}(p,q)x = H(x-d(p,q))$, $x \in R$, where H(x) = 0 if $x \leq 0$ and H(x) = 1 if x > 0. Further, if $\Delta:[0, 1] \times [0, 1] \to [0, 1]$ is defined by $\Delta(a, b) = \min \{a, b\}$, then (E, \mathscr{F}, Δ) is a Menger space. It is complete if the metric d is complete.

The space (E, \mathcal{F}, Δ) so obtained will be called *induced Menger space*.

98

3. Some fixed-point theorems for contraction mappings on probabilistic metric Spaces. We first introduce the notion of a contraction mapping on a PM-space.

Definition 5. A mapping T of a PM-space (E, \mathscr{F}) into itself will be called a *contraction mapping* if and only if there exists a constant k, with 0 < k < 1, such that for each $p, q \in E$,

(1)
$$F_{Tp,Tq}(kx) \ge F_{p,q}(x) \quad \text{for all } x > 0.$$

Expression (1) may be interpreted as follows: the probability that the distance between the image points Tp, Tq is less than kx is at least equal to the probability that the distance between p, q is less than x.

THEOREM 3. Let (E, \mathscr{F}, Δ) be a complete Menger space, where Δ is a continuous function satisfying $\Delta(x, x) \ge x$ for each $x \in [0, 1]$. If T is any contraction mapping of E into itself, then there is a unique $p \in E$ such that Tp = p. Moreover, $T^nq \rightarrow p$ for each $q \in E$.

Proof. We first prove uniqueness. Suppose $p \neq q$ and Tp = p, Tq = q. Then by (PM-1), there exists an x > 0 and an a, with $0 \le a < 1$, such that $F_{p,q}(x) = a$. However, for each positive integer n, we have by (1)

(2)
$$a = F_{p,q}(x) = F_{T^n p, T^n q}(x) \ge F_{p,q}(x/k^n).$$

Since $F_{p,q}(x/k^n) \to 1$ as $n \to \infty$, it follows that a = 1. This contradicts the selection of a, and therefore, the fixed point is unique.

To prove the existence of the fixed point, consider an arbitrary $q \in E$, and define $p_n = T^n(q)$, $n = 1, 2 \cdots$. We show that the sequence $\{p_n\}$ is fundamental in *E*. Let ϵ , λ be positive reals. Then for m > n, we have

$$F_{p_n, p_m}(\epsilon) \ge \Delta(F_{p_n, p_{n+1}}(\epsilon - k\epsilon), F_{p_{n+1}, p_m}(k\epsilon)),$$

$$\ge \Delta(F_{q, p_1}((\epsilon - k\epsilon)k^{-n}), F_{p_{n+1}, p_m}(k\epsilon)).$$

Set $d = (\epsilon - k\epsilon)k^{-n}$. It follows by (PM-IV') and (Δ -III) that

$$\begin{split} F_{p_n, p_m}(\epsilon) &\geq \Delta(F_{q, p_1}(d), \Delta(F_{p_{n+1}, p_{n+2}}(k\epsilon - k^2\epsilon), F_{p_{n+2}, p_m}(k^2\epsilon))) \\ &\geq \Delta(F_{q, p_1}(d), \Delta(F_{q, p_1}(d), F_{p_{n+2}, p_m}(k^2\epsilon))). \end{split}$$

By the associativity of Δ , and the hypothesis $\Delta(x, x) \ge x$, we have

(3)
$$F_{p_n, p_m}(\epsilon) \geq \Delta(F_{q, p_1}(d), F_{p_{n+2}, p_m}(k^2 \epsilon)).$$

Using the same argument repeatedly, we obtain from (3)

$$F_{p_n, p_m}(\epsilon) \ge \Delta(F_{q, p_1}(d), F_{p_{m-1}, p_m}(k^{m-n-1}\epsilon))$$

$$\ge \Delta(F_{q, p_1}(d), F_{q, p_1}(k^{-n}\epsilon))$$

$$\ge \Delta(F_{q, p_1}(d), F_{q, p_1}(d)) \ge F_{q, p_1}((\epsilon - k\epsilon)k^{-n}).$$

Therefore, if we choose N such that $F_{q,p_1}((\epsilon - k\epsilon)k^{-N}) > 1 - \lambda$, it follows that $F_{p_n,p_m}(\epsilon) > 1 - \lambda$ for all $n \ge N$. Hence, $\{p_n\}$ is a fundamental sequence. Since (E, \mathscr{F}, Δ) is a complete PM-space, there is a $p \in E$ such that $p_n \rightarrow p$, that is, $T^n q \rightarrow p$. We prove that $T^n q \rightarrow Tp$ also. Let $U_{Tp}(\epsilon, \lambda)$ be any neighborhood of Tp. Then $p_n \rightarrow p$ implies the existence of an integer N such that $p_n \in U(\epsilon, \lambda)$ for all $n \ge N$. However,

$$F_{Tp_n, Tp}(\epsilon) \ge F_{p_n, p}(\epsilon/k) \ge F_{p_n, p}(\epsilon) > 1 - \lambda$$

for all $n \ge N$. Therefore, $Tp_n \in U(\epsilon, \lambda)$ for all $n \ge N$, that is, $T^nq \to Tp$. We conclude therefore that Tp = p. This proves the existence part of the theorem.

We now state and prove two theorems, the proofs of which utilize the results stated in the last section. Theorem 4 is the well-known Banach contractionmapping theorem; this proof uses the notion of a probabilistic metric.

THEOREM 4. Let (E, d) be a complete metric space and let $T: E \rightarrow E$ satisfy the condition: there exists a constant k, 0 < k < 1, such that $d(Tp, Tq) \le kd(p, q)$ for all $p, q \in E$. Then T has a unique fixed point $p \in E$ and $T^nq \rightarrow p$ for each $q \in E$.

Proof. If $\mathscr{F}: E \times E \to \mathscr{L}$ is the mapping induced by the metric *d*, then it follows by Theorem 2 that (E, \mathscr{F}, Δ) is a complete Menger space, where $\Delta(a, b) = \min \{a, b\}$. Since for each x > 0,

$$F_{Tp,Tq}(kx) = H(kx - d(Tp, Tq)),$$

$$\geq H(kx - kd(p,q)),$$

$$= H(x - d(p,q)),$$

$$= F_{p,q}(x),$$

it follows that T is a contraction of E into itself. The conclusion now follows by Theorem 3.

THEOREM 5. If (E, ϵ, Δ) is a complete Menger space where Δ satisfies any one of the following conditions: (a) $\Delta_1: \Delta(a, b) = \min \{a, b\}, (b) \Delta_2: \Delta(a, b) = \max \{a, b\}, (c) A_3: \Delta(a, b) = a+b-ab, (d) \Delta_4: \Delta(a, b) = \min \{a+b, 1\}, then Theorem 3 holds.$

Proof. Each of these Δ functions is continuous and satisfies the condition $\Delta(x, x) \geq x$. The conditions of Theorem 2 remain valid.

It is natural to ask if mappings on a PM-space which are local, or pointwise, contractions admit a fixed point. We first introduce some definitions.

Definition 6. Let ϵ and λ be positive reals. A mapping T of a PM-space into itself will be called an (ϵ, λ) -local contraction if there exists a constant k, 0 < k < 1, such that if $p \in E$ and $q \in U_p(\epsilon, \lambda)$, then

(4)
$$F_{T_p,T_q}(kx) \ge F_{p,q}(x) \qquad \text{for } x > 0$$

Definition 6 has the following probabilistic meaning: Whenever the probability of the distance between p and q being less than ϵ is greater than $1-\lambda$, then T acts as a contraction map for the pair of points p and q in the sense of Definition 5.

We now show that for certain types of PM-spaces, each (ϵ , λ)-contraction mapping has the fixed-point property.

Definition 7 (Edelstein [1]). Let (E, d) be a metric space, and let $\epsilon > 0$. A finite sequence x_0, x_1, \dots, x_n of elements of E is called an ϵ -chain joining x_0 and x_n if $d(x_i, x_{i+1}) < \epsilon$, $i = 0, 1, \dots, n-1$. The metric space (E, d) is ϵ -chainable if for every $x, y \in E$, there is an ϵ -chain joining x and y.

We introduce the following definition.

Definition 8. Let (E, \mathscr{F}) be a PM-space and ϵ , λ positive reals. The space (E, \mathscr{F}) is called (ϵ, λ) -chainable if for each $p, q \in E$ there exists a finite sequence

 $p = p_0, p_1, \dots, p_n = q$ of elements in E such that $p_{i+1} \in U_{p_i}(\epsilon, \lambda)$, i.e., $F_{p_{i+1}, p_i}(\epsilon) > 1 - \lambda$ for $i = 0, 1, \dots, n-1$.

THEOREM 6. If (E, d) is a ϵ -chainable metric space then the induced Menger space (E, \mathcal{F}, Δ) is an (ϵ, λ) -chainable space in the sense of Definition 8.

Proof. Let $p, q \in E$, and let $p = p_0, p_1, \dots, p_n = q$ be the ϵ -chain joining p and q. Then $d(p_i, p_{i+1}) < \epsilon$, $i = 0, 1, \dots, n-1$. However, $F_{p_{i+1},p_1}(\epsilon) = H(\epsilon - d(p_i, p_{i+1})) = 1 > 1 - \lambda$ for all $\lambda > 0$. Therefore the Menger space (E, \mathcal{F}, Δ) is (ϵ, λ) -chainable.

THEOREM 7. Let (E, \mathcal{F}, Δ) be a complete (ϵ, λ) -chainable Menger space, where Δ is continuous and satisfies $\Delta(x, x) \geq x$. If $T: E \rightarrow E$ is an (ϵ, λ) -contraction, then T has a unique fixed point $p_* \in E$ and $T^n p \rightarrow p_*$ for each $p \in E$.

We first prove the following lemma.

LEMMA. Under the hypothesis of Theorem 7, for each $p \in E$ and for positive real x, there exists a positive integer N(p, x) such that $F_{T^mp, T^{m+1}p}(x) > 1-\lambda$ for all $m \geq N(p, x)$.

Proof. Let $p = p_0, p_1, \dots, p_n = Tp$ be a finite sequence such that $F_{p_{i+1}, p_i}(\epsilon) > 1-\lambda$, $i = 0, 1, \dots, n-1$. It follows by (4) that $F_{Tp_{i+1}, Tp_i}(\epsilon) \ge F_{p_{i+1}, p_i}(\epsilon/k) > 1-\lambda$, that is, the sequence of elements Tp_0, Tp_1, \dots, Tp_n is an (ϵ, λ) -chain for Tp and T^2p , and hence by induction, $T^rp_0, T^rp_1, \dots, T^rp_n$ is an (ϵ, λ) -chain for T^rp and $T^{r+1}p$ for each positive integer r. Therefore, for x > 0, and for each integer r > 0,

(5)
$$F_{T^{r}p_{i+1}, T^{r}p_{i}}(x) \geq F_{T^{r-1}p_{i+1}, T^{r-1}p_{i}}(x/k) \geq \cdots \geq F_{p_{i+1}, p_{i}}(x/k^{r}).$$

It follows by the triangle inequality (PM-IV') and by (5) that

$$F_{T^{r}p_{0}, T^{r}p_{n}}(x) \geq \Delta(F_{T^{r}p_{0}, T^{r}p_{1}}(x/2), F_{T^{r}p_{1}, T^{r}p_{n}}(x/2)),$$

$$\geq \Delta(F_{p_{0}, p_{1}}(x/2k^{r}), F_{T^{r}p_{1}, T^{r}p_{n}}(x/2)).$$

By the triangle inequality, by (PM-III) and by (5) we have

$$F_{T^{r}p_{0}, T^{r}p_{n}}(x) \geq \Delta(F_{p_{0}, p_{1}}(x/2k^{r}), \Delta(F_{p_{1}, p_{2}}(x/2^{2}k^{r}), F_{T^{r}p_{2}, T^{r}p_{n}}(x/2^{2}))),$$

Setting $d = x/2^n k^r$, we have by (PM-III),

$$F_{Trp_0, Trp_n}(x) \geq \Delta(F_{p_0, p_1}(d), \Delta(F_{p_1, p_2}(d), F_{Trp_2, Trp_n}(x/2^2))).$$

Therefore, repeated use of the above argument yields

$$F_{T^{r}p_{0}, T^{r}p_{n}}(x) \geq \Delta(F_{p_{0}, p_{1}}(d), \Delta(F_{p_{1}, p}(d), \cdots, \Delta(F_{p_{n-2}, p_{n-1}}(d), F_{p_{n-1}, p_{n}}(d)))).$$

Since *n* is a fixed finite integer, there exists an integer $m_i > 0$ such that $F_{p_i, p_{i+1}}(x/2^n k^r) > 1 - \lambda$ for each $r \ge m_i$, $i = 0, 1, \dots, n-1$. Let $N(p, x) = \max \{m_0, m_1, \dots, m_{n-1}\}$. Then $F_{Trp, Tr+1p}(x) > 1 - \lambda$ for all $r \ge N(p, x)$. This proves the lemma.

Proof of Theorem 7. Let $p \in E$ be arbitrary. By the above lemma, for $\epsilon > 0$, there is an integer $N(p, \epsilon)$ such that $F_{T^n p, T^{n+1} p}(\epsilon) > 1 - \lambda$ for all $n \ge N$. Set $T^N p = q$; then we have $F_{T^n q, T^{n+1} q}(\epsilon) > 1 - \lambda$ for all integers $n \ge 0$. Therefore, it follows by (4) that for all x > 0, we have the inequality

$$F_{T^{n_q}, T^{n+1}q}(x) \ge F_{q, Tq}(x/k^n), \qquad n = 0, 1, \cdots.$$

101

It follows as in the proof of Theorem 3 that the sequence $\{T^nq\}$, and hence the sequence $\{T^np\}$, is fundamental in *E*. Let $T^np \to p_* \in E$. We show that the sequence $\{T^np\}$ also converges to Tp_* . Let $U_{Tp_*}(\delta, \mu)$ be a neighborhood of Tp_* . Since $T^np \to p_*$, there is an integer $M \ge 0$ such that $T^np \in U_{p_*}(\delta, \mu) \cap U_{p_*}(\epsilon, \lambda)$ for all $n \ge M$, that is, $F_{T^np,p_*}(\epsilon) > 1-\lambda$, and also $F_{T^np,p_*}(\delta) > 1-\mu$. Now by (4), we have

$$F_{T^{n+1}p, Tp_*}(\delta) \ge F_{T^np, p_*}(\delta/k) > 1-\mu, \qquad n \ge M.$$

Therefore, $T^n p \to T p_*$, and hence $T p_* = p_*$. This proves the existence of a fixed point of T.

To prove uniqueness, let Tp = p, Tq = q and $p \neq q$. Then by (PM-1), there is a real x > 0 such that $F_{p,q}(x) = a$ for some a with $0 \le a < 1$. Let $p_0 = p, p_1, \dots, p_n = q$ be a (ϵ, λ) -chain for p and q. Then, since for each positive integer $m, T^m p_0, T^m p_1, \dots, T^m p_n$ is an (ϵ, λ) -chain for $T^m p$ and $T^m q$, it follows as in the proof of the existence part, that $a = F_{p,q}(x) = F_{T^m p, T^m q}(x) > a$ for msufficiently large. Thus p = q.

COROLLARY (Edelstein [1]). Let (E, d) be a complete ϵ -chainable metric space and $T: E \to E$ satisfy the condition that $d(p, q) < \epsilon$ implies $d(Tp, Tq) \le kd(p, q)$ for some $k, 0 \le k < 1$, and for all $p, q \in E$. Then T has a unique fixed point $p_{\perp} \in E$ and $T^n p \to p_{\perp}$ for each $p \in E$.

Proof. Let (E, \mathcal{F}, Δ) be the induced Menger space. Then (E, \mathcal{F}, Δ) is an (ϵ, λ) -chainable space for each $\lambda > 0$ (see Theorem 6). Choose $\lambda < 1$. We show that T is an (ϵ, λ) -contraction. If $q \in U_p(\epsilon, \lambda)$, then $F_{q,p} > 1-\lambda$, that is, $H(\epsilon - d(p, q)) > 0$, and therefore $d(p, q) < \epsilon$. Thus $d(Tp, Tq) \le kd(p, q)$, and hence for x > 0

$$F_{T_{p,T_{q}}}(kx) = H(kx - d(T_{p}, T_{q})) \ge H(x - d(p, q)) = F_{p,q}(x).$$

The result now follows by Theorem 7.

REFERENCES

- M. EDELSTEIN, (i) On fixed and periodic points under contractive mapping, J. London Math. Soc. 37 (1962), 74-79; (ii) An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7-10.
- [2] K. MENGER, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535-537.
- [3] O. ONICESCU, Nombres et Systèmes Aléatoires, Éditions de l'Académie de la R. P. Roumaine, Bucarest, 1964.
- [4] B. SCHWEIZER, Probabilistic metric spaces—the first 25 years, The N.Y. Statistician 19 (1967), 3-6.
- [5] B. SCHWEIZER, Probabilistic metric spaces, Probabilistic Methods in Applied Mathematics (A. T. Bharucha-Reid, ed.), Vol. 4, Academic Press, New York (to appear).
- [6] B. SCHWEIZER and A. SKLAR, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334.
- [7] B. SCHWEIZER, A. SKLAR and E. THORP, The metrization of statistical metric spaces, Pacific J. Math. 10 (1960) 673-675.

(Received 1 March 1971)

102