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ABSTRACT 

In this paper the notion of a contraction mapping on a probabilistic metric space is 
introduced, and several fixed-point theorems for such mappings are proved. 

1. Introduction. Probabilistic metric spaces were introduced by Menger [2]. 
In Menger's theory the concept of  distance is considered to be statistical or 
probabilistic, rather than deterministic; that is to say, given any two points p 
and q of  a metric space, rather than consider a single non-negative real number 
d(p, q) as a measure of  the distance between p and q, a distribution function 
Fpq(x) is introduced which gives the probabilistic interpretation as the distance 
between p and q is less than x (x > 0). For detailed discussions of  probabilistic 
metric spaces and their applications we refer to Onicescu [3, Chap. VII] and 
Schweizer [4, 5]. 

In Section 2 we introduce some basic definitions and concepts from the 
theory of probabilistic metric spaces which are used in this paper. Section 3 is 
devoted to the main results of this paper, namely, the proofs of  several fixed- 
point theorems for contraction mappings on probabilistic metric spaces. In a 
subsequent paper we will utilize theorems of the type considered in this paper to 
study solutions of  operator equations in probabilistic metric spaces. 

2. Basic Definitions and Concepts. Let R denote the reals and R + = {x ~ R: 
x_>0}. 

Definition 1. A mapping F: R - +  R + is called a distribution function if it is 
nondecreasing, left-continuous with inf F = 0 and sup F = 1. 

We will denote by ~ the set of all distribution functions. 

Definition 2. A probabilistic metric space (PM-space) is an ordered pair 
(E, ~-), where E is an abstract set of elements and ~ -  is a mapping of E × E 
into .~.  We shall denote the distribution function ~ ' (p ,  q) by Fp, q and F~, q(x) 
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the value ofFp, q at x ~ R. The functions Fp. q, p, q ~ E, are assumed 
following conditions : 

Fp,q(x) = 1 for all x > 0, if and only i f p  = q. 
Fp,q(0) = O. 

= 

If Fp,q(X) = 1 and Fq,,(y) = 1, then Fp,~(x+ y) = 1. 

Remark. Definition 2 suggests that Fp,q(x) may be interpreted as the prob- 
ability that the distance between p and q is less than x. 

Definition 3. A mapping A: [0, 1] × [0, 1] -+ [0, 1] is a A-norm if it satisfies 

(A-I) A(a, 1) = a, A(0, 0) = 0, 
(A-II) A(a, b) = A(b, a), 

(A-II1) A(e, d) _> A(a, b) for c > a, d > b, 
(A-IV) A(A(a, b), c) = A(a, A(b, e)). 

Let ~ denote the set of  all A-norms, partially ordered by A 1 < A z if and 
only if Al(a, b) < Az(a, b) for  all a, b e [0, l] and At, A z e ~ .  

Definition 4. A Menger space is a triplet (E, Y ,  A), where (E, ~ )  is a PM- 
space and A e ~ satisfies the following triangle inequality: 

(PM-IV' )  Fp,,(x + y) > A(Fp,q(x), Fq,,(y)) 

for  all p, q, r • E and for all x _> 0, y > 0. 
The concept of  a neighborhood in a PM-space was introduced by Schweizer 

and Sktar [6]. I f p  • E, and e, h are positive reals, then an (E, A)-neighborhood of  
p, denoted by Up(c, A) is defined by 

Up(E, A) = (q • E: F~, p(0 > 1 - A }. 

The following result is due to Scbweizer and Sklar [6]. 

T H E O R E M  1. I f  (E, ~ ,  A) is a Menger space and A is continuous then 
(E, ~ ,  A) is a Hausdorff space in the topology induced by the family {Up(c, A): 
p • E, e > O, A > 0 } of  neighborhoods. 

Note  that the above topology satisfies the first axiom of  countability. In 
this topology a sequence {Pn } in E converges to a p • E (p, -+ p) if and only if for  
every e > 0 and A > 0, there exists an integer M(E, A) such that p,  • Up(E, A), 
i.e., Fp, p.(0 > l - A ,  whenever n > M(E, A). The sequence {p,} will be called 
fundamental in E if for each E > 0, A > 0, there is an integer M(E, A) such that  
Fp,,pm( 0 > 1 - A  whenever n, m > M(E, A). In conformity with the complet ion 
concept in metric spaces, a Menger space E will be called complete if each funda- 
mental sequence in E converges to an element in E. 

The following theorem is easy to prove and it establishes a connection be- 
tween metric spaces and Menger spaces. 

T H E O R E M  2. If(E, d) is a metric space then the metric d induces a mapping 
o~: E x E -+ ~q~, where ~ ( p ,  q) (p, q E E) is definedby ~ ( p ,  q) x = H ( x -  d(p, q)), 
x • R, where H(x) = 0 i f x  < 0 and H(x) = 1 i f x  > O. Further, i f  A:[0, 1]x 
[0, l] -+ [0, 1] is definedby A(a, b) = rain {a, b}, then (E, ~,~, A) is a Menger space. 
It is complete i f  the metric d is complete. 

The space (E, f f ,  A) so obtained will be called induced Menger space. 
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3. Some fixed-point theorems for contraction mappings on probabilistic 
metric Spaces. We first introduce the not ion of  a contract ion mapp ing  on a 
PM-space.  

Definition 5. A mapp ing  T of  a PM-space (E, o ~ )  into itself will be called a 
contraction mapping if and only if there exists a constant  k, with 0 < k < 1, 
such that  for  each p, q ~ E, 

(1) Frp, rq(kx ) > Fp,q(x) for  a l l x  > 0. 

Expression (1) may be interpreted as follows: the probabi l i ty  that  the 
distance between the image points Tp, Tq is less than kx  is at least equal to the 
probabi l i ty  that  the distance between p, q is less than x. 

T H E O R E M  3. Let (E, o~, A) be a complete Menger space, where A is a 
continuous function satisfying A(x, x) >_ x for each x e [0, 1]. I f  T is any contraction 
mapping of  E into itself, then there is a unique p E E such that Tp = p. Moreover, 
T"q ~ p for each q ~ E. 

Proof. We first prove uniqueness. Suppose p # q and Tp = p, Tq = q. Then 
by (PM-1), there exists an x > 0 and an a, with 0 < a < 1, such that  Fp,~(x) = a. 
However ,  for  each positive integer n, we have by (1) 

(2) a = Fp.~(x) = Fr .p , r .q(x  ) > Fp,q(x/k"). 

Since Fp,q(x/k n) - - +  1 as n ~ 0% it follows that  a = 1. This contradicts  the 
selection of  a, and therefore, the fixed point  is unique. 

To  prove the existence of  the fixed point,  consider an arbi t rary q e E, and 
define p,  = T"(q), n = 1, 2 - . ' .  We show that  the sequence {p,} is fundamenta l  
in E. Let  e, A be positive reals. Then for  m > n, we have 

F , . , ,~ ( , )  >__ A ( F , ° , , ° + , ( , - k , ) ,  F , .+ , , ,= (kd )  , 

_> A(F~,p~(( ,-kd~c-") ,  Fp. . , , ,=qc,)) .  

Set d = ( e -ke )k - " .  It follows by (PM-IV ' )  and (A-Ill)  that  

F~.,~.(,I >- A(Fq,o,(d), A(F~ . . . .  , . .  2(k,- k2,), F~.+ 2,,,.(k2~))) 
> &(F~,m(d). A(F., . , (d) ,  Fp.+2,pm(k2.))). 

By the associativity of  4, and the hypothesis A(x, x) _> x, we have 

(3) Fp.,p,.(.) > A(gq,p,(d), rp.+2,p,.(ke.)). 

Using the same argument  repeatedly, we obtain f rom (3) 

G, , , . , . ( ' )  > A(gq,o,(d), G, . - , , , ° , (k"-"- l"))  
>_ A(Fq,p~(d), G,p,(k-ne)) 

> A(Fq,p,(d), Fq,p,(d)) >_ Fq,p,(( . -k . )k-") .  

Therefore,  if we choose N such that  Fq,p,((e-k~)k -N) > 1 -/~, it follows that  
Fp.,p,.,(E) > 1--~ for all n >_ N. Hence, {p.} is a fundamental  sequence. Since 
(E, i f .  4) is a complete PM-space.  there is a p e E such that  p.  - + p ,  that  is. 
T"q -+ p. We prove that T"q --+ Tp also. Let Urp(E, ~) be any neighborhood of  
Tp. Then p.  -~ p implies the existence of  an integer N such that  p .  E U(e, A) 
for all n _> N. However,  

Frp.,rp(') >- Fp°,p(./k) >__ Fp.,p(.) > 1 - A  
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for all n _> N. Therefore, Tp, ~ U(E, A) for all n _> N, that is, T"q --~ Tp. We 
conclude therefore that Tp = p. This proves the existence part of the theorem. 

We now state and prove two theorems, the proofs of which utilize the results 
stated in the last section. Theorem 4 is the well-known Banach contraction- 
mapping theorem; this proof uses the notion of a probabilistic metric. 

THEOREM 4. Let (E, d) be a complete metric space and let T: E -+ E satisfy 
the condition: there exists a constant k, 0 < k < 1, such that d(Tp, Tq) < kd(p, q) 
for all p, q ~ E. Then T has a unique fixed point p, ~ E and T"q -+ p,for each q ~ E. 

Proof. If o~: E x  E - +  ~a is the mapping induced by the metric d, then it 
follows by Theorem 2 that (E, ~ ,  A) is a complete Menger space, where A(a, b) 
= rain {a, b }. Since for each x > 0, 

FTp, rq(kx) = H ( k x -  d(Tp, Tq)), 

> H ( k x - k d ( p ,  q)), 

= H(x-d(p,q)) ,  

= Fp,,(x), 

it follows that T is a contraction of  E into itself. The conclusion now follows by 
Theorem 3. 

THEOREM 5. I f (E,  e, A) is a complete Menger space where A satisfies any 
one of the following conditions: (a) 41: ~(a, b) = min {a, b}, (b) 2~2: A(a, b) = 
max {a, b}, (c) A3: A(a, b) = a + b - a b ,  (d) A4: A(a, b) = rain {a+b, 1}, then 
Theorem 3 holds. 

Proof. Each of these A functions is continuous and satisfies the condition 
A(x, x) > x. The conditions of Theorem 2 remain valid. 

It is natural to ask if mappings on a PM-space which are local, or pointwise, 
contractions admit a fixed point. We first introduce some definitions. 

Definition 6. Let E and I be positive reals. A mapping T of  a PM-space into 
itself will be called an (e, ;~)-local contraction if there exists a constant k, 0 < k < 1, 
such that if p ~ E and q ~ Up(e, I), then 

(4) Frp, rq(kx) >- F~,~(x) for x > 0. 

Definition 6 has the following probabilistic meaning: Whenever the prob- 
ability of the distance between p and q being less than E is greater than 1 - h ,  
then T acts as a contraction map for the pair of points p and q in the sense of  
Definition 5. 

We now show that for certain types of PM-spaces, each (e, ,~)-contraction 
mapping has the fixed-point property. 

Definition 7 (Edelstein [1]). Let (E, d) be a metric space, and let e > 0. A 
finite sequence Xo, x l , ' "  ", x, of elements of E is called an c-chain joining Xo 
and x, ifd(xi, xi+ 1) < e, i = 0, 1 , . . . ,  n -  1. The metric space (E, d) is e-chainable 
if for every x, y s E, there is an c-chain joining x and y. 

We introduce the following definition. 

Definition 8. Let (E, o ~ )  be a PM-space and e, A positive reals. The space 
(E, o ~ )  is called (e, ~)-chainable if for each p, q ~ E there exists a finite sequence 
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P = Po, P l , " ' , P ,  = q of  elements in E s u c h  that  p i+l  e Up,(E, A), i.e., Fp,+,,p,(E) 
> 1--A for i = 0, 1 , . . . , n - - l .  

T H E O R E M  6. I f (E,  d) is a E-chainable metric space then the induced Menger 
space (E, o~, A) is an (E, A)-chainable space in the sense o f  Definition 8. 

Proof. Let p, q e E, and let p = Po, Pl," " ", P, = q be the c-chain joining 
p and q. Then d(pl, Pi+l)  < e, i = 0, l , . . . , n - 1 .  However,  Fp,+,,p,(E) = H(E 
-d(p~, Pi+l))  = 1 > I - A  for all A > 0. Therefore  the Menger  space (E, ~ ,  
A) is (E, A)-chainable. 

T H E O R E M  7. Let (E, o ~ ,  A) be a complete (E, A)-chainable Menger space, 
where A is continuous and satisfies A(x, x) > x. I f  T: E -+ E is an (E, A)-contraction, 
then T has a unique f ixed point p. E E and T~p ---~ p . fo r  each p e E. 

We first prove  the following lemma.  

L E M M A .  Under the hypothesis o f  Theorem 7, for each p E E and for positive 
real x, there exists a positive integer N(p,  x) such that Fr,.p.T,.+lp(x) > 1--A 
for all m > N(p, x). 

Proof. Let p = Po, Pt," " ' ,  P~ = Tp be a finite sequence such that  Fp,+,,p,(E) 
> l - A ,  i = 0, 1 , . - . ,  n - 1 .  It follows by (4) that  Frp,+,,Tp,(~) >-- Fp,+,.p,(E/k) 
> l - A ,  that  is, the sequence o f  elements Tpo, Tpx, . . .  , Tp, is an (E, A)-chain 
for Tp and T2p, and hence by induction, T~po, Trpl, "" ", Trp, is an (E, A)-chain 
for Trp and T '÷  ~p for  each positive integer r. Therefore,  for  x > 0, and for each 
integer r > 0, 

(5) Frrp,+,,T.p,(X ) > FTr-,p,+,,T.-,p,(x/k ) >_''" > Fp,+,,p,(x/k'). 

It follows by the triangle inequality (PM-IV ' )  and by (5) that  

Fr.~o ' T.p.(X) > A(FT..o ' T.p,(X/2), Frr.,, Tw.(X/2)), 

>_ A(r.o,m(x/ZU), FT..,, T-p.(X/2)). 

By the triangle inequality, by (PM-I I I )  and by (5) we have 

rT..o ' r. . .(x) > A(gpo,. ,(x/zU), A(F., . .~(x/2Zk'),  FT.p~" T...(X/22))), 

Setting d = x]2nu, we have by (PM-II I ) ,  

gT..o,r...(x ) >_ A(F.o..~(d). A(r., .p~(d), FT..~,T.~.(X/22))). 

Therefore,  repeated use of  the above argument  yields 

Fr.po, r.o.(x) -> A(F.o,. ,  (d), A(gp,, j ( d ) , . . . ,  A(F.._~, p._,(d), F .  . . . .  ..(d)))). 

Since n is a fixed finite integer, there exists an integer m i > 0 such thatF~,,p,+, 
(x/2"k') > I - A  for each r > m~, i = 0, 1 , . . . ,  n - l .  Let N(p, x) = max {mo, 
m l , . . .  , m ._ l} .  Then Fr.p, rr+,p(x ) > 1 - A  for all r > N(p, x). This proves the 
lemma.  

Proof o f  Theorem 7. Let p e E be arbitrary.  By the above lemma,  for ¢ > 0, 
there is an integer N(p, ~) such that  FT.o,T.+,p(E) > 1--A for all n > N. Set 
TUp = q; then we have FT.q,r.+,q(~ ) > 1--.~ for all integers n > 0. Therefore,  
it follows by (4) that  for all x > 0, we have the inequality 

Fv.q, T.+,q(X) >_ Fq, Tq(x/k"), n = 0.1 , " "  
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It follows as in the p roof  of  Theorem 3 that the sequence {T"q), and hence the 
sequence {T~p}, is fundamental  in E. Let T"p--~p.  • E .  We show that the 
sequence {T"p} also converges to Tp,. Let UTp.(8, i~) he a neighborhood of  Tp.. 
Since T"p --~ p,, there is an integer M >__ 0 such that T"p • Up,(8,/~) r~ Up,(~, )`) 
for all n _> M, that is, FT,p,p.(~ ) > 1--)`, and also FT,p.p,(3 ) > 1--/~. Now by 
(4). we have 

FT,+,p, Tp.(8) > Fr,p,p.(8/k ) > 1--tz, n > M.  

Therefore, T"p ~ Tp,, and hence Tp, = p,. This proves the existence o f  a fixed 
point o f  T. 

To prove uniqueness, let Tp = p, Tq = q and p ~ q. Then by (PM-I) ,  
there is a real x > 0 such that Fp.q(X) = a for some a with 0 < a < 1. Let 
Po = P, Pt," " ", P,  = q be a (E, ),)-chain f o r p  and q. Then, since for each positive 
integer m, Tmpo, Trap1, "'" , Trap, is an (e, )`)-chain for T'~p and Tmq, it follows as 
in the p roof  o f  the existence part, that  a = Fp,q(x) = Frmp, T,,q(x) > a for m 
sufficiently large. Thus p = q. 

C O R O L L A R Y  (Edelstein [1]). Let (E, d) be a complete e-chainable metric 
space and T: E ~ E satisfy the condition that d(p, q) < E implies d(Tp, Tq) < 
kd(p, q) for  some k, 0 < k < 1, and for  all p, q e E. Then T has a unique f ixed  
point p.  E E and T~p --> p.  for  each p E E. 

Proof. Let (E, ~ ,  A) be the induced Menger space. Then (E, o~', A) is an 
(, ,)`)-chainable space for each )` > 0 (see Theorem 6). Choose )` < 1. We show 
that T is an (e, A)-contraction. I f  q ~ Up(e, )`), then Fq, p > 1 - ) ` ,  that  is, H ( e -  
d(p, q)) > 0, and therefore d(p, q) < ~. Thus d(Tp, Tq) < kd(p, q), and hence 

f o r x  > 0 

rTp, Tq(kx) = H ( k x - d ( T p ,  Tq)) > H ( x - d ( p ,  q)) = rp,q(x). 

The result now follows by Theorem 7. 
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