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ABSTRACT

In this paper the notion of a contraction mapping on a probabilistic metric space is
introduced, and several fixed-point theorems for such mappings are proved.

1. Introduction. Probabilistic metric spaces were introduced by Menger [2].
In Menger’s theory the concept of distance is considered to be statistical or
probabilistic, rather than deterministic; that is to say, given any two points p
and ¢ of a metric space, rather than consider a single non-negative real number
d(p, q) as a measure of the distance between p and ¢, a distribution function
F,,(x) is introduced which gives the probabilistic interpretation as the distance
between p and ¢ is less than x (x > 0). For detailed discussions of probabilistic
metric spaces and their applications we refer to Onicescu [3, Chap. VII] and
Schweizer [4, 5].

In Section 2 we introduce some basic definitions and concepts from the
theory of probabilistic metric spaces which are used in this paper. Section 3 is
devoted to the main results of this paper, namely, the proofs of several fixed-
point theorems for contraction mappings on probabilistic metric spaces. In a
subsequent paper we will utilize theorems of the type considered in this paper to
study solutions of operator equations in probabilistic metric spaces.

2. Basic Definitions and Concepts. Let R denote the reals and R* = {x e R:
x = 0}

Definition 1. A mapping F: R — R™ is called a distribution function if it is
nondecreasing, left-continuous with inf F = 0 and sup F = 1.
We will denote by .# the set of all distribution functions.

Definition 2. A probabilistic metric space (PM-space) is an ordered pair
(E, &), where E is an abstract set of elements and % is a mapping of Ex E
into . We shall denote the distribution function #(p, q) by F, , and F, (x)
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will represent the value of F, ,atx e R. The functions F, ,, p, g € E, are assumed
to satisfy the following conditions:
(PM-I) F, (x) = 1forallx > 0,ifand onlyifp = q.

(PM-1I) F, (0) = 0.

(PM-III) F,, = F,,. ~

(PM-1V) If F, (x) =1 and F, () = 1, then F, (x+y) = 1.

Remark. Definition 2 suggests that F, (x) may be interpreted as the prob-
ability that the distance between p and ¢ is less than x.

Definition 3. A mapping A: [0, 1]x [0, 1] —[0, 1] is a A-norm if it satisfies
(A-1) Ala, 1) = a, A0, 0) = 0,
(A-ID) Aa, b) = A(b, a),
(A-1ID) Ale,d) = Ala, b)for ¢ = a,d = b,
(A-1V) AA{a, b), ¢) = Ala, Ab, ¢)).
Let & denote the set of all A-norms, partially ordered by A; < A, if and
only if A\(a, b) < Ay(a, b)foralla, be[0, 1] and A, A,  A.

Definition 4. A Menger space is a triplet (£, %, A), where (E, %) is a PM-
space and A e # satisfies the following triangle inequality:

(PM-IV") Fp (x+)) 2 AMF, (x), ), (»)
forallp,g,re Eandforallx = 0,y = 0.

The concept of a neighborhood in a PM-space was introduced by Schweizer
and Sklar [6]. If pe E, and e, A are positive reals, then an (e, A)-neighborhood of
p, denoted by U,(e, A) is defined by

Ufe, ) = {ge E: F, () > 1A}
The following result is due to Schweizer and Sklar [6].

THEOREM 1. If (E, %, A) is a Menger space and A is continuous then
(E, &, A) is a Hausdor[f space in the topology induced by the family {U (e, A):
peE, e >0, > 0} of neighborhoods.

Note that the above topology satisfies the first axiom of countability. In
this topology a sequence {p, } in E convergesto a p € E (p, — p) if and only if for
every € > 0 and A > 0, there exists an integer M (e, A) such that p, € U (e, A),
ie., F, , () > 1—A, whenever n > M(e, A). The sequence {p,} will be called
fundamental in E if for each € > 0, A > 0, there is an integer M (e, A) such that
F, ,.(¢) > 1—A whenever n, m > M(e, A). In conformity with the completion
concept in metric spaces, a Menger space E will be called complete if each funda-
mental sequence in E converges to an element in E.

The following theorem is easy to prove and it establishes a connection be-
tween metric spaces and Menger spaces.

THEOREM 2. If (E, d) is a metric space then the metric d induces a mapping
F  ExE— %, where F(p, q)(p, q € E) is defined by #(p, q) x = H(x—d(p,q)),
x<€R, where H(x) = 0 if x < 0 and H(x) = 1 if x > 0. Further, if A:[0, 1]x
[0, 1] =[O, 1] is defined by A(a, b) = min {a, b}, then (E, %, A) is a Menger space.
It is complete if the metric d is complete.

The space (E,.%,A) so obtained will be called induced Menger space.
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3. Some fixed-point theorems for contraction mappings on probabilistic
metric Spaces. We first introduce the notion of a contraction mapping on a
PM-space.

Definition 5. A mapping T of a PM-space (E, %) into itself will be called a
contraction mapping if and only if there exists a constant k, with 0 < k < 1,
such that for each p, g € E,

1) Frp 2kx) = F, (%) for all x > 0.

Expression (1) may be interpreted as follows: the probability that the
distance between the image points Tp, Tq is less than kx is at least equal to the
probability that the distance between p, g is less than x,

THEOREM 3. Let (E, %, A) be a complete Menger space, where A is a
continuous function satisfying A(x, x) = x for each x €0, 1]. If T is any contraction
mapping of E into itself, then there is a unique p € E such that Tp = p. Moreover,
T"q — p for each g & E. '

Proof. We first prove uniqueness. Suppose p # g and Tp = p, Tq = q. Then
by (PM-1), there existsan x > Oand ana, with0 < a < 1,suchthat F, (x) = a.
However, for each positive integer n, we have by (1)

@) a = F, (X) = Frnp (%) 2 F, (x/K").

Since F, (x/k") —1 as n— oo, it follows that @ = 1. This contradicts the
selection of g, and therefore, the fixed point is unique.

To prove the existence of the fixed point, consider an arbitrary ¢ € E, and
define p, = T™(q), n = 1, 2---. We show that the sequence {p,} is fundamental
in E. Let ¢, A be positive reals. Then for m > n, we have

FPm Pm(e) 2 A(Fpm Pn+ 1(e - ké), Fp,.+ 1s pm(ke))a
> A(F, ,((c—kk™, F, .. . (ke)).

Set d = (e—ke)k™". It follows by (PM-IV’) and (A-III) that

Fpmpm(ﬁ) > A(Fq,p‘(d), A(Fp"+l’pn+z(k€_k2€)’ Fp”+2,pm(k2e)))
2 A(Fq.m(d)’ A(Fq,pn(d)’ Fpn+2,pm(k25)))-

By the associativity of A, and the hypothesis A(x, x) > x, we have

©)) F o pnl€) 2 A(Fq,m(d)’ Ey,. Zme(k2€))'
Using the same argument repeatedly, we obtain from (3)
Fpnv (G) = A(qupl(d)’ Fpm— ! ,Ilm(km—"_ 16))
= A(F, ,(d), F, , (k")
> A(F, (@), F, ,(d)) = F, ,(e=kek™").

Therefore, if we choose N such that Fq‘pl((e—ke)k_"’) > 1—4, it follows that
F, ,.(e) > 1—Aforall n > N. Hence, {p,} is a fundamental sequence. Since
(E, #, A) is a complete PM-space, there is a p € £ such that p, — p, that is,
T"g — p. We prove that T"g — Tp also. Let Uy (¢, A) be any neighborhood of
Tp. Then p, — p implies the existence of an integer N such that p, e U(e, A)

for all n > N. However,
FTmep(s) > Fpmp(s/k) > Fpmp(e) >1-A
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for all n = N. Therefore, Tp, € U(e, A) for all n > N, that is, T"q — Tp. We
conclude therefore that Tp = p. This proves the existence part of the theorem.
We now state and prove two theorems, the proofs of which utilize the results
stated in the last section. Theorem 4 is the well-known Banach contraction-
mapping theorem; this proof uses the notion of a probabilistic metric.

THEOREM 4. Let (E, d) be a complete metric space and let T: E — E satisfy

the condition: there exists a constant k,0 < k < 1, such that d(Tp, Tq) < kd(p, q)

Jorallp, q € E. Then T has a unique fixed point p_e E and T"q — p_for each q < E.

Proof. If #: Ex E-— % is the mapping induced by the metric d, then it

follows by Theorem 2 that (E, #, A) is a complete Menger space, where A(a, b)
= min {a, b}. Since for each x > 0,

Frp, 1 (kx) = H(kx—d(Tp, Tg)),
z H(kx—kd(p, 9)),
= H(x—-d(p,9)),
= F,, %),

it follows that Tis a contraction of E into itself. The conclusion now follows by
Theorem 3.

THEOREM 5. If (E, €, A) is a complete Menger space where A satisfies any
one of the following conditions: (a) A,: Aa, b) = min {a, b}, (b) A,: Aa, b) =
max {a, b}, (¢) 45: Ma, b) = a+b—ab, (d) Ay: Ala, b) = min {a+b, 1}, then
Theorem 3 holds.

Proof. Each of these A functions is continuous and satisfies the condition
A(x, x) = x. The conditions of Theorem 2 remain valid.

It is natural to ask if mappings on a PM-space which are local, or pointwise,
contractions admit a fixed point. We first introduce some definitions.

Definition 6. Let € and A be positive reals. A mapping T of a PM-space into
itself will be called an (e, A)-local contractionif there exists a constantk,0 < k < 1,
such that if p € E and g & U,(e, A), then

@) Frp 1kx) = F, (x) for x > 0.

Definition 6 has the following probabilistic meaning: Whenever the prob-
ability of the distance between p and ¢ being less than e is greater than 1—A,
then T acts as a contraction map for the pair of points p and ¢ in the sense of
Definition 5.

We now show that for certain types of PM-spaces, each (e, A)-contraction
mapping has the fixed-point property.

Definition 7 (Edelstein [1]). Let (E, d) be a metric space, and let € > 0. A
finite sequence xq, Xx,," " *, X, of elements of E is called an e-chain joining xq
and x, ifd(x;, x;4,) < ,i =0,1,--+, n— 1. The metric space (E, d) is e-chainable
if for every x, y € E, there is an e-chain joining x and y.

We introduce the following definition.

Definition 8. Let (E, %) be a PM-space and e, A positive reals. The space
(E, &) is called (e, X)-chainable if for each p, q € E there exists a finite sequence
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P = Po,P1>" "> Py = q of elements in Esuch that p;,; € U, (¢, ), i.e., Fp,,, p(©)
>1-Afori=20,1,-"-,n—1.

THEOREM 6. If (E, d) is a e-chainable metric space then the induced Menger
space (E, F, A) is an (e, N)-chainable space in the sense of Definition 8.

Proof. Let p, ge E, and let p = py, py,***, P, = g be the echain joining
p and g. Then d(p;, p;4+,) <€ i =0, 1,-+-, n—1. However, F, ,, (¢ = H(e

—d(p;, piv1)) = 1 > 1—A for all A > 0. Therefore the Menger space (E, #,
A) is (e, A)-chainable.

THEOREM 7. Let (E, &, A) be a complete (e, \)-chainable Menger space,
where A is continuous and satisfies A(x, x) =z x. If T: E — E is an (e, A)-contraction,
then T has a unique fixed point p € E and T"p — p_ for each p € E.

We first prove the following lemma.

LEMMA. Under the hypothesis of Theorem 7, for each p € E and for positive
real x, there exists a positive integer N(p, x) such that Frm, rm+1,(x) > 1—2
Jor allm = N(p, x).

Proof. Let p = po, p1,* " *» Po = Tp be a finite sequence such that F, ()
>1-Ai=0,1,---,n—1.1t follows by (4) that Fr, ., r,(¢) = F, ., ,(¢/k)
> 1-—A, that is, the sequence of elements 7p,, Tp,, -, Tp, is an (e, A)-chain
for Tp and T?p, and hence by induction, T7p,, T"p;,- - -, T"p, is an (e, A)-chain
for T"p and T"*'p for each positive integer r. Therefore, for x > 0, and for each
integer r > 0,

%) Frepiy,1p(0) 2 Fre-sp, o (X[K) 2002 2 Fp o KXTKD.
It follows by the triangle inequality (PM-IV’) and by (5) that
Frepo, 1rpnX) 2 DFrepy, 15, (X/2)s Frop, 10p,(X/2)),
> A(F,,, 5 (XI2K"), Frrp,, 1rpu(X[2)).
By the triangle inequality, by (PM-III) and by (5) we have

Frepy, mrp (%) = A(F, 5 (x/2K7), A(F,, ol (X122K"), Frp,y 1rp (X/27)),
Setting d = x/2"k", we have by (PM-III),

FT’po.T'pn(x) = A(Fpo,m(d)7 A(pr.pz(d): FT’pz. Trp,,(x/zz)))-

Therefore, repeated use of the above argument yields

Fropo, 1opu(X) 2 BFpo, p,(d), AFp, p1(d), "+, AF,,_, 5, (d); B, 5 (D))

Since # is a fixed finite integer, there exists an integer m; > 0 such thatF, ..
(x/2"k")y > 1—Aforeach r = m;, i =0, 1,---,n—1. Let N(p, x) = max {m,,
my, -+, My }. Then Fr,, 1, (x) > 1=2Afor all r > N(p, x). This proves the
lemma.

Proof of Theorem 7. Let p € E be arbitrary. By the above lemma, for e > 0,
there is an integer N(p, €) such that Fr., yesi,(€) > 1—2 for all n = N. Set
TNp = q; then we have Fr., rn+1,{(e) > 1—2 for all integers n > 0. Therefore,

it follows by (4) that for all x > 0, we have the inequality
. FT"q,T"“‘q(x) > Fq‘Tq(x/k")’ n=01,"-.
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It follows as in the proof of Theorem 3 that the sequence {T"g}, and hence the
sequence {T"p}, is fundamental in E. Let T"p — p e E. We show that the
sequence {77p} also converges to Tp,. Let Ur, (3, p) be a neighborhood of Tp .
Since T"p — p,, there is an integer M > 0 such that T"p € U, (8, 1) N U, (¢, A)
for all n > M, that is, Fr,, ,(e) > 1—A, and also Fra,, ,(8) > 1—p. Now by
(4). we have

FT'I‘“p,Tp*(S) 2 FT"p,p*(a/k) > 1—/"” nz M.

Therefore, T"p — Tp,, and hence Tp, = p,. This proves the existence of a fixed
point of T.

To prove uniqueness, let Tp = p, Tg = g and p # q. Then by (PM-I),
there is a real x > 0 such that F, (x) = a for some a with 0 < a < 1. Let
Po = P, P1," "+ Pn = 4 be a (e, A)-chain for p and ¢. Then, since for each positive
integer m, T™po, T"py,* - -, T™p, is an (e, A)-chain for T"p and T™g, it follows as
in the proof of the existence part, that @ = F, (x) = Frm, rmi(x) > a for m
sufficiently large. Thus p = g.

COROLLARY (Edelstein [1]). Let (E, d) be a complete e-chainable metric
space and T: E — E satisfy the condition that d(p, q) < € implies d(Tp, Tq) <
kd(p, q) for some k, 0 < k < 1, and for all p, g € E. Then T has a unique fixed
point p_e E and T'p — p_ for each p € E.

Proof. Let (E, &, A) be the induced Menger space. Then (E, &, A) is an
(e, A)-chainable space for each A > 0 (see Theorem 6). Choose A < 1. We show
that 7' is an (e, A)-contraction. If g € Uy (e, A), then F, , > 1-A, that is, H(e—
d(p, q)) > 0, and therefore d(p, g) < e. Thus d(Tp, Tq) < kd(p, q), and hence
forx >0

Frp, rkx) = Hlkx—d(Tp, Tq)) = H(x—d(p, 9)) = F,, (%)

The result now follows by Theorem 7.

REFERENCES

[1] M. EDELSTEIN, (i) On fixed and periodic points under contractive mapping, J. London
Math. Soc. 37 (1962), 74-79; (ii) An extension of Banach’s contraction principle, Proc.
Amer. Math. Soc. 12 (1961), 7-10.

[2] K. MENGER, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535-537.

[3] O. OnicEscu, Nombres et Systémes Aléatoires, Editions de I’ Académie de la R. P. Roumaine,
Bucarest, 1964.

[4] B. SCHWEIZER, Probabilistic metric spaces—the first 25 years, The N.Y. Statistician 19
(1967), 3-6.

[5] B. Scawgizer, Probabilistic metric spaces, Probabilistic Methods in Applied Mathematics
(A. T. Bharucha-Reid, ed.), Vol. 4, Academic Press, New York (to appear).

[6] B. ScHWEIZER and A. SKLAR, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334.

[71 B. SCHWEIZER, A. SkLAR and E. THorp, The metrization of statistical metric spaces, Pacific
J. Math. 10 (1960) 673-675.

(Received 1 March 1971)



