Fixed Points of Contraction Mappings on Probabilistic Metric Spaces

by

V. M. SEHGAL University of Wyoming

and

A. T. BHARUCHA-REID Wayne State University

ABSTRACT

In this paper the notion of a contraction mapping on a probabilistic metric space **is** introduced, and several fixed-point theorems for such mappings are proved.

1. Introduction. Probabilistic metric spaces were introduced by Menger [2]. In Menger's theory the concept of distance is considered to be statistical or probabilistic, rather than deterministic; that is to say, given any two points p and q of a metric space, rather than consider a single non-negative real number $d(p, q)$ as a measure of the distance between p and q, a distribution function $F_{pq}(x)$ is introduced which gives the probabilistic interpretation as the distance between p and q is less than $x (x > 0)$. For detailed discussions of probabilistic metric spaces and their applications we refer to Onicescu [3, Chap. VII] and Schweizer [4, 5].

In Section 2 we introduce some basic definitions and concepts from **the** theory of probabilistic metric spaces which are used in this paper. Section 3 is devoted to the main results of this paper, namely, the proofs of several fixedpoint theorems for contraction mappings on probabilistic metric spaces. In a subsequent paper we will utilize theorems of the type considered in this paper to study solutions of operator equations in probabilistic metric spaces.

2. Basic Definitions and Concepts. Let R denote the reals and $R^+ = \{x \in R:$ $x\geq 0$.

Definition 1. A mapping $F: R \rightarrow R^+$ is called a *distribution function* if it is nondecreasing, left-continuous with inf $F = 0$ and sup $F = 1$.

We will denote by L the set of all distribution functions.

Definition 2. A *probabilistic metric space (PM-space)* is an ordered pair (E, \mathcal{F}) , where E is an abstract set of elements and \mathcal{F} is a mapping of $E \times E$ into L . We shall denote the distribution function $\mathcal{F}(p, q)$ by $F_{p,q}$ and $F_{p,q}(x)$

will represent the value of $F_{p,q}$ at $x \in R$. The functions $F_{p,q}$, $p, q \in E$, are assumed to satisfy the following conditions :

- $(PM-I)$ $F_{p,q}(x) = 1$ for all $x > 0$, if and only if $p = q$.
- $(PM-II)$ $F_{p,q}(0) = 0.$
- $(PM-III)$ $F_{p,q}$ =

(PM-IV) If
$$
F_{p,q}(x) = 1
$$
 and $F_{q,r}(y) = 1$, then $F_{p,r}(x+y) = 1$.

Remark. Definition 2 suggests that $F_{p,q}(x)$ may be interpreted as the probability that the distance between p and q is less than x.

Definition 3. A mapping Δ : [0, 1] × [0, 1] \rightarrow [0, 1] is a Δ -norm if it satisfies

 $(\Delta-I)$ $\Delta(a, 1) = a, \Delta(0, 0) = 0,$ $(\Delta$ -II) $\Delta(a, b) = \Delta(b, a),$ $(\Delta-III)$ $\Delta(c, d) \geq \Delta(a, b)$ for $c \geq a, d \geq b$, $(\Delta$ -IV) $\Delta(\Delta(a, b), c) = \Delta(a, \Delta(b, c)).$

Let \mathscr{B} denote the set of all Δ -norms, partially ordered by $\Delta_1 \leq \Delta_2$ if and only if $\Delta_1(a, b) \leq \Delta_2(a, b)$ for all $a, b \in [0, 1]$ and $\Delta_1, \Delta_2 \in \mathcal{B}$.

Definition 4. A *Menger space* is a triplet (E, \mathcal{F}, Δ) , where (E, \mathcal{F}) is a PMspace and $\Delta \in \mathcal{B}$ satisfies the following triangle inequality:

 $(FM-IV')$ $F_{n,r}(x+y) \geq \Delta(F_{n,q}(x), F_{q,r}(y))$

for all p, q, $r \in E$ and for all $x \ge 0$, $y \ge 0$.

The concept of a neighborhood in a PM-space was introduced by Schweizer and Sklar [6]. If $p \in E$, and ϵ , λ are positive reals, then an (ϵ, λ) -neighborhood of p, denoted by $U_p(\epsilon, \lambda)$ is defined by

$$
U_p(\epsilon,\lambda) = \{q \in E: F_{q,p}(\epsilon) > 1 - \lambda\}.
$$

The following result is due to Schweizer and Sklar [6].

THEOREM 1. If (E, \mathcal{F}, Δ) is a Menger space and Δ is continuous then (E, \mathscr{F}, Δ) is a Hausdorff space in the topology induced by the family $\{U_p(\epsilon, \lambda)\}$: $p \in E$, $\epsilon > 0$, $\lambda > 0$ *of neighborhoods.*

Note that the above topology satisfies the first axiom of countability. In this topology a sequence $\{p_n\}$ in *E converges* to a $p \in E(p_n \to p)$ if and only if for every $\epsilon > 0$ and $\lambda > 0$, there exists an integer $M(\epsilon, \lambda)$ such that $p_n \in U_p(\epsilon, \lambda)$, i.e., $F_{p,p,n}(\epsilon) > 1 - \lambda$, whenever $n \geq M(\epsilon, \lambda)$. The sequence $\{p_n\}$ will be called *fundamental* in E if for each $\epsilon > 0$, $\lambda > 0$, there is an integer $M(\epsilon, \lambda)$ such that $F_{p_n, p_m}(\epsilon) > 1 - \lambda$ whenever $n, m \geq M(\epsilon, \lambda)$. In conformity with the completion concept in metric spaces, a Menger space E will be called *complete* if each fundamental sequence in E converges to an element in E .

The following theorem is easy to prove and it establishes a connection between metric spaces and Menger spaces.

THEOREM 2. *If(E, d) is a metric space then the metric d induces a mapping* $\mathscr{F}: E \times E \rightarrow \mathscr{L}$, where $\mathscr{F}(p,q)$ (p, $q \in E$) is defined by $\mathscr{F}(p,q)$ $x = H(x-d(p,q)),$ $x \in R$, where $H(x) = 0$ if $x \le 0$ and $H(x) = 1$ if $x > 0$. Further, if Δ :[0, 1] \times $[0, 1] \rightarrow [0, 1]$ *is defined by* $\Delta(a, b) = \min \{a, b\}$, *then* (E, \mathscr{F}, Δ) *is a Menger space. It is complete if the metric d is complete.*

The space (E, \mathcal{F}, Δ) so obtained will be called *induced Menger space*.

98

3. Some fixed-point theorems for contraction mappings on probabilistic metric Spaces. We first introduce the notion of a contraction mapping on a PM-space.

Definition 5. A mapping T of a PM-space (E, \mathcal{F}) into itself will be called a *contraction mapping* if and only if there exists a constant k, with $0 < k < 1$, such that for each $p, q \in E$,

(1)
$$
F_{Tp, Tq}(kx) \geq F_{p,q}(x) \quad \text{for all } x > 0.
$$

Expression (1) may be interpreted as follows: the probability that the distance between the image points *Tp, Tq* is less than *kx* is at least equal to the probability that the distance between p , q is less than x .

THEOREM 3. Let (E, \mathcal{F}, Δ) be a complete Menger space, where Δ is a *continuous function satisfying* $\Delta(x, x) \geq x$ *for each* $x \in [0, 1]$. If T is any contraction *mapping of E into itself, then there is a unique* $p \in E$ *such that* $Tp = p$ *. Moreover,* $T^n q \to p$ for each $q \in E$.

Proof. We first prove uniqueness. Suppose $p \neq q$ and $Tp = p$, $Tq = q$. Then by (PM-1), there exists an $x > 0$ and an a, with $0 \le a < 1$, such that $F_{p,q}(x) = a$. However, for each positive integer *n*, we have by (1)

(2)
$$
a = F_{p,q}(x) = F_{T^n p, T^n q}(x) \geq F_{p,q}(x/k^n).
$$

Since $F_{p,q}(x/k^n) \to 1$ as $n \to \infty$, it follows that $a = 1$. This contradicts the selection of a , and therefore, the fixed point is unique.

To prove the existence of the fixed point, consider an arbitrary $q \in E$, and define $p_n = T^n(q)$, $n = 1, 2 \cdots$. We show that the sequence $\{p_n\}$ is fundamental in E. Let ϵ , λ be positive reals. Then for $m > n$, we have

$$
F_{p_n, p_m}(\epsilon) \geq \Delta(F_{p_n, p_{n+1}}(\epsilon - k\epsilon), F_{p_{n+1}, p_m}(k\epsilon)),
$$

$$
\geq \Delta(F_{q, p_1}((\epsilon - k\epsilon)k^{-n}), F_{p_{n+1}, p_m}(k\epsilon)).
$$

Set $d = (\epsilon - k\epsilon)k^{-n}$. It follows by (PM-IV') and (Δ -III) that

and the

 \sim \sim

$$
F_{p_n, p_m}(\epsilon) \geq \Delta(F_{q, p_1}(d), \Delta(F_{p_{n+1}, p_{n+2}}(k\epsilon - k^2 \epsilon), F_{p_{n+2}, p_m}(k^2 \epsilon)))
$$

\n
$$
\geq \Delta(F_{q, p_1}(d), \Delta(F_{q, p_1}(d), F_{p_{n+2}, p_m}(k^2 \epsilon))).
$$

By the associativity of Δ , and the hypothesis $\Delta(x, x) \geq x$, we have

(3)
$$
F_{p_n, p_m}(\epsilon) \geq \Delta(F_{q, p_1}(d), F_{p_{n+2}, p_m}(k^2 \epsilon)).
$$

Using the same argument repeatedly, we obtain from (3)

$$
F_{p_n, p_m}(\epsilon) \geq \Delta(F_{q, p_1}(d), F_{p_{m-1}, p_m}(k^{m-n-1}\epsilon))
$$

\n
$$
\geq \Delta(F_{q, p_1}(d), F_{q, p_1}(k^{-n}\epsilon))
$$

\n
$$
\geq \Delta(F_{q, p_1}(d), F_{q, p_1}(d)) \geq F_{q, p_1}((\epsilon - k\epsilon)k^{-n}).
$$

Therefore, if we choose N such that $F_{q,p}$,(($\epsilon - k\epsilon$) k^{-N}) > 1- λ , it follows that $F_{p_n, p_m}(\epsilon) > 1-\lambda$ for all $n \geq N$. Hence, $\{p_n\}$ is a fundamental sequence. Since (E, \mathscr{F}, Δ) is a complete PM-space, there is a $p \in E$ such that $p_n \to p$, that is. $T^n q \rightarrow p$. We prove that $T^n q \rightarrow Tp$ also. Let $U_{Tp}(\epsilon, \lambda)$ be any neighborhood of *Tp.* Then $p_n \to p$ implies the existence of an integer N such that $p_n \in U(\epsilon, \lambda)$ for all $n \geq N$. However,

$$
F_{T p_n, T p}(\epsilon) \geq F_{p_n, p}(\epsilon / k) \geq F_{p_n, p}(\epsilon) > 1 - \lambda
$$

for all $n \ge N$. Therefore, $T_{p_n} \in U(\epsilon, \lambda)$ for all $n \ge N$, that is, $T^n q \to T_p$. We conclude therefore that $Tp = p$. This proves the existence part of the theorem.

We now state and prove two theorems, the proofs of which utilize the results stated in the last section. Theorem 4 is the well-known Banach contractionmapping theorem; this proof uses the notion of a probabilistic metric.

THEOREM 4. Let (E, d) be a complete metric space and let $T: E \rightarrow E$ satisfy *the condition: there exists a constant k,* $0 < k < 1$ *, such that* $d(Tp, Tq) \leq kd(p, q)$ *for all p,* $q \in E$ *. Then T has a unique fixed point p_r* $\in E$ *and* $T^n q \rightarrow p$ *for each* $q \in E$ *.*

Proof. If $\mathscr{F}: E \times E \rightarrow \mathscr{L}$ is the mapping induced by the metric d, then it follows by Theorem 2 that (E, \mathcal{F}, Δ) is a complete Menger space, where $\Delta(a, b)$ $=$ min $\{a, b\}$. Since for each $x > 0$,

$$
F_{Tp, Tq}(kx) = H(kx - d(Tp, Tq)),
$$

\n
$$
\geq H(kx - kd(p, q)),
$$

\n
$$
= H(x - d(p,q)),
$$

\n
$$
= F_{p,q}(x),
$$

it follows that T is a contraction of E into itself. The conclusion now follows by Theorem 3.

THEOREM 5. If (E, ϵ, Δ) is a complete Menger space where Δ satisfies any *one of the following conditions:* (a) Δ_1 : $\Delta(a, b)$ = min {a, b}, (b) Δ_2 : $\Delta(a, b)$ = max $\{a, b\}$, (c) A_3 : $\Delta(a, b) = a+b-ab$, (d) Δ_4 : $\Delta(a, b) = \min \{a+b, 1\}$, *then Theorem 3 holds.*

Proof. Each of these Δ functions is continuous and satisfies the condition $\Delta(x, x) \geq x$. The conditions of Theorem 2 remain valid.

It is natural to ask if mappings on a PM-space which are local, or pointwise, contractions admit a fixed point. We first introduce some definitions.

Definition 6. Let ϵ and λ be positive reals. A mapping T of a PM-space into itself will be called an (ϵ, λ) -local contraction if there exists a constant $k, 0 < k < 1$, such that if $p \in E$ and $q \in U_p(\epsilon, \lambda)$, then

(4) $F_{T_p, T_q}(kx) \geq F_{p,q}(x)$ for $x > 0$.

Definition 6 has the following probabilistic meaning: Whenever the probability of the distance between p and q being less than ϵ is greater than $1 - \lambda$, then T acts as a contraction map for the pair of points p and q in the sense of Definition 5.

We now show that for certain types of PM-spaces, each (ϵ, λ) -contraction mapping has the fixed-point property.

Definition 7 (Edelstein [1]). Let (E, d) be a metric space, and let $\epsilon > 0$. A finite sequence x_0, x_1, \dots, x_n of elements of E is called an *e-chain* joining x_0 and x_n if $d(x_i, x_{i+1}) < \epsilon$, $i = 0, 1, \dots, n-1$. The metric space (E, d) is ϵ -*chainable* if for every $x, y \in E$, there is an ϵ -chain joining x and y.

We introduce the following definition.

Definition 8. Let (E, \mathcal{F}) be a PM-space and ϵ , λ positive reals. The space (E, \mathscr{F}) is called (ϵ, λ) -*chainable* if for each p, $q \in E$ there exists a finite sequence $p = p_0, p_1, \dots, p_n = q$ of elements in E such that $p_{i+1} \in U_{p_i}(\epsilon, \lambda)$, i.e., $F_{p_{i+1},p_i}(\epsilon)$ $> 1-\lambda$ for $i = 0, 1, \dots, n-1$.

THEOREM 6. *If*(E , d) is a ϵ -chainable metric space then the induced Menger *space* (E, \mathcal{F}, Δ) *is an* (ϵ, λ) -chainable space in the sense of Definition 8.

Proof. Let p, $q \in E$, and let $p = p_0, p_1, \dots, p_n = q$ be the ϵ -chain joining p and q. Then $d(p_i, p_{i+1}) < \epsilon$, $i = 0, 1, \dots, n-1$. However, $F_{p_{i+1},p_i}(\epsilon) = H(\epsilon)$ $-d(p_i, p_{i+1}) = 1 > 1 - \lambda$ for all $\lambda > 0$. Therefore the Menger space $(E, \mathcal{F},$ Δ) is (ϵ , λ)-chainable.

THEOREM 7. Let (E, \mathcal{F}, Δ) be a complete (ϵ, Δ) -chainable Menger space, *where* Δ *is continuous and satisfies* $\Delta(x, x) \ge x$. If $T: E \rightarrow E$ *is an* (ϵ, λ) -contraction, *then T has a unique fixed point* $p \in E$ *and* $T^*p \to p$ *for each* $p \in E$ *.*

We first prove the following lemma.

LEMMA. Under the hypothesis of Theorem 7, for each $p \in E$ and for positive *real x, there exists a positive integer* $N(p, x)$ such that $F_{T_{m_p}, T_{m+1_p}}(x) > 1 - \lambda$ *for all* $m \geq N(p, x)$ *.*

Proof. Let $p = p_0, p_1, \dots, p_n = Tp$ be a finite sequence such that $F_{p_{i+1},p_i}(\epsilon)$ $> 1-\lambda$, $i = 0, 1, \dots, n-1$. It follows by (4) that $F_{Tp_{i+1},Tp_i}(\epsilon) \geq F_{p_{i+1},p_i}(\epsilon/k)$ $> 1-\lambda$, that is, the sequence of elements Tp_0 , Tp_1, \dots, Tp_n is an (ϵ, λ) -chain for *Tp* and T^2p , and hence by induction, $T^r p_0$, $T^r p_1$, \cdots , $T^r p_n$ is an (ϵ, λ) -chain for $T^r p$ and $T^{r+1} p$ for each positive integer r. Therefore, for $x > 0$, and for each integer $r > 0$,

$$
(5) \hspace{1cm} F_{T^r p_{i+1}, T^r p_i}(x) \geq F_{T^{r-1} p_{i+1}, T^{r-1} p_i}(x/k) \geq \cdots \geq F_{p_{i+1}, p_i}(x/k').
$$

It follows by the triangle inequality (PM-IV') and by (5) that

$$
F_{T^{r}p_{0}, T^{r}p_{n}}(x) \geq \Delta(F_{T^{r}p_{0}, T^{r}p_{1}}(x/2), F_{T^{r}p_{1}, T^{r}p_{n}}(x/2)),
$$

$$
\geq \Delta(F_{p_{0}, p_{1}}(x/2k^{r}), F_{T^{r}p_{1}, T^{r}p_{n}}(x/2)).
$$

By the triangle inequality, by (PM-III) and by (5) we have

$$
F_{T^{r}p_{0}, T^{r}p_{n}}(x) \geq \Delta(F_{p_{0}, p_{1}}(x/2k'), \Delta(F_{p_{1}, p_{2}}(x/2^{2}k'), F_{T^{r}p_{2}, T^{r}p_{n}}(x/2^{2}))),
$$

Setting $d = x/2^n k^r$, we have by (PM-III),

$$
F_{T_{p_0}, T_{p_n}}(x) \geq \Delta(F_{p_0, p_1}(d), \Delta(F_{p_1, p_2}(d), F_{T_{p_2}, T_{p_n}}(x/2^2))).
$$

Therefore, repeated use of the above argument yields

$$
F_{T^r p_0, T^r p_n}(x) \geq \Delta(F_{p_0, p_1}(d), \Delta(F_{p_1, p}(d), \cdots, \Delta(F_{p_{n-2}, p_{n-1}}(d), F_{p_{n-1}, p_n}(d))))
$$

Since *n* is a fixed finite integer, there exists an integer $m_i > 0$ such that $F_{p_i, p_{i+1}}$ $(x/2^{n}k^{r}) > 1 - \lambda$ for each $r \ge m_{i}$, $i = 0, 1, \dots, n-1$. Let $N(p, x) = \max \{m_{0},$ m_1, \dots, m_{n-1} . Then $F_{T_{r,p}, T_{r+1,p}}(x) > 1-\lambda$ for all $r \geq N(p, x)$. This proves the lemma.

Proof of Theorem 7. Let $p \in E$ be arbitrary. By the above lemma, for $\epsilon > 0$, there is an integer $N(p, \epsilon)$ such that $F_{T^n p, T^{n+1} p}(\epsilon) > 1 - \lambda$ for all $n \geq N$. Set $T^N p = q$; then we have $F_{T^{n}q, T^{n+1}q}(\epsilon) > 1-\lambda$ for all integers $n \geq 0$. Therefore, it follows by (4) that for all $x > 0$, we have the inequality

$$
F_{T^{n}q, T^{n+1}q}(x) \geq F_{q, Tq}(x/k^{n}), \qquad n = 0, 1, \cdots.
$$

It follows as in the proof of Theorem 3 that the sequence $\{T^n q\}$, and hence the sequence $\{T^n p\}$, is fundamental in E. Let $T^n p \rightarrow p_* \in E$. We show that the sequence $\{T^n p\}$ also converges to $T p_{\downarrow}$. Let $U_{T p_{\downarrow}}(\delta, \mu)$ be a neighborhood of $T p_{\downarrow}$. Since $T^np \to p_r$, there is an integer $\tilde{M} \ge 0$ such that $T^np \in U_{p_s}(\delta,\mu) \cap U_{p_s}(\epsilon,\lambda)$ for all $n \geq M$, that is, $F_{T^n p, p}(s) > 1 - \lambda$, and also $F_{T^n p, p}(s) > 1 - \mu$. Now by (4). we have

$$
F_{T^{n+1}p, Tp_{\ast}}(\delta) \geq F_{T^{n}p, p_{\ast}}(\delta/k) > 1 - \mu, \qquad n \geq M.
$$

Therefore, $T^n p \to T p$, and hence $T p_{\perp} = p_{\perp}$. This proves the existence of a fixed point of T.

To prove uniqueness, let $T_p = p$, $T_q = q$ and $p \neq q$. Then by (PM-1), there is a real $x > 0$ such that $F_{p,q}(x) = a$ for some a with $0 \le a < 1$. Let $p_0 = p, p_1, \dots, p_n = q$ be a (ϵ, λ) -chain for p and q. Then, since for each positive integer *m*, $T^m p_0$, $T^m p_1$, \cdots , $T^m p_n$ is an (ϵ, λ) -chain for $T^m p$ and $T^m q$, it follows as in the proof of the existence part, that $a = F_{p,q}(x) = F_{T_{mp}}(x) > a$ for m sufficiently large. Thus $p = q$.

COROLLARY (Edelstein [1]). *Let (E, d) be a complete e-chainable metric* space and $T: E \to E$ satisfy the condition that $d(p, q) < \epsilon$ implies $d(Tp, Tq) \leq$ $kd(p, q)$ for some k, $0 \le k < 1$, and for all p, $q \in E$. Then T has a unique fixed *point* $p \in E$ *and* $T^np \rightarrow p$ for each $p \in E$.

Proof. Let (E, \mathscr{F}, Δ) be the induced Menger space. Then (E, \mathscr{F}, Δ) is an (ϵ, λ) -chainable space for each $\lambda > 0$ (see Theorem 6). Choose $\lambda < 1$. We show that T is an (ϵ, λ) -contraction. If $q \in U_p(\epsilon, \lambda)$, then $F_{q,p} > 1 - \lambda$, that is, $H(\epsilon$ $d(p, q) > 0$, and therefore $d(p, q) < \epsilon$. Thus $d(Tp, Tq) \leq kd(p, q)$, and hence for $x > 0$

$$
F_{Tp, Tq}(kx) = H(kx - d(Tp, Tq)) \ge H(x - d(p, q)) = F_{p,q}(x).
$$

The result now follows by Theorem 7.

REFERENCES

- [1] M. EDELSTEIN, (i) On fixed and periodic points under contractive mapping, J. *London Math. Soc.* 37 (1962), 74-79; (ii) An extension of Banach's contraction principle, *Proc. Amer. Math. Soc.* 12 (1961), 7-10.
- [2] K. MENGER, Statistical metrics, *Proc. Nat. Acad. Sci. U.S.A.* 28 (1942), 535-537.
- [3] O. ONICESCU, *Nombres et Systèmes Aléatoires*, Éditions de l'Académie de la R. P. Roumaine, Bucarest, 1964.
- [4] B. SCHWEIZER, Probabilistic metric spaces--the first 25 years, *The N.Y. Statistician* 19 $(1967), 3-6.$
- [5] B. SCHWEIZER, Probabilistic metric spaces, *Probabilistic Methods in Applied Mathematics* (A. T. Bharucha-Reid, ed.), Vol. 4, Academic Press, New York (to appear).
- [6] B. SCFIWEIZER and A. SKLAR, Statistical metric spaces, *Pacific J. Math.* 10 (1960), 313-334.
- [7] B. SClaWElZER, A. SKLAR and E. THORP, The metrization of statistical metric spaces, *Pacific J. Math.* **10** (1960) 673-675.

(Received I March 1971)